

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	e200z7
Core Size	32-Bit Tri-Core
Speed	264MHz
Connectivity	CANbus, EBI/EMI, Ethernet, FlexCANbus, LINbus, SCI, SPI
Peripherals	DMA, LVD, POR, Zipwire
Number of I/O	-
Program Memory Size	8MB (8M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 16b Sigma-Delta, eQADC
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	516-BGA
Supplier Device Package	516-MAPBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5777clk3mmo3

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	
Α	VSS	VDD	RSTOUT	ANAO_SDA O	ANA4	ANAS	ANA11	ANA15	VDDA_SD	REFBYPCA 25	VRL_SD	VRH_SD	AN28	AN32	AN36	VDDA_E Q	REFBYPCB 25	VRL_EQ	VRH_EQ	ANB7_SDD 7	ANB11	ANB14	ANB17	ANB21	ANB23	VSS	Α
в	VDDEH1	VSS	VDD	TEST	ANA1_SDA 1	ANA5	ANA10	ANA14	VDDA_MISC	VSSA_SD	REFBYPCA 75	AN24	AN27	AN29	AN33	VDDA_E Q	VSSA_EQ	REFBYPCB 75	ANB6_SDD 6	ANB8	ANB10	ANB15	ANB18	ANB22	VSS	TCRCLKC	В
С	ETPUA30	ETPUA31	VSS	VDD	ANA2_SDA 2	ANA6	ANA9	ANA13	ANA17_SDB 1	ANA19_SD B3	ANA21_SD C1	ANA23_SD C3	AN26	AN30	AN34	AN37	AN38	ANBO_SDD 0	ANB4_SDD 4	ANB5_SDD 5	ANB12	ANB16	ANB19	VSS	ETPUCO	ETPUC1	С
D	ETPUA27	ETPUA28	ETPUA29	VSS	VDD	ANA3_SDA 3	ANA7	ANA12	ANA16_SDB 0	ANA18_SD B2	ANA20_SD CO	ANA22_SD C2	AN25	AN31	AN35	AN39	ANB1_SDD 1	ANB2_SDD 2	ANB3_SDD 3	ANB9	ANB13	ANB20	VSS	SENT2_A	ETPUC2	ETPUC3	D
E	ETPUA23	ETPUA24	ETPUA25	ETPUA26																			VDDEH7	ETPUC4	ETPUC5	ETPUC6	Е
F	ETPUA19	ETPUA20	ETPUA21	ETPUA22	1																		ETPUC7	ETPUC8	ETPUC9	ETPUC10	F
G	ETPUA15	ETPUA16	ETPUA17	ETPUA18	1																		ETPUC11	ETPUC12	ETPUC13	ETPUC14	G
н	ETPUA11	ETPUA12	ETPUA14	ETPUA13	1																		ETPUC15	ETPUC16	ETPUC17	ETPUC18	н
J	ETPUA7	ETPUA8	ETPUA9	ETPUA10	1																		ETPUC19	ETPUC20	ETPUC21	ETPUC22	J
к	ETPUA3	ETPUA4	ETPUAS	ETPUA6	1					VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS						ETPUC23	ETPUC24	ETPUC25	ETPUC26	к
L	TCRCLKA	ETPUAD	ETPUA1	ETPUA2	1					VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS						ETPUC27	ETPUC28	ETPUC29	ETPUC30	L
м	NC	TXDA	RXDA	VSTBY						VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS						ETPUC31	ETPUB15	ETPUB14	VDDEH7	м
N	RXDB	BOOTCFG	WKPCFG	VDD						VDDE2	VSS	VSS	VSS	VSS	VSS	VSS	VSS						VDDEH6	ETPUB11	ETPUB12	ETPUB13	N
р	TXDB	PLLCFG1	PLLCFG2	VDDEH1						VDDE2	VDDE2	VSS	VSS	VSS	VSS	VSS	VSS						ETPUB7	ETPUB8	ETPUB9	ETPUB10	Р
R	JCOMP	RESET	PLLCFGO	RDY						VDDE2	VDDE2	VSS	VSS	VSS	VSS	VSS	VSS						ETPUB3	ETPUB4	ETPUB5	ETPUB6	R
т	VDDE2	мско	MSEO1	EVTI						VDDE2	VDDE2	VDDE2	VSS	VSS	VSS	VSS	VSS						TCRCLKB	ETPUBO	ETPUB1	ETPUB2	т
U	EVTO	MSEOO	MDOO	MDO1						VDDE2	VDDE2	VDDE2	VSS	VSS	VSS	VSS	VSS						ETPUB19	ETPUB18	ETPUB17	ETPUB16	U
v	MDO2	MDO3	MDO4	MDO5														,					ETPUB26	ETPUB22	ETPUB21	ETPUB20	v
w	MDO6	MDO7	MDO8	VDDE2																			REGSEL	ETPUB25	ETPUB24	ETPUB23	w
Y	MDO9	MDO10	MDO11	MDO15																			ETPUB29	ETPUB28	ETPUB27	REGCTL	Y
АА	MDO12	MDO13	MDO14	NC																			VDDPMC	ETPUB30	VDDPWR	VSSSYN	<u>م</u> م
AB	TDO	тск	TMS	VDD																			VDD	ETPUB31	VSSPWR	EXTAL	AB
AC	VDDE2	TDI	VDD	VSS	FEC_TXCLK	PCSA1	PCSA2	PCSB4	PCSB1	VDDEH3	VDDEH4	VDD	EMIOS8	EMIOS14	EMIOS18	EMIOS22	EMIOS27	EMIOS31	CNRXB	CNRXD	VDDEH5	PCSC1	VSSPMC	VDD	VDDEH6	XTAL	AC
AD	ENGCLK	VDD	VSS	FEC_TXD0	FEC_TXD1	PCSA5	SOUTA	SCKA	PCSBO	PCSB3	EMIOS2	EMIOS5	EMIOS9	EMIOS15	EMIOS19	EMIOS23	EMIOS26	EMIOS30	CNTXB	CNTXD	SCKC	RXDC	PCSC3	VSS	VDD	VDDFLA	40
AE	VDD	VSS	FEC_RX_D	FEC_TX_EN	PCSA4	PCSAO	PCSA3	SCKB	SINB	EMIOSO	EMIOS3	EMIOS6	EMIOS10	EMIOS13	EMIOS17	EMIOS21	EMIOS25	EMIOS29	CNRXA	CNRXC	PCSCO	SINC	PCSC2	PCSC5	VSS	VDD	A6
AF	VSS	VDDE2A	FEC_RXD0	FEC_RXD1	VDDEH3A	PCSB5	SINA	PCSB2	SOUTB	EMIOS1	EMIOS4	EMIOS7	EMIOS11	EMIOS12	EMIOS16	EMIOS20	EMIOS24	EMIOS28	CNTXA	CNTXC	SOUTC	VDDEH4	TXDC	PCSC4	VDDEH5	VSS	AE
	1	2	,	4	5	6	7		•	10	11	12	12	14	15	16	17	19	10	20	21	22	22	24	25	26	Ar
	1	2	2	4	3	U	1	٥	2	10	11	12	12	14	13	10	17	10	15	20		22	25	24	23	20	

Figure 2. MPC5777C 416-ball MAPBGA (full diagram)

2.2 516-ball MAPBGA pin assignments

Figure 3 shows the 516-ball MAPBGA pin assignments.

3.4 Operating conditions

The following table describes the operating conditions for the device, and for which all specifications in the data sheet are valid, except where explicitly noted.

If the device operating conditions are exceeded, the functionality of the device is not guaranteed.

Symphol	Devemeter	Conditions		Unit		
Symbol	Farameter	Conditions	Min	Тур	Max	
		Frequency				-
f _{SYS}	Device operating frequency ¹	_	_	—	264 ²	MHz
f _{PLATF}	Platform operating frequency	_	_	_	132	MHz
f _{ETPU}	eTPU operating frequency	_	_	_	200	MHz
f _{EBI}	EBI operating frequency	—	_	_	66	MHz
f _{PER}	Peripheral block operating frequency	—	—		132	MHz
f _{FM_PER}	Frequency-modulated peripheral block operating frequency	—	_		132	MHz
t _{CYC}	Platform clock period	—	_	_	1/f _{PLATF}	ns
t _{CYC_ETPU}	eTPU clock period	_	_	—	1/f _{ETPU}	ns
t _{CYC_PER}	Peripheral clock period	—	_	_	1/f _{PER}	ns
		Temperature				-
TJ	Junction operating temperature range	Packaged devices	-40.0	_	150.0	°C
T _A (T _L to T _H)	Ambient operating temperature range	Packaged devices	-40.0	_	125.0 ³	°C
		Voltage	1	1	1	1
V _{DD}	External core supply voltage ^{4, 5}	LVD/HVD enabled	1.2	_	1.32	V
		LVD/HVD disabled ^{6, 7, 8, 9}	1.2	_	1.38	
V _{DDA_MISC}	TRNG and IRC supply voltage	—	3.5	_	5.5	V
V _{DDEx}	I/O supply voltage (fast I/O pads)	5 V range	4.5	—	5.5	V
		3.3 V range	3.0	_	3.6	
V _{DDEHx} 9	I/O supply voltage (medium I/O	5 V range	4.5	_	5.5	V
	pads)	3.3 V range	3.0	_	3.6	
V _{DDEH1}	eTPU_A, eSCI_A, eSCI_B, and configuration I/O supply voltage (medium I/O pads)	5 V range	4.5	_	5.5	V
V _{DDPMC} ¹⁰	Power Management Controller (PMC) supply voltage	Full functionality	3.15	_	5.5	V
V _{DDPWR}	SMPS driver supply voltage	Reference to V _{SSPWR}	3.0	_	5.5	V
V _{DDFLA}	Flash core voltage	—	3.15	_	3.6	V
V _{STBY}	RAM standby supply voltage	_	0.95 ¹¹	—	5.5	V

Table 3. Device operating conditions

Table continues on the next page...

1. PCR[DSC] values refer to the setting of that register field in the SIU.

3.6.3 I/O pad current specifications

The I/O pads are distributed across the I/O supply segments. Each I/O supply segment is associated with a V_{DDEx} supply segment.

Table 11 provides I/O consumption figures.

To ensure device reliability, the average current of the I/O on a single segment should remain below the I_{MAXSEG} value given in Table 1.

To ensure device functionality, the average current of the I/O on a single segment should remain below the I_{MAXSEG} value given in Table 3.

NOTE

The MPC5777C I/O Signal Description and Input Multiplexing Tables are contained in a Microsoft Excel® file attached to the Reference Manual. In the spreadsheet, select the I/O Signal Table tab.

Symbol	Parameter	Conditions			Unit	
Symbol		Conditions	Min	Тур	Max	
I _{AVG_GPIO}	Average I/O current for GPIO pads	C _L = 25 pF, 2 MHz	—	—	0.42	mA
	(per pad)	$V_{DDEx} = 5.0 V \pm 10\%$				
		C _L = 50 pF, 1 MHz	—	—	0.35	
		$V_{DDEx} = 5.0 V \pm 10\%$				
I _{AVG_EBI}	Average I/O current for external	$C_{DRV} = 10 \text{ pF}, f_{EBI} = 66 \text{ MHz}$	—		9	mA
	bus output pins (per pad)	$V_{DDEx} = 3.3 V \pm 10\%$				
		$C_{DRV} = 20 \text{ pF}, \text{ f}_{EBI} = 66 \text{ MHz}$	—		18	
		$V_{DDEx} = 3.3 V \pm 10\%$				
		$C_{DRV} = 30 \text{ pF}, f_{EBI} = 66 \text{ MHz}$	—	—	30	
		$V_{DDEx} = 3.3 V \pm 10\%$				

Table 11. I/O consumption

3.7 Oscillator and PLL electrical specifications

The on-chip dual PLL—consisting of the peripheral clock and reference PLL (PLL0) and the frequency-modulated system PLL (PLL1)—generates the system and auxiliary clocks from the main oscillator driver.

O make at	Demonstern	O and little and		Value	9	Unit
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
GAIN	ADC gain	Defined through SDADC_MCR[PGAN]. Only integer powers of 2 are valid gain values.	1	_	16	
δ _{GAIN} Ι	Absolute value of the ADC gain error ^{6, 7}	Before calibration (applies to gain setting = 1)		_	1.5	%
		After calibration	-	—	5	mV
		$\Delta V_{RH_SD} < 5\%$, $\Delta V_{DDA_SD} < 10\%$				
		$\Delta T_{\rm J} < 50 \ ^{\circ}{\rm C}$				
		After calibration	_	—	7.5	
		$\Delta V_{RH_SD} < 5\%$, $\Delta V_{DDA_SD} < 10\%$				
		ΔT _J < 100 °C				
		After calibration		—	10	
		$\Delta V_{RH_SD} < 5\%, \Delta V_{DDA_SD} < 10\%$				
		$\Delta T_{\rm J} < 150 \ ^{\circ}{\rm C}$				
V _{OFFSET}	Conversion offset ^{6, 7}	Before calibration (applies to all gain settings: 1, 2, 4, 8, 16)	_	10*(1+1/ gain)	20	mV
		After calibration		—	5	
		$\Delta V_{DDA_SD} < 10\%$				
		$\Delta T_{\rm J} < 50 \ ^{\circ}{\rm C}$				
		After calibration	_	—	7.5	
		$\Delta V_{DDA_SD} < 10\%$				
		$\Delta T_{\rm J} < 100 \ ^{\circ}{\rm C}$				
		After calibration	_	—	10	
		$\Delta V_{DDA_SD} < 10\%$				
		$\Delta T_{\rm J} < 150 \ ^{\circ}{\rm C}$				

Table 18.	SDADC electrical	specifications	(continued)
Table 10.	SDADC electrical	specifications	(continueu)

Table continues on the next page ...

Symbol	Baramatar	Conditions		Value	9	Unit
Symbol	Farameter	Conditions	Min	Тур	Мах	Unit
SNR _{DIFF150}	Signal to noise ratio in	$4.5 \text{ V} < \text{V}_{\text{DDA}SD} < 5.5 \text{ V}^{8, 9}$	80	_	—	dB
	differential mode, 150 Ksps output rate	$V_{RH_SD} = V_{DDA_SD}$				
		GAIN = 1				
		$4.5 \text{ V} < \text{V}_{\text{DDA}SD} < 5.5 \text{ V}^{8, 9}$	77			
		$V_{RH_SD} = V_{DDA_SD}$				
		GAIN = 2				
		$4.5 \text{ V} < \text{V}_{\text{DDA}SD} < 5.5 \text{ V}^{8, 9}$	74	_		
		$V_{RH_SD} = V_{DDA_SD}$				
		GAIN = 4				
		$4.5 \text{ V} < \text{V}_{\text{DDA}SD} < 5.5 \text{ V}^{8, 9}$	71	_	_	
		$V_{RH_SD} = V_{DDA_SD}$				
		GAIN = 8				
		$4.5 \text{ V} < \text{V}_{\text{DDA}SD} < 5.5 \text{ V}^{8, 9}$	68	—	—	
		$V_{RH_SD} = V_{DDA_SD}$				
		GAIN = 16				
SNR _{DIFF333}	Signal to noise ratio in differential mode, 333 Ksps output rate	$4.5 \text{ V} < \text{V}_{\text{DDA}SD} < 5.5 \text{ V}^{8, 9}$	71	—	_	dB
		$V_{RH_SD} = V_{DDA_SD}$				
		GAIN = 1				
		$4.5 \text{ V} < \text{V}_{\text{DDA}SD} < 5.5 \text{ V}^{8, 9}$	70	—	—	
		$V_{RH_SD} = V_{DDA_SD}$				
		GAIN = 2				
		$4.5 \text{ V} < \text{V}_{\text{DDA}_{\text{SD}}} < 5.5 \text{ V}^{8, 9}$	68	—	—	
		$V_{RH_SD} = V_{DDA_SD}$				
		GAIN = 4				
		$4.5 \text{ V} < \text{V}_{\text{DDA}_{\text{SD}}} < 5.5 \text{ V}^{8, 9}$	65	—	—	
		$V_{RH_SD} = V_{DDA_SD}$				
		GAIN = 8				
		4.5 V < V _{DDA_SD} < 5.5 V ^{8, 9}	62			
		$V_{RH_SD} = V_{DDA_SD}$				
		GAIN = 16				

Table 18. SