E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	e200z7
Core Size	32-Bit Tri-Core
Speed	264MHz
Connectivity	CANbus, EBI/EMI, Ethernet, FlexCANbus, LINbus, SCI, SPI
Peripherals	DMA, LVD, POR, Zipwire
Number of I/O	-
Program Memory Size	8MB (8M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 16b Sigma-Delta, eQADC
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	416-BGA
Supplier Device Package	416-MAPBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5777clk3mme3

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Introduction

- Enhanced Modular Input/Output System (eMIOS) supporting 32 unified channels with each channel capable of single action, double action, pulse width modulation (PWM) and modulus counter operation
- Two Enhanced Queued Analog-to-Digital Converter (eQADC) modules with:
 - Two separate analog converters per eQADC module
 - Support for a total of 70 analog input pins, expandable to 182 inputs with offchip multiplexers
 - Interface to twelve hardware Decimation Filters
 - Enhanced "Tap" command to route any conversion to two separate Decimation Filters
- Four independent 16-bit Sigma-Delta ADCs (SDADCs)
- 10-channel Reaction Module
- Ethernet (FEC)
- Two PSI5 modules
- Two SENT Receiver (SRX) modules supporting 12 channels
- Zipwire: SIPI and LFAST modules
- Five Deserial Serial Peripheral Interface (DSPI) modules
- Five Enhanced Serial Communication Interface (eSCI) modules
- Four Controller Area Network (FlexCAN) modules
- Two M_CAN modules that support FD
- Fault Collection and Control Unit (FCCU)
- Clock Monitor Units (CMUs)
- Tamper Detection Module (TDM)
- Cryptographic Services Engine (CSE)
 - Complies with Secure Hardware Extension (SHE) Functional Specification Version 1.1 security functions
 - Includes software selectable enhancement to key usage flag for MAC verification and increase in number of memory slots for security keys
- PASS module to support security features
- Nexus development interface (NDI) per IEEE-ISTO 5001-2003 standard, with some support for 2010 standard
- Device and board test support per Joint Test Action Group (JTAG) IEEE 1149.1 and 1149.7
- On-chip voltage regulator controller (VRC) that derives the core logic supply voltage from the high-voltage supply
- On-chip voltage regulator for flash memory
- Self Test capability

Symbol	Deremeter	Oanditiana		Unit		
Symbol	Farameter	Conditions	Min	Тур	Max	
V _{STBY_BO}	Standby RAM brownout flag trip point voltage	—	_	_	0.9 ¹²	V
V _{RL_SD}	SDADC ground reference voltage	—		V _{SSA_SD}		V
V _{DDA_SD}	SDADC supply voltage ¹³	-	4.5	—	5.5	V
V _{DDA_EQA/B}	eQADC supply voltage	—	4.75	—	5.25	V
V _{RH_SD}	SDADC reference	—	4.5	V _{DDA_SD}	5.5	V
$V_{DDA_SD} - V_{RH_SD}$	SDADC reference differential voltage	—	_	_	25	mV
$V_{SSA_SD} - V_{RL_SD}$	V _{RL_SD} differential voltage	—	-25	—	25	mV
V _{RH_EQ}	eQADC reference	—	4.75	—	5.25	V
V _{DDA_EQA/B} – V _{RH_EQ}	eQADC reference differential voltage	—	_	_	25	mV
$V_{SSA_EQ} - V_{RL_EQ}$	V _{RL_EQ} differential voltage	—	-25	—	25	mV
$V_{SSA_{EQ}} - V_{SS}$	V _{SSA_EQ} differential voltage	—	-25	—	25	mV
$V_{SSA_SD} - V_{SS}$	V _{SSA_SD} differential voltage	—	-25	—	25	mV
V _{RAMP}	Slew rate on power supply pins	—	—	—	100	V/ms
Current						
I _{IC}	DC injection current (per pin) ^{14,} 15, 16	Digital pins and analog pins	-3.0	_	3.0	mA
I _{MAXSEG}	Maximum current per power segment ^{17, 18}	—	-80		80	mA

- Maximum operating frequency is applicable to the computational cores and platform for the device. See the Clocking chapter in the MPC5777C Microcontroller Reference Manual for more information on the clock limitations for the various IP blocks on the device.
- 2. If frequency modulation (FM) is enabled, the maximum frequency still cannot exceed this value.
- 3. The maximum specification for operating junction temperature T_J must be respected. Thermal characteristics provides details.
- 4. Core voltage as measured on device pin to guarantee published silicon performance
- 5. During power ramp, voltage measured on silicon might be lower. Maximum performance is not guaranteed, but correct silicon operation is guaranteed. See power management and reset management for description.
- 6. Maximum core voltage is not permitted for entire product life. See absolute maximum rating.
- 7. When internal LVD/HVDs are disabled, external monitoring is required to guarantee device operation. Failure to monitor externally supply voltage may result in erroneous operation of the device.
- 8. This LVD/HVD disabled supply voltage condition only applies after LVD/HVD are disabled by the application during the reset sequence, and the LVD/HVD are active until that point.
- 9. This spec does not apply to V_{DDEH1} .
- 10. When internal flash memory regulator is used:
 - Flash memory read operation is supported for a minimum V_{DDPMC} value of 3.15 V.
 - Flash memory read, program, and erase operations are supported for a minimum V_{DDPMC} value of 3.5 V.

When flash memory power is supplied externally (V_{DDPMC} shorted to V_{DDFLA}): The V_{DDPMC} range must be within the limits specified for LVD_FLASH and HVD_FLASH monitoring. Table 29 provides the monitored LVD_FLASH and HVD_FLASH limits.

- 11. If the standby RAM regulator is not used, the V_{STBY} supply input pin must be tied to ground.
- 12. V_{STBY_BO} is the maximum voltage that sets the standby RAM brownout flag in the device logic. The minimum voltage for RAM data retention is guaranteed always to be less than the V_{STBY_BO} maximum value.

Electrical characteristics

- 13. For supply voltages between 3.0 V and 4.0 V there will be no guaranteed precision of ADC (accuracy/linearity). ADC will recover to a fully functional state when the voltage rises above 4.0 V.
- 14. Full device lifetime without performance degradation
- 15. I/O and analog input specifications are only valid if the injection current on adjacent pins is within these limits. See the absolute maximum ratings table for maximum input current for reliability requirements.
- 16. The I/O pins on the device are clamped to the I/O supply rails for ESD protection. When the voltage of the input pin is above the supply rail, current will be injected through the clamp diode to the supply rail. For external RC network calculation, assume a typical 0.3 V drop across the active diode. The diode voltage drop varies with temperature.
- 17. The sum of all controller pins (including both digital and analog) must not exceed 200 mA. A V_{DDEx}/V_{DDEHx} power segment is defined as one or more GPIO pins located between two V_{DDEx}/V_{DDEHx} supply pins.
- 18. The average current values given in I/O pad current specifications should be used to calculate total I/O segment current.

3.5 DC electrical specifications

NOTE

 I_{DDA_MISC} is the sum of current consumption of IRC, I_{TRNG} , and I_{STBY} in the 5 V domain. IRC current is provided in the IRC specifications.

NOTE

I/O, XOSC, EQADC, SDADC, and Temperature Sensor current specifications are in those components' dedicated sections.

Symbol	Baramatar	Conditiono	Value			Unit
Symbol	Farameter	Conditions	Min	Тур	Max	Unit
I _{DD}	Operating current on the V _{DD} core logic supply ¹	LVD/HVD enabled, $V_{DD} = 1.2 V$ to 1.32 V	—	0.65	1.35	А
		LVD/HVD disabled, $V_{DD} = 1.2 V$ to 1.38 V	_	0.65	1.4	
I _{DD_PE}	Operating current on the V _{DD} supply for flash memory program/erase	_	_	—	85	mA
IDDPMC	Operating current on the V _{DDPMC} supply ²	Flash memory read	_	—	40	mA
		Flash memory program/erase	_	—	70	
		PMC only	_	—	35	
	Operating current on the V _{DDPMC} supply	Flash memory read	—	—	10	mA
	(internal core regulator bypassed)	Flash memory program/erase	_	—	40	
		PMC only	—	—	5	
I _{REGCTL}	Core regulator DC current output on V _{REGCTL} pin	—		-	25	mA
I _{STBY}	Standby RAM supply current ($T_J = 150^{\circ}C$)	1.08 V	_	—	1140	μA
		1.25 V to 5.5 V	—	—	1170	
I _{DD_PWR}	Operating current on the V _{DDPWR} supply	—	—	—	50	mA
I _{BG_REF}	Bandgap reference current consumption ³		—	—	600	μA
I _{TRNG}	True Random Number Generator current	—	—	—	2.1	mA

Table 4. DC electrical specifications

Symbol	Perometer	Conditions		Unit		
Symbol	Faranieter	Conditions	Min	Тур	Max	Onit
f _{PLL1IN}	PLL1 input clock ¹	—	38	—	78	MHz
Δ _{PLL1IN}	PLL1 input clock duty cycle ¹	—	35		65	%
f _{PLL1VCO}	PLL1 VCO frequency	—	600	_	1250	MHz
f _{PLL1PHI}	PLL1 output clock PHI	—	4.762	—	264	MHz
t _{PLL1LOCK}	PLL1 lock time	—	—		100	μs
Δ _{PLL1PHISPJ}	PLL1_PHI single period peak-to- peak jitter	f _{PLL1PHI} = 200 MHz, 6- sigma	_	_	500 ²	ps
f _{PLL1MOD}	PLL1 modulation frequency	—	—		250	kHz
δ _{PLL1MOD}	PLL1 modulation depth (when	Center spread	0.25	_	2	%
enabled)		Down spread	0.5		4	%
I _{PLL1}	PLL1 consumption	FINE LOCK state	—	—	6	mA

Table 13. PLL1 electrical characteristics

1. PLL1IN clock retrieved directly from either internal PLL0 or external XOSC clock. Input characteristics are granted when using internal PLL0 or external oscillator in functional mode.

2. Noise on the V_{DD} supply with frequency content below 40 kHz and above 50 MHz is filtered by the PLL. Noise on the V_{DD} supply with frequency content in the range of 40 kHz – 50 MHz must be filtered externally to the device.

3.7.2 Oscillator electrical specifications

NOTE

All oscillator specifications in Table 14 are valid for $V_{DDEH6} = 3.0 \text{ V}$ to 5.5 V.

Table 14. External oscillator (XOSC) electrical specifications

Symbol	Devemeter	Conditions	Va	Unit	
Symbol	Farameter	Conditions	Min	Мах	Unit
f _{XTAL}	Crystal frequency range	_	8	40	MHz
t _{cst}	Crystal start-up time ^{1, 2}	T _J = 150 °C	_	5	ms
t _{rec}	Crystal recovery time ³		_	0.5	ms
VIHEXT	EXTAL input high voltage (external reference)	V _{REF} = 0.28 * V _{DDEH6}	V _{REF} + 0.6	_	V
V _{ILEXT}	EXTAL input low voltage (external reference)	V _{REF} = 0.28 * V _{DDEH6}	_	V _{REF} – 0.6	V
C _{S_EXTAL}	Total on-chip stray capacitance on EXTAL pin ⁴	416-ball MAPBGA	2.3	3.0	pF
		516-ball MAPBGA	2.1	2.8	
C _{S_XTAL}	Total on-chip stray capacitance on XTAL pin ⁴	416-ball MAPBGA	2.3	3.0	pF
		516-ball MAPBGA	2.2	2.9	
9 _m	Oscillator transconductance ⁵	Low	3	10	mA/V
		Medium	10	27	
		High	12	35	

Table continues on the next page ...

3.8.1 Enhanced Queued Analog-to-Digital Converter (eQADC) Table 17. eQADC conversion specifications (operating)

Min Max Min Max f _{ADCLK} ADC Clock (ADCLK) Frequency 2 33 MHz CC Conversion Cycles 2 + 13 128 + 15 ADCLK cycles TSR Stop Mode Recovery Time ¹ 10 — µs — Resolution ² 1.25 — mV INL 16.5 MHz eQADC clock ³ -4 4 LSB ⁴ DNL: 33 MHz eQADC clock ³ -3 3 LSB DNL 33 MHz eQADC clock ³ -3 3 LSB OFFNC Offset Error without Calibration 0 140 LSB GAINNC Full Scale Gain Error without Calibration -8 8 LSB GAINWC Full Scale Gain Error with Calibration -4 4 Counts Inv Disruptive Input Injection Current ^{6, 1, 7, 8} -3 3 mA GAINWGA1 Variable gain amplifier accuracy (gain = 1) ¹⁵ - - Counts GAINVGA1 Variable gain amplifier accuracy (gain = 2) ¹³ - <	Symbol	Parameter	Va	Unit	
f _{ADCLK} ADC Clock (ADCLK) Frequency 2 33 MHz CC Conversion Cycles 2 + 13 128 + 15 ADCLK cycles T _{SR} Stop Mode Recovery Time ¹ 10 — µs mesolution ² 1.25 — mV INL 16.5 MHz eQADC clock ³ -4 4 LSB ⁴ DNL INL: 16.5 MHz eQADC clock ³ -3 3 LSB DNL DNL: 16.5 MHz eQADC clock ³ -3 3 LSB OFFNC Offset Error without Calibration 0 1400 LSB OFFWC Offset Error with Calibration -8 8 LSB GAINVC Full Scale Gain Error with Calibration -150 0 LSB GAINWC Full Scale Gain Error with Calibration -8 8 LSB Incremental Error with Calibration -4 4 Counts TUE TUE value ^{11, 12} (with calibration) — 44 Counts GAINVGA1 Variable gain amplifier accuracy (gain = 1) ¹³ - -<	Symbol		Min	Max	
$\begin{array}{c c c c c c } CC & Conversion Cycles & 2 + 13 & 128 + 15 & ADCLK cycles \\ \hline T_{SR} & Stop Mode Recovery Time^1 & 10 & - & \mus \\ \hline Resolution^2 & 1.25 & - & mV \\ \hline INL & Resolution^2 & 1.25 & - & mV \\ \hline INL & 16.5 MHz eQADC clock^3 & -4 & 4 & LSB^4 \\ \hline INL : 33 MHz eQADC clock^3 & -6 & 6 & LSB \\ \hline DNL & DNL & 16.5 MHz eQADC clock^3 & -3 & 3 & LSB \\ \hline DNL & 30 MHz eQADC clock^3 & -3 & 3 & LSB \\ \hline DNL & 30 MHz eQADC clock^3 & -3 & 3 & LSB \\ \hline OFFNC & Offset Error with calibration & 0 & 140 & LSB \\ \hline OFFWC & Offset Error with calibration & -8 & 8 & LSB \\ \hline GAINNC & Full Scale Gain Error with calibration & -8 & 8 & LSB \\ \hline I_{NJ} & Disruptive Input Injection Current6, 1, 7, 8 & -3 & 3 & mA \\ \hline E_{NJ} & Incremental Error with calibration & -8 & 8 & Counts \\ \hline TUE & TUE value^{11, 12} (with calibration current6, 10 & - & +4 & Counts \\ \hline TUE & TUE value^{11, 12} (with calibration) & - & 48 & Counts \\ \hline GAINNCA & Variable gain amplifier accuracy (gain = 1)^{13} & - & - & Counts^{15} \\ \hline INL, 16.5 MHz ADC & -3^{14} & 3^{14} & \\ \hline DNL, 33 MHz ADC & -3 & 3 & \\ \hline INL, 16.5 MHz ADC & -3^{14} & 3^{14} & \\ \hline GAINNGA & Variable gain amplifier accuracy (gain = 2)^{13} & - & - & Counts \\ \hline INL, 16.5 MHz ADC & -3 & 3 & \\ \hline INL, 16.5 MHz ADC & -3 & 3 & \\ \hline DNL, 13 MHz ADC & -3 & 3 & \\ \hline DNL, 16.5 MHz ADC & -3 & 3 & \\ \hline INL, 16.5 MHz ADC & -3 & 3 & \\ \hline DNL, 16.5 MHz ADC & -3 & 3 & \\ \hline DNL, 33 MHz ADC & -3 & 3 & \\ \hline DNL, 33 MHz ADC & -3 & 3 & \\ \hline DNL, 16.5 MHz ADC & -3 & 3 & \\ \hline DNL, 16.5 MHz ADC & -3 & 3 & \\ \hline DNL, 16.5 MHz ADC & -3 & 8 & \\ \hline DNL, 16.5 MHz ADC & -3 & 8 & \\ \hline DNL, 16.5 MHz ADC & -3 & 8 & \\ \hline DNL, 16.5 MHz ADC & -4 & 4 & \\ \hline DNL, 33 MHz ADC & -4 & 4 & \\ \hline DNL, 33 MHz ADC & -4 & 4 & \\ \hline DNL, 33 MHz ADC & -4 & 4 & \\ \hline DNL, 33 MHz ADC & -4 & 4 & \\ \hline DNL, 33 MHz ADC & -4 & 4 & \\ \hline DNL & MHz ADC & -4 & 4 & \\ \hline DNL & ADR & Reference voltage current consumption per EQADC & - & & 200 & \muA \\ \hline \end{array}$	f _{ADCLK}	ADC Clock (ADCLK) Frequency	2	33	MHz
$\begin{array}{ c c c c c }\hline T_{SR} & Stop Mode Recovery Time1 & 10 & & \mus \\ \hline Resolution2 & 1.25 & & mV \\ \hline INL & Resolution2 & 1.25 & & mV \\ \hline INL & 16.5 MHz eQADC clock3 & -4 & 4 & LSB4 \\ \hline INL & 33 MHz eQADC clock3 &6 & 6 & LSB \\ \hline DNL & JS MHz eQADC clock3 &3 & 3 & LSB \\ \hline DNL & JS MHz eQADC clock3 &3 & 3 & LSB \\ \hline DNL & JS MHz eQADC clock3 &3 & 3 & LSB \\ \hline DNL & JS MHz eQADC clock3 &3 & 3 & LSB \\ \hline OFFNC & Offset Error with Calibration & 0 & 140 & LSB \\ \hline OFFWC & Offset Error with Calibration & -8 & 8 & LSB \\ \hline GAINNC & Full Scale Gain Error without Calibration & -8 & 8 & LSB \\ \hline GAINWC & Full Scale Gain Error with Calibration & -8 & 8 & LSB \\ \hline InJ & Disruptive Input Injection Current6, 7, 8 & -3 & 3 & mA \\ \hline E_{nVI & Incremental Error due to injection current6, 10 & & 44 & Counts \\ \hline TUE & TUE value11, 12 (with calibration) & & 48 & Counts \\ \hline GAINVGA1 & Variable gain amplifier accuracy (gain = 1)^{13} & - & - & Counts^{15} \\ INL, 16.5 MHz ADC & -3 & 3 & & Counts^{15} \\ INL, 16.5 MHz ADC & -3 & 3 & & Counts \\ \hline MINL, 33 MHz ADC & -3^{14} & 3^{14} & & Counts \\ \hline GAINVGA2 & Variable gain amplifier accuracy (gain = 2)^{13} & - & - & Counts \\ INL, 16.5 MHz ADC & -3 & 3 & & & Counts \\ INL, 16.5 MHz ADC & -3 & 3 & & & Counts \\ INL, 33 MHz ADC & -3 & 3 & & & Counts \\ INL, 33 MHz ADC & -3 & 3 & & & Counts \\ INL, 33 MHz ADC & -3 & 3 & & & Counts \\ INL, 33 MHz ADC & -3 & 3 & & & Counts \\ INL, 33 MHz ADC & -3 & 3 & & & Counts \\ INL, 16.5 MHz ADC & -3 & 3 & & & Counts \\ INL, 16.5 MHz ADC & -3 & 3 & & & Counts \\ INL, 16.5 MHz ADC & -3 & 3 & & & Counts \\ INL, 16.5 MHz ADC & -4 & 4 & & & & & & & & & & & & & &$	CC	Conversion Cycles	2 + 13	128 + 15	ADCLK cycles
$ \begin{array}{ c c c c c } \hline$	T _{SR}	Stop Mode Recovery Time ¹	10	_	μs
INL INL: 16.5 MHz eQADC clock ³ 4 4 LSB ⁴ INL: 33 MHz eQADC clock ³ 6 6 LSB DNL DNL: 16.5 MHz eQADC clock ³ 3 3 LSB DNL: 33 MHz eQADC clock ³ 3 3 LSB OFFNC Offset Error with calibration 0 140 LSB OFFWC Offset Error with Calibration 8 8 LSB GAINVC Full Scale Gain Error with Calibration 8 8 LSB GAINVC Full Scale Gain Error with Calibration 8 8 LSB I _{INJ} Disruptive Input Injection Current ^{5, 6, 7, 8} 3 3 mA TUE TUE value ^{11, 12} (with calibration) +4 Counts GAINVGA1 Variable gain amplifier accuracy (gain = 1) ¹³ - - Counts ¹⁵ INL, 16.5 MHz ADC 3 3 Ma - INL, 33 MHz ADC 3 3 - - GAINVGA2 Variable gain amplifier accuracy (gain = 2) ¹³ -<		Resolution ²	1.25	_	mV
INL: 33 MHz eQADC clock ³ 6 6 LSB DNL: DNL: 16.5 MHz eQADC clock ³ 3 3 LSB DNL: 30 MHz eQADC clock ³ 3 3 LSB OFFNC Offset Error without Calibration 0 140 LSB OFFWC Offset Error without Calibration 8 8 LSB GAINNC Full Scale Gain Error without Calibration 8 8 LSB GAINNC Full Scale Gain Error with Calibration 8 8 LSB Incremental Error due to injection current ^{6, 7, 8} 3 3 mA TUE TUE value ^{11, 12} (with calibration) +4 Counts GAINVGA1 Variable gain amplifier accuracy (gain = 1) ¹³ - - Counts ¹⁵ INL, 16.5 MHz ADC -3 ¹⁴ 3 ¹⁴ - Counts ¹⁵ GAINVGA2 Variable gain amplifier accuracy (gain = 2) ¹³ - - Counts INL, 16.5 MHz ADC -3 ¹⁴ 3 ¹⁴ - Counts - GAINVGA2	INL	INL: 16.5 MHz eQADC clock ³	-4	4	LSB ⁴
DNL DNL: 16.5 MHz eQADC clock ³ 3 3 LSB DNL: 33 MHz eQADC clock ³ 3 3 LSB OFFNC Offset Error without Calibration 0 140 LSB OFFWC Offset Error with Calibration 8 8 LSB GAINWC Full Scale Gain Error with Calibration 8 8 LSB GAINWC Full Scale Gain Error with Calibration 8 8 LSB Incremental Error due to injection current ^{5, 7, 7, 8} 3 3 mA EINJ Disruptive Input Injection current ^{6, 7, 7, 8} 3 3 mA GAINVGA1 Variable gain amplifier accuracy (gain = 1) ¹³ +4 Counts GAINVGA1 Variable gain amplifier accuracy (gain = 2) ¹³ - Counts ¹⁵ INL, 16.5 MHz ADC 3 ¹⁴ 3 ¹⁴ 3 ¹⁴ - - GAINVGA2 Variable gain amplifier accuracy (gain = 2) ¹³ - - Counts INL, 16.5 MHz ADC -3 3 - - Counts		INL: 33 MHz eQADC clock ³	-6	6	LSB
DNL: 33 MHz eQADC clock ³ 3 3 LSB OFFNC Offset Error without Calibration 0 140 LSB OFFWC Offset Error with Calibration 8 8 LSB GAINNC Full Scale Gain Error without Calibration 150 0 LSB GAINWC Full Scale Gain Error with Calibration 8 8 LSB Incremental Error due to injection current ^{9, 10} 4 4 Counts TUE TUE value ^{11, 12} (with calibration) +44 Counts GAINVGA1 Variable gain amplifier accuracy (gain = 1) ¹³ - - Counts ¹⁵ INL, 16.5 MHz ADC 3 ¹⁴ 3 ¹⁴ - - Counts GAINVGA2 Variable gain amplifier accuracy (gain = 2) ¹³ - - Counts INL, 16.5 MHz ADC 3 3 - - Counts INL, 16.5 MHz ADC 3 3 - - Counts INL, 16.5 MHz ADC 3 3 - - Counts	DNL	DNL: 16.5 MHz eQADC clock ³	-3	3	LSB
OFFNCOffset Error without Calibration0140LSBOFFWCOffset Error with Calibration88LSBGAINNCFull Scale Gain Error with Calibration1500LSBGAINWCFull Scale Gain Error with Calibration88LSB I_{NN} Disruptive Input Injection Current ^{6, 6, 7, 8} 33mAEINJIncremental Error due to injection current ^{9, 10} ++4CountsTUETUE value ^{11, 12} (with calibration)+±8CountsGAINVGA1Variable gain amplifier accuracy (gain = 1) ¹³ Counts ¹⁵ INL, 16.5 MHz ADC-444INL, 33 MHz ADC3 ¹⁴⁴ 3 ¹⁴ -ONL, 33 MHz ADC3 ¹⁴⁴ 3 ¹⁴ GAINVGA2Variable gain amplifier accuracy (gain = 2) ¹³ CountsGAINVGA2Variable gain amplifier accuracy (gain = 2) ¹³ CountsINL, 16.5 MHz ADC33INL, 16.5 MHz ADC38INL, 16.5 MHz ADC44INL, 16.5 MHz		DNL: 33 MHz eQADC clock ³	-3	3	LSB
OFFWCOffset Error with Calibration88LSBGAINNCFull Scale Gain Error with Calibration1500LSBGAINWCFull Scale Gain Error with Calibration88LSBI _{NJ} Disruptive Input Injection Current ^{5, 6, 7, 9} 33mAE _{INJ} Incremental Error due to injection current ^{9, 10} +4CountsTUETUE value ^{11, 12} (with calibration)±8CountsGAINVGA1Variable gain amplifier accuracy (gain = 1) ¹³ Counts ¹⁵ INL, 16.5 MHz ADC-44	OFFNC	Offset Error without Calibration	0	140	LSB
GAINNCFull Scale Gain Error without Calibration-1500LSBGAINWCFull Scale Gain Error with Calibration88LSBI _{INJ} Disruptive Input Injection Current ^{5, 6, 7, 9} 33mAE _{INJ} Incremental Error due to injection current ^{9, 10} +4CountsTUETUE value ^{11, 12} (with calibration)±8CountsGAINVGA1Variable gain amplifier accuracy (gain = 1) ¹³ Counts ¹⁵ INL, 16.5 MHz ADC-44INL, 33 MHz ADC88DNL, 33 MHz ADC3143 ¹⁴ ONL, 33 MHz ADC3143 ¹⁴ INL, 16.5 MHz ADC55INL, 16.5 MHz ADC313INL, 33 MHz ADC55INL, 33 MHz ADC88DNL, 33 MHz ADC33INL, 16.5 MHz ADC33DNL, 33 MHz ADC33INL, 16.5 MHz ADC77-CountsINL, 16.5 MHz ADC88DNL, 33 MHz ADC88INL, 16.5 MHz ADC-77INL, 16.5 MHz ADC-44INL, 16.5 MHz ADC-44INL, 33 MHz ADC-44- <t< td=""><td>OFFWC</td><td>Offset Error with Calibration</td><td>-8</td><td>8</td><td>LSB</td></t<>	OFFWC	Offset Error with Calibration	-8	8	LSB
GAINWC Full Scale Gain Error with Calibration 8 8 LSB I _{INJ} Disruptive Input Injection Current ^{5, 6, 7, 8} 3 3 mA E _{INJ} Incremental Error due to injection current ^{9, 10} +44 Counts TUE TUE value ^{11, 12} (with calibration) ±8 Counts GAINVGA1 Variable gain amplifier accuracy (gain = 1) ¹³ - - Counts ¹⁵ INL, 16.5 MHz ADC -44 4 Incremental Error due to injection current ^{9, 10} 4 4 INL, 16.5 MHz ADC 4 4 4 Counts ¹⁵ Incremental Error due to counts ¹⁵ Incremental Error due to injection current ^{9, 10} 4 4 4 INL, 16.5 MHz ADC 4 4 314	GAINNC	Full Scale Gain Error without Calibration	-150	0	LSB
$\begin{tabular}{ l NJ l l l l l l l l l l l l l l l l l $	GAINWC	Full Scale Gain Error with Calibration	-8	8	LSB
$\begin{array}{ c c c c c }\hline E_{INJ} & Incremental Error due to injection current9, 10 & & +4 & Counts \\ \hline TUE & TUE value11, 12 (with calibration) & & \pm8 & Counts \\ \hline GAINVGA1 & Variable gain amplifier accuracy (gain = 1)13 & - & - & Counts15 \\ INL, 16.5 MHz ADC & -4 & 4 & \\ INL, 33 MHz ADC & -8 & 8 & \\ DNL, 16.5 MHz ADC & -314 & 314 & \\ DNL, 33 MHz ADC & -314 & 314 & \\ \hline GAINVGA2 & Variable gain amplifier accuracy (gain = 2)13 & - & - & Counts \\ INL, 16.5 MHz ADC & -314 & 314 & \\ \hline GAINVGA2 & Variable gain amplifier accuracy (gain = 2)13 & - & - & Counts \\ INL, 16.5 MHz ADC & -3 & 5 & \\ INL, 33 MHz ADC & -8 & 8 & \\ DNL, 16.5 MHz ADC & -3 & 3 & \\ \hline DNL, 33 MHz ADC & -3 & 3 & \\ \hline GAINVGA4 & Variable gain amplifier accuracy (gain = 4)13 & - & - & Counts \\ INL, 16.5 MHz ADC & -7 & 7 & \\ INL, 33 MHz ADC & -8 & 8 & \\ \hline DNL, 16.5 MHz ADC & -7 & 7 & \\ INL, 33 MHz ADC & -8 & 8 & \\ \hline DNL, 16.5 MHz ADC & -4 & 4 & \\ \hline IADC & Current consumption per ADC (two ADCs per EQADC) & - & 10 & mA \\ \hline I_{ADR} & Reference voltage current consumption per EQADC & - & 200 & \muA \\ \hline \end{array}$	I _{INJ}	Disruptive Input Injection Current ^{5, 6, 7, 8}	-3	3	mA
TUE TUE value ^{11, 12} (with calibration) ±8 Counts GAINVGA1 Variable gain amplifier accuracy (gain = 1) ¹³ - - Counts ¹⁵ INL, 16.5 MHz ADC -4 4 4 1000000000000000000000000000000000000	E _{INJ}	Incremental Error due to injection current ^{9, 10}	—	+4	Counts
GAINVGA1 Variable gain amplifier accuracy (gain = 1) ¹³ - - Counts ¹⁵ INL, 16.5 MHz ADC -4 4 4 4 INL, 33 MHz ADC -8 8 7-3 ¹⁴ 3 ¹⁴ DNL, 16.5 MHz ADC -3 ¹⁴ 3 ¹⁴ 3 ¹⁴ GAINVGA2 Variable gain amplifier accuracy (gain = 2) ¹³ - - Counts INL, 16.5 MHz ADC -3 ¹⁴ 3 ¹⁴ 3 ¹⁴ 3 ¹⁴ 3 ¹⁴ GAINVGA2 Variable gain amplifier accuracy (gain = 2) ¹³ - - Counts INL, 16.5 MHz ADC -5 5 5 5 5 INL, 33 MHz ADC -8 8 8 - 4 DNL, 16.5 MHz ADC -3 3 - Counts GAINVGA4 Variable gain amplifier accuracy (gain = 4) ¹³ - - Counts INL, 16.5 MHz ADC -77 7 7 - - INL, 33 MHz ADC -8 8 - - 4 DNL, 16.5 MHz ADC <t< td=""><td>TUE</td><td>TUE value^{11, 12} (with calibration)</td><td>—</td><td>±8</td><td>Counts</td></t<>	TUE	TUE value ^{11, 12} (with calibration)	—	±8	Counts
INL, 16.5 MHz ADC 4 4 INL, 33 MHz ADC 8 8 DNL, 16.5 MHz ADC 3 ¹⁴ 3 ¹⁴ DNL, 33 MHz ADC 3 ¹⁴ 3 ¹⁴ GAINVGA2 Variable gain amplifier accuracy (gain = 2) ¹³ - - INL, 16.5 MHz ADC -5 5 INL, 33 MHz ADC INL, 16.5 MHz ADC -5 5 INL, 33 MHz ADC INL, 33 MHz ADC -8 8 INL DNL, 16.5 MHz ADC -3 3 INL DNL, 16.5 MHz ADC -3 3 INL DNL, 33 MHz ADC -3 3 INL GAINVGA4 Variable gain amplifier accuracy (gain = 4) ¹³ - - Counts GAINVGA4 Variable gain amplifier accuracy (gain = 4) ¹³ - - Counts INL, 16.5 MHz ADC -77 7 INL, 33 MHz ADC - 8 DNL, 16.5 MHz ADC -4 4 INL, 33 MHz ADC - 4 INL, 33 MHz ADC - 10 MA IADR	GAINVGA1	Variable gain amplifier accuracy (gain = 1) ¹³	-	-	Counts ¹⁵
INL, 33 MHz ADC 8 8 DNL, 16.5 MHz ADC 3 ¹⁴ 3 ¹⁴ DNL, 33 MHz ADC 3 ¹⁴ 3 ¹⁴ GAINVGA2 Variable gain amplifier accuracy (gain = 2) ¹³ - - INL, 16.5 MHz ADC 5 5 5 INL, 33 MHz ADC 5 5 5 INL, 33 MHz ADC 8 8 8 DNL, 16.5 MHz ADC 3 3 - DNL, 33 MHz ADC 3 3 - GAINVGA4 Variable gain amplifier accuracy (gain = 4) ¹³ - - Counts GAINVGA4 Variable gain amplifier accuracy (gain = 4) ¹³ - - Counts INL, 16.5 MHz ADC 7 7 7 - INL, 33 MHz ADC 8 8 8 - DNL, 16.5 MHz ADC 4 4 - - DNL, 33 MHz ADC 4 4 - - IADC Current consumption per ADC (two ADCs per EQADC) 10 mA <tr< td=""><td></td><td>INL, 16.5 MHz ADC</td><td>-4</td><td>4</td><td></td></tr<>		INL, 16.5 MHz ADC	-4	4	
DNL, 16.5 MHz ADC 3 ¹⁴ 3 ¹⁴ DNL, 33 MHz ADC -3 ¹⁴ 3 ¹⁴ GAINVGA2 Variable gain amplifier accuracy (gain = 2) ¹³ - - Counts INL, 16.5 MHz ADC -5 5 5 14 14 DNL, 33 MHz ADC -5 5 5 14 14 DNL, 16.5 MHz ADC -5 5 5 14 14 DNL, 33 MHz ADC -8 8 6 14 14 DNL, 33 MHz ADC -3 3 14 14 14 GAINVGA4 Variable gain amplifier accuracy (gain = 4) ¹³ - - Counts GAINVGA4 Variable gain amplifier accuracy (gain = 4) ¹³ - - Counts INL, 16.5 MHz ADC -7 7 7 14 14 DNL, 33 MHz ADC -4 4 4 14 14 14 IADC Current consumption per ADC (two ADCs per EQADC) - 10 mA IADR Reference voltage current consumption pe		INL, 33 MHz ADC	-8	8	
DNL, 33 MHz ADC 3 ¹⁴ 3 ¹⁴ GAINVGA2 Variable gain amplifier accuracy (gain = 2) ¹³ - - Counts INL, 16.5 MHz ADC -5 5 5 1000000000000000000000000000000000000		DNL, 16.5 MHz ADC	-3 ¹⁴	3 ¹⁴	
GAINVGA2 Variable gain amplifier accuracy (gain = 2) ¹³ - - Counts INL, 16.5 MHz ADC -5 5 5 5 INL, 33 MHz ADC -8 8 - - 8 DNL, 16.5 MHz ADC -3 3 - - - - DNL, 33 MHz ADC -3 3 - - Counts GAINVGA4 Variable gain amplifier accuracy (gain = 4) ¹³ - - Counts INL, 16.5 MHz ADC -7 7 7 - INL, 16.5 MHz ADC -8 8 - - INL, 16.5 MHz ADC -7 7 - - INL, 33 MHz ADC -8 8 - <td></td> <td>DNL, 33 MHz ADC</td> <td>-3¹⁴</td> <td>3¹⁴</td> <td></td>		DNL, 33 MHz ADC	-3 ¹⁴	3 ¹⁴	
INL, 16.5 MHz ADC 5 5 INL, 33 MHz ADC 8 8 DNL, 16.5 MHz ADC 3 3 DNL, 33 MHz ADC 3 3 GAINVGA4 Variable gain amplifier accuracy (gain = 4) ¹³ - - INL, 33 MHz ADC -7 7 Counts INL, 33 MHz ADC 8 8 INL, 16.5 MHz ADC -7 7 INL, 33 MHz ADC 8 8 DNL, 16.5 MHz ADC 8 8 DNL, 33 MHz ADC -4 4 INL, 33 MHz ADC -4 4 IADC Current consumption per ADC (two ADCs per EQADC) 10 mA IADR Reference voltage current consumption per EQADC 200 µA	GAINVGA2	Variable gain amplifier accuracy (gain = 2) ¹³	-	-	Counts
INL, 33 MHz ADC 8 8 DNL, 16.5 MHz ADC 3 3 DNL, 33 MHz ADC 3 3 GAINVGA4 Variable gain amplifier accuracy (gain = 4) ¹³ - - Counts INL, 16.5 MHz ADC -77 7 7 1 INL, 33 MHz ADC -8 8 8 - INL, 16.5 MHz ADC -8 8 1 - DNL, 16.5 MHz ADC -4 4 4 - <td></td> <td>INL, 16.5 MHz ADC</td> <td>-5</td> <td>5</td> <td></td>		INL, 16.5 MHz ADC	-5	5	
DNL, 16.5 MHz ADC33DNL, 33 MHz ADC33GAINVGA4Variable gain amplifier accuracy (gain = 4) ¹³ INL, 16.5 MHz ADC-777INL, 33 MHz ADC88DNL, 16.5 MHz ADC44DNL, 33 MHz ADC44INL, 33 MHz ADC44INL, 33 MHz ADC44INL, 36 MHz ADC44INL, 37 MHz ADC44INL, 38 MHz ADC44INL, 38 MHz ADC44IADCCurrent consumption per ADC (two ADCs per EQADC)10IADRReference voltage current consumption per EQADC200µA		INL, 33 MHz ADC	-8	8	
DNL, 33 MHz ADC33GAINVGA4Variable gain amplifier accuracy (gain = 4)13CountsINL, 16.5 MHz ADC-777INL, 33 MHz ADC88-DNL, 16.5 MHz ADC44-DNL, 33 MHz ADC44-INL, 33 MHz ADC44-DNL, 16.5 MHz ADC44-INL, 33 MHz ADC44-IADCCurrent consumption per ADC (two ADCs per EQADC)10IADRReference voltage current consumption per EQADC200µA		DNL, 16.5 MHz ADC	-3	3	
GAINVGA4Variable gain amplifier accuracy (gain = 4)^{13}CountsINL, 16.5 MHz ADC -77 77INL, 33 MHz ADC -8 8-DNL, 16.5 MHz ADC -4 4DNL, 33 MHz ADC -4 4INL, 33 MHz ADC -4 4IADCCurrent consumption per ADC (two ADCs per EQADC) -10 mAIADRReference voltage current consumption per EQADC -200 μ A		DNL, 33 MHz ADC	-3	3	
INL, 16.5 MHz ADC77INL, 33 MHz ADC88DNL, 16.5 MHz ADC44DNL, 33 MHz ADC44IADC44IADCCurrent consumption per ADC (two ADCs per EQADC)10IADRReference voltage current consumption per EQADC200µA	GAINVGA4	Variable gain amplifier accuracy (gain = 4) ¹³	-	-	Counts
INL, 33 MHz ADC88DNL, 16.5 MHz ADC44DNL, 33 MHz ADC44IADCCurrent consumption per ADC (two ADCs per EQADC)10IADRReference voltage current consumption per EQADC200μA		INL, 16.5 MHz ADC	-7	7	
DNL, 16.5 MHz ADC 4 4 DNL, 33 MHz ADC 4 4 I _{ADC} Current consumption per ADC (two ADCs per EQADC) 10 mA I _{ADR} Reference voltage current consumption per EQADC 200 µA		INL, 33 MHz ADC	-8	8	
DNL, 33 MHz ADC 4 4 I _{ADC} Current consumption per ADC (two ADCs per EQADC) 10 mA I _{ADR} Reference voltage current consumption per EQADC 200 µA		DNL, 16.5 MHz ADC	-4	4	
I _{ADC} Current consumption per ADC (two ADCs per EQADC) — 10 mA I _{ADR} Reference voltage current consumption per EQADC — 200 μA		DNL, 33 MHz ADC	-4	4	
I _{ADR} Reference voltage current consumption per EQADC – 200 μA	I _{ADC}	Current consumption per ADC (two ADCs per EQADC)	_	10	mA
	I _{ADR}	Reference voltage current consumption per EQADC	_	200	μA

1. Stop mode recovery time is the time from the setting of either of the enable bits in the ADC Control Register to the time that the ADC is ready to perform conversions. Delay from power up to full accuracy = 8 ms.

At V_{RH_EQ} – V_{RL_EQ} = 5.12 V, one count = 1.25 mV without using pregain. Based on 12-bit conversion result; does not account for AC and DC errors

- 3. INL and DNL are tested from V_{RL} + 50 LSB to V_{RH} 50 LSB.
- 4. At $V_{RH_{EQ}} V_{RL_{EQ}} = 5.12 \text{ V}$, one LSB = 1.25 mV.

Electrical characteristics

- 5. Below disruptive current conditions, the channel being stressed has conversion values of \$3FF for analog inputs greater than V_{BH} and \$000 for values less than V_{BL}. Other channels are not affected by non-disruptive conditions.
- 6. Exceeding limit may cause conversion error on stressed channels and on unstressed channels. Transitions within the limit do not affect device reliability or cause permanent damage.
- Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values using V_{POSCLAMP} = V_{DDA} + 0.5 V and V_{NEGCLAMP} = -0.3 V, then use the larger of the calculated values.
- 8. Condition applies to two adjacent pins at injection limits.
- 9. Performance expected with production silicon.
- 10. All channels have same 10 k Ω < Rs < 100 k Ω Channel under test has Rs = 10 k Ω , $I_{INJ}=I_{INJMAX}$, I_{INJMIN} .
- 11. The TUE specification is always less than the sum of the INL, DNL, offset, and gain errors due to cancelling errors.
- 12. TUE does not apply to differential conversions.
- Variable gain is controlled by setting the PRE_GAIN bits in the ADC_ACR1-8 registers to select a gain factor of ×1, ×2, or ×4. Settings are for differential input only. Tested at ×1 gain. Values for other settings are guaranteed as indicated.
- 14. Guaranteed 10-bit monotonicity.
- 15. At $V_{RH_EQ} V_{RL_EQ}$ = 5.12 V, one LSB = 1.25 mV.

3.8.2 Sigma-Delta ADC (SDADC)

The SDADC is a 16-bit Sigma-Delta analog-to-digital converter with a 333 Ksps maximum output conversion rate.

NOTE

The voltage range is 4.5 V to 5.5 V for SDADC specifications, except where noted otherwise.

Symbol	Poromotor	Conditions		Unit		
Symbol	Farameter	Conditions	Min	Тур	Мах	Unit
V _{IN}	ADC input signal	—	0	_	V _{DDA_SD}	V
V _{IN_PK2PK} ¹	Input range peak to peak	Single ended	V _{RH_SD} /GAIN			V
		$V_{\rm INM} = V_{\rm RL}_{\rm SD}$				
	$V_{IN_{PK2PK}} = V_{INP}^{2} - V_{INM}^{3}$	Single ended		±0.5*V _{RF}	I_SD	
		$V_{INM} = 0.5^* V_{RH_{SD}}$				
		GAIN = 1				
		Single ended		GAIN		
		$V_{INM} = 0.5^* V_{RH_SD}$				
		GAIN = 2,4,8,16				
		Differential		±V _{RH_SD} /0	GAIN	
		0 < V _{IN} < V _{DDEx}				
f _{ADCD_M}	SD clock frequency ⁴	—	4	14.4	16	MHz
f _{ADCD_S}	Conversion rate	_	—		333	Ksps
	Oversampling ratio	Internal modulator	24		256	—
RESOLUTION	SD register resolution ⁵	2's complement notation		16		

Table 18. SDADC electrical specifications

Table continues on the next page...

Electrical characteristics

O make at	Demonster	O a se ditti a se a		Unit		
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
GAIN	ADC gain	Defined through SDADC_MCR[PGAN]. Only integer powers of 2 are valid gain values.	1	_	16	
δ _{GAIN} Ι	Absolute value of the ADC gain error ^{6, 7}	Before calibration (applies to gain setting = 1)		_	1.5	%
		After calibration	-	—	5	mV
		$\Delta V_{RH_SD} < 5\%$, $\Delta V_{DDA_SD} < 10\%$				
		$\Delta T_{\rm J} < 50 \ ^{\circ}{\rm C}$				
		After calibration	_	—	7.5	
		$\Delta V_{RH_SD} < 5\%$, $\Delta V_{DDA_SD} < 10\%$				
		ΔT _J < 100 °C				
		After calibration		—	10	
		$\Delta V_{RH_SD} < 5\%, \Delta V_{DDA_SD} < 10\%$				
		$\Delta T_{\rm J} < 150 \ ^{\circ}{\rm C}$				
V _{OFFSET}	Conversion offset ^{6, 7}	Before calibration (applies to all gain settings: 1, 2, 4, 8, 16)	_	10*(1+1/ gain)	20	mV
		After calibration		—	5	
		$\Delta V_{DDA_SD} < 10\%$				
		$\Delta T_{\rm J} < 50 \ ^{\circ}{\rm C}$				
		After calibration	_	—	7.5	
		$\Delta V_{DDA_SD} < 10\%$				
		$\Delta T_{\rm J} < 100 \ ^{\circ}{\rm C}$				
		After calibration	_	—	10	
		$\Delta V_{DDA_SD} < 10\%$				
		$\Delta T_{\rm J} < 150 \ ^{\circ}{\rm C}$				

Table 18.	SDADC electrical	specifications	(continued)
Table 10.	SDADC electrical	specifications	(continueu)

Table continues on the next page ...

Table 21. LFAST transmitter electrical characteristics¹ (continued)

Symbol	Parametar	Conditiono		Unit		
	Farameter	Conditions	Min	Тур	Max	Unit
V _{OS}	Common mode voltage	—	1.08		1.32	V
IV _{OD} I	Differential output voltage swing (terminated) ^{2,3}	—	110	200	285	mV
t _{TR}	Rise/fall time $(10\% - 90\% \text{ of swing})^2$, ³	—	0.26		1.5	ns
CL	External lumped differential load capacitance ²	V _{DDE} = 4.5 V	—	—	12.0	pF
		V _{DDE} = 3.0 V	_		8.5	
I _{LVDS_TX}	Transmitter DC current consumption	Enabled		—	3.2	mA

1. The LFAST pad electrical characteristics are based on worst-case internal capacitance values shown in Figure 11.

 Valid for maximum data rate f_{DATA}. Value given is the capacitance on each terminal of the differential pair, as shown in Figure 11.

3. Valid for maximum external load CL.

Table 22. MSC/DSPI LVDS transmitter electrical characteristics¹

Symbol	Devemeter	Conditions	Value			Unit
Symbol	Falanielei	Conditions	Min	Тур	Max	Unit
f _{DATA}	Data rate	—	—	—	80	Mbps
V _{OS}	Common mode voltage	—	1.08	—	1.32	V
IV _{OD} I	Differential output voltage swing (terminated) ^{2,3}	—	150	200	400	mV
t _{TR}	Rise/Fall time (10%–90% of swing) ² , ³	—	0.8	—	4.0	ns
CL	External lumped differential load capacitance ²	V _{DDE} = 4.5 V	—	—	50	pF
		V _{DDE} = 3.0 V	—	—	39	
I _{LVDS_TX}	Transmitter DC current consumption	Enabled	—	—	4.0	mA

1. The MSC and DSPI LVDS pad electrical characteristics are based on the application circuit and typical worst-case internal capacitance values given in Figure 11.

 Valid for maximum data rate f_{DATA}. Value given is the capacitance on each terminal of the differential pair, as shown in Figure 11.

3. Valid for maximum external load C_L.

The following table shows the recommended components to be used in LDO regulation mode.

Part name	Part type	Nominal	Description	
Q1	NPN BJT	h _{FE} = 400	NJD2873: ON Semiconductor LDO voltage regulator controller (VRC)	
CI	Capacitor	4.7 µF - 20 V	Ceramic capacitor, total ESR < 70 m Ω	
CE	Capacitor	0.047–0.049 µF - 7 V	Ceramic—one capacitor for each V _{DD} pin	
CV	Capacitor	22 µF - 20 V	Ceramic V _{DDPMC} (optional 0.1 µF)	
CD	Capacitor	22 µF - 20 V	Ceramic supply decoupling capacitor, ESR < 50 m Ω (as close as possible to NPN collector)	
СВ	Capacitor	0.1 µF - 7 V	Ceramic V _{DDPWR}	
R	Resistor	Application specific	Optional; reduces thermal loading on the NPN with high V_{DDPMC} levels	

Table 25. Recommended operating characteristics

The following diagram shows the LDO configuration connection.

Figure 12. VRC 1.2 V LDO configuration

3.11.1.2 SMPS mode recommended external components and characteristics

The following table shows the recommended components to be used in SMPS regulation mode.

Part name	Part type	Nominal	Description
Q1	p-MOS	3 A - 20 V	SQ2301ES / FDC642P or equivalent: low threshold p-MOS, Vth < 2.0 V, Rdson @ 4.5 V < 100 m $\Omega,$ Cg < 5 nF
D1	Schottky	2 A - 20 V	SS8P3L or equivalent: Vishay™ low Vf Schottky diode
L	Inductor	3–4 µH - 1.5 A	Buck shielded coil low ESR
CI	Capacitor	22 µF - 20 V	Ceramic capacitor, total ESR < 70 m Ω
CE	Capacitor	0.1 µF - 7 V	Ceramic—one capacitor for each V _{DD} pin
CV	Capacitor	22 μF - 20 V	Ceramic V_{DDPMC} (optional 0.1 μ F capacitor in parallel)
CD	Capacitor	22 µF - 20 V	Ceramic supply decoupling capacitor, ESR < 50 m Ω (as close as possible to the p-MOS source)
R	Resistor	2.0-4.7 kΩ	Pullup for power p-MOS gate
СВ	Capacitor	22 µF - 20 V	Ceramic, connect 100 nF capacitor in parallel (as close as possible to package to reduce current loop from $V_{\rm DDPWR}$ to $V_{\rm SSPWR})$

Table 26. Recommended operating characteristics

The following diagram shows the SMPS configuration connection.

Figure 13. SMPS configuration

NOTE

The REGSEL pin is tied to V_{DDPMC} to select SMPS. If REGSEL is 0, the chip boots with the linear regulator.

See Power sequencing requirements for details about V_{DDPMC} and $V_{\text{DDPWR}}.$

The SMPS regulator characteristics appear in the following table.

Symbol	Parameter	Conditions	Value			Unit
Symbol	Falameter	Conditions	Min	Тур	Max	
SMPS _{CLOCK}	SMPS oscillator frequency	Trimmed	825	1000	1220	kHz
SMPS _{SLOPE}	SMPS soft-start ramp slope	_	0.01	0.025	0.05	V/µs
SMPS _{EFF}	SMPS typical efficiency	_	_	70	—	%

Table 27. SMPS electrical characteristics

3.11.2 Power management integration

To ensure correct functionality of the device, use the following recommended integration scheme for LDO mode.

Figure 14. Recommended supply pin circuits

Electrical characteristics

Table 29. Voltage monitor electrical characteristics^{1, 2} (continued)

			Co	nfigura	tion		Value		
Symbol	Parameter	Conditions	Trim bits	Mask Opt.	Pow. Up	Min	Тур	Max	Unit
POR_HV	HV V _{DDPMC} supply power	Rising voltage (powerup)	N/A	No	Enab.	2444	2600	2756	mV
	on reset threshold	Falling voltage (power down)				2424	2580	2736	
LVD_HV	HV internal V _{DDPMC} supply	Rising voltage (untrimmed)	4bit	No	Enab.	2935	3023	3112	mV
	low voltage monitoring	Falling voltage (untrimmed)				2922	3010	3099	
		Rising voltage (trimmed)				2946	3010	3066	
		Falling voltage (trimmed)				2934	2998	3044	
HVD_HV	HV internal V _{DDPMC} supply	Rising voltage	4bit	Yes	Disab.	5696	5860	5968	mV
	high voltage monitoring	Falling voltage				5666	5830	5938	
LVD_FLASH	FLASH supply low voltage	Rising voltage (untrimmed)	4bit	No	Enab.	2935	3023	3112	mV
	monitoring	Falling voltage (untrimmed)				2922	3010	3099	
		Rising voltage (trimmed)				2956	3010	3053	
		Falling voltage (trimmed)				2944	2998	3041	
HVD_FLASH	FLASH supply high	Rising voltage	4bit	Yes	Disab.	3456	3530	3584	mV
	voltage monitoring ^o	Falling voltage				3426	3500	3554	
LVD_IO	Main I/O V _{DDEH1} supply	Rising voltage (untrimmed)	4bit	No	Enab.	3250	3350	3488	mV
	low voltage monitoring	Falling voltage (untrimmed)				3220	3320	3458	
		Rising voltage (trimmed)				3347	3420	3468	
		Falling voltage (trimmed)				3317	3390	3438	
t _{VDASSERT}	Voltage detector threshold crossing assertion	—	_	—	-	0.1	—	2.0	μs
t _{VDRELEASE}	Voltage detector threshold crossing de-assertion	_			_	5		20	μs

- 1. LVD is released after t_{VDRELEASE} temporization when upper threshold is crossed; LVD is asserted t_{VDASSERT} after detection when lower threshold is crossed.
- 2. HVD is released after t_{VDRELEASE} temporization when lower threshold is crossed; HVD is asserted t_{VDASSERT} after detection when upper threshold is crossed.
- 3. POR098_c threshold is an untrimmed value, before the completion of the power-up sequence. All other LVD/HVD thresholds are provided after trimming.
- 4. LV internal supply levels are measured on device internal supply grid after internal voltage drop.
- 5. LV external supply levels are measured on the die side of the package bond wire after package voltage drop.
- 6. V_{DDFLA} range is guaranteed when internal flash memory regulator is used.

3.11.4 Power sequencing requirements

Requirements for power sequencing include the following.

Figure 24. Nexus TCK, TDI, TMS, TDO Timing

3.13.5 External Bus Interface (EBI) timing Table 38. Bus operation timing¹

Snoc	Characteristic	Symbol	66 MHz (Ext. bus freq.) ^{2, 3}		Unit	Notes
Spec	Characteristic	Symbol	Min	Мах		Notes
1	D_CLKOUT Period	t _C	15.2	—	ns	Signals are measured at 50%
						V _{DDE} .
2	D_CLKOUT Duty Cycle	t _{CDC}	45%	55%	t _C	—
3	D_CLKOUT Rise Time	t _{CRT}	—	4	ns	—
4	D_CLKOUT Fall Time	t _{CFT}	—	4	ns	—

Table continues on the next page...

Electrical characteristics

Figure 30. eTPU timing

3.13.8 eMIOS timing Table 41. eMIOS timing¹

Spec	Characteristic	Symbol	Min	Max	Unit
1	eMIOS Input Pulse Width	t _{MIPW}	4	—	t _{CYC_PER} ²
2	eMIOS Output Pulse Width	t _{MOPW}	1 ³	—	t _{CYC_PER} ²

- 1. eMIOS timing specified at V_{DD} = 1.08 V to 1.32 V, V_{DDEH} = 3.0 V to 5.5 V, T_A = T_L to T_H , and C_L = 50 pF with SRC = 0b00.
- 2. For further information on t_{CYC_PER} , see Table 3.
- 3. This specification does not include the rise and fall times. When calculating the minimum eMIOS pulse width, include the rise and fall times defined in the slew rate control fields (SRC) of the pad configuration registers (PCR).

Figure 31. eMIOS timing

3.13.9 DSPI timing with CMOS and LVDS pads

NOTE

The DSPI in TSB mode with LVDS pads can be used to implement the Micro Second Channel (MSC) bus protocol.

DSPI channel frequency support is shown in Table 42. Timing specifications are shown in Table 43, Table 44, Table 45, Table 46, and Table 47.

	DSPI use mode	Max usable frequency (MHz) ^{1, 2}
CMOS (Master mode) Full duplex – Classic timing (Table 43)		17
	Full duplex – Modified timing (Table 44)	30
	Output only mode (SCK/SOUT/PCS) (Table 43 and Table 44)	30
	Output only mode TSB mode (SCK/SOUT/PCS) (Table 47)	30
LVDS (Master mode)	Full duplex – Modified timing (Table 45)	30
	Output only mode TSB mode (SCK/SOUT/PCS) (Table 46)	40

Table 42. DSPI channel frequency support

1. Maximum usable frequency can be achieved if used with fastest configuration of the highest drive pads.

2. Maximum usable frequency does not take into account external device propagation delay.

3.13.9.1 DSPI master mode full duplex timing with CMOS and LVDS pads

3.13.9.1.1 DSPI CMOS Master Mode — Classic Timing

Table 43. DSPI CMOS master classic timing (full duplex and output only) – MTFE = 0, CPHA = 0 or 1^1

#	Symbol	Charactoristic	Condition	2	Value	9 ³	Unit
#	Symbol	Characteristic	Pad drive ⁴	Load (C _L)	Min	Max	
1	t _{SCK}	SCK cycle time	PCR[SRC]=11b	25 pF	33.0	_	ns
			PCR[SRC]=10b	50 pF	80.0	_]
			PCR[SRC]=01b	50 pF	200.0	_	
2	t _{CSC}	PCS to SCK delay	PCR[SRC]=11b	25 pF	$(N^5 \times t_{SYS}^{, 6}) - 16$	_	ns
			PCR[SRC]=10b	50 pF	$(N^5 \times t_{SYS}^{, 6}) - 16$	_]
			PCR[SRC]=01b	50 pF	$(N^5 \times t_{SYS}^{, 6}) - 18$	_	
			PCS: PCR[SRC]=01b	50 pF	$(N^5 \times t_{SYS}^{, 6}) - 45$]
			SCK: PCR[SRC]=10b				

Table continues on the next page...

Figure 33. DSPI CMOS master mode – classic timing, CPHA = 1

Figure 34. DSPI PCS strobe (PCSS) timing (master mode)

3.13.9.1.2 DSPI CMOS Master Mode – Modified Timing Table 44. DSPI CMOS master modified timing (full duplex and output only) – MTFE = 1, CPHA = 0 or 1¹

"	Symbol	Charactoristic	Condition	2	Value	3	Unit
#	Symbol	Characteristic	Pad drive ⁴	Load (C _L)	Min	Мах	
1	t _{SCK}	SCK cycle time	PCR[SRC]=11b	25 pF	33.0	—	ns
			PCR[SRC]=10b	50 pF	80.0	_	
			PCR[SRC]=01b	50 pF	200.0		
2	t _{CSC}	PCS to SCK delay	PCR[SRC]=11b	25 pF	(N ⁵ × t _{SYS} ^{, 6}) – 16	_	ns
			PCR[SRC]=10b	50 pF	$(N^5 \times t_{SYS}^{, 6}) - 16$	_	
			PCR[SRC]=01b	50 pF	$(N^5 \times t_{SYS}^{, 6}) - 18$		
			PCS: PCR[SRC]=01b	50 pF	$(N^5 \times t_{SYS}^{, 6}) - 45$	_	
			SCK: PCR[SRC]=10b				

Table continues on the next page ...

Table 47. DSPI CMOS master timing – output only – timed serial bus mode TSB = 1 or ITSB = 1, CPOL = 0 or 1, continuous SCK clock 1, 2 (continued)

#	Symbol	Characteristic	Condition	3	Va	ue ⁴	Unit
#	Symbol	Characteristic	Pad drive ⁵	Load (C _L)	Min	Max	
3	t _{CSH}	PCS hold after SCK ⁶	PCR[SRC]=11b	PCS: 0 pF	-14	—	ns
				SCK: 50 pF			
			PCR[SRC]=10b	PCS: 0 pF	-14	_	ns
				SCK: 50 pF			
			PCR[SRC]=01b	PCS: 0 pF	-33	_	ns
				SCK: 50 pF			
			PCS: PCR[SRC]=01b	PCS: 0 pF	-35	_	ns
			SCK: PCR[SRC]=10b	SCK: 50 pF			
4	t _{SDC}	SCK duty cycle ⁷	PCR[SRC]=11b	0 pF	1/2t _{SCK} – 2	1/2t _{SCK} + 2	ns
			PCR[SRC]=10b	0 pF	1/2t _{SCK} – 2	1/2t _{SCK} + 2	ns
			PCR[SRC]=01b	0 pF	1/2t _{SCK} – 5	1/2t _{SCK} + 5	ns
			SOUT data valid time (aft	ter SCK edge)			
9	t _{SUO}	SOUT data valid time	PCR[SRC]=11b	25 pF		7.0	ns
		from SCK	PCR[SRC]=10b	50 pF		8.0	ns
		CPHA = 1 ⁸	PCR[SRC]=01b	50 pF		18.0	ns
			SOUT data hold time (aft	er SCK edge)			
10	t _{HO}	SOUT data hold time	PCR[SRC]=11b	25 pF	-9.0		ns
		after SCK	PCR[SRC]=10b	50 pF	-10.0		ns
		CPHA = 1 ^o	PCR[SRC]=01b	50 pF	-21.0		ns

1. TSB = 1 or ITSB = 1 automatically selects MTFE = 1 and CPHA = 1.

2. All output timing is worst case and includes the mismatching of rise and fall times of the output pads.

3. When a characteristic involves two signals, the pad drive and load conditions apply to each signal's pad, unless specified otherwise.

- 4. All timing values for output signals in this table are measured to 50% of the output voltage.
- 5. Pad drive is defined as the PCR[SRC] field setting in the SIU. Timing is guaranteed to same drive capabilities for all signals; mixing of pad drives may reduce operating speeds and may cause incorrect operation.

6. With TSB mode or Continuous SCK clock mode selected, PCS and SCK are driven by the same edge of DSPI_CLKn. This timing value is due to pad delays and signal propagation delays.

- 7. t_{SDC} is only valid for even divide ratios. For odd divide ratios the fundamental duty cycle is not 50:50. For these odd divide ratios cases, the absolute spec number is applied as jitter/uncertainty to the nominal high time and low time.
- 8. SOUT Data Valid and Data hold are independent of load capacitance if SCK and SOUT load capacitances are the same value.

Figure 40. DSPI LVDS and CMOS master timing – output only – modified transfer format MTFE = 1, CHPA = 1

3.13.10 FEC timing

3.13.10.1 MII receive signal timing (RXD[3:0], RX_DV, and RX_CLK)

The receiver functions correctly up to a RX_CLK maximum frequency of 25 MHz +1%. There is no minimum frequency requirement. The system clock frequency must be at least equal to or greater than the RX_CLK frequency.

Symbol	Characteristic	Va	lue	Unit	
Symbol		Min	Мах	Onit	
M1	RXD[3:0], RX_DV to RX_CLK setup	5	—	ns	
M2	RX_CLK to RXD[3:0], RX_DV hold	5	—	ns	
M3	RX_CLK pulse width high	35%	65%	RX_CLK period	
M4	RX_CLK pulse width low	35%	65%	RX_CLK period	

Table 48. MII receive signal timing¹

1. All timing specifications valid to the pad input levels defined in I/O pad current specifications.

Figure 41. MII receive signal timing diagram

3.13.10.2 MII transmit signal timing (TXD[3:0], TX_EN, and TX_CLK)

The transmitter functions correctly up to a TX_CLK maximum frequency of 25 MHz +1%. There is no minimum frequency requirement. The system clock frequency must be at least equal to or greater than the TX_CLK frequency.

The transmit outputs (TXD[3:0], TX_EN) can be programmed to transition from either the rising or falling edge of TX_CLK, and the timing is the same in either case. This options allows the use of noncompliant MII PHYs.

Refer to the *MPC5777C Microcontroller Reference Manual's* Fast Ethernet Controller (FEC) chapter for details of this option and how to enable it.

Symbol	Characteristic	Va	lue ²	Lipit	
Symbol	Characteristic	Min	Max	Onit	
M5	TX_CLK to TXD[3:0], TX_EN invalid	4.5	_	ns	
M6	TX_CLK to TXD[3:0], TX_EN valid		25	ns	
M7	TX_CLK pulse width high	35%	65%	TX_CLK period	
M8	TX_CLK pulse width low	35%	65%	TX_CLK period	

 Table 49. MII transmit signal timing¹

1. All timing specifications valid to the pad input levels defined in I/O pad specifications.

2. Output parameters are valid for $C_L = 25 \text{ pF}$, where C_L is the external load to the device. The internal package capacitance is accounted for, and does not need to be subtracted from the 25 pF value.

Document revision history

Part number ¹	Package description	Speed (MHz) ² -	Operating temperature ³	
			Min (T _L)	Max (T _H)
SPC5777CCK3MME3	MPC5777C 416 package	264	–40 °C	125 °C
	Lead-free (Pb-free)			
SPC5777CK3MME3	MPC5777C 416 package	264	_40 °C	125 °C
	Lead-free (Pb-free)			
SPC5777CCK3MMO3	MPC5777C 516 package	264	–40 °C	125 °C
	Lead-free (Pb-free)			
SPC5777CK3MMO3	MPC5777C 516 package	264	–40 °C	125 °C
	Lead-free (Pb-free)			

 Table 56.
 Example orderable part numbers

1. All packaged devices are PPC5777C, rather than MPC5777C or SPC5777C, until product qualifications are complete. The unpackaged device prefix is PCC, rather than SCC, until product qualification is complete.

Not all configurations are available in the PPC parts.

- 2. For the operating mode frequency of various blocks on the device, see Table 3.
- 3. The lowest ambient operating temperature is referenced by T_L ; the highest ambient operating temperature is referenced by T_H .

6 Document revision history

The following table summarizes revisions to this document since the previous release.

Table 57. Revision history

Revision	Date	Description of changes
11	04/2017	 In Figure 47 of Ordering information, added codes and firmware version information in definition of "Optional features field" At end of line for (<i>blank</i>), added "version 2.07" Added line for A At end of line for R, added "version 2.08" At end of line for C, added "version 2.07" Added line for D At end of line for L, added "version 2.08"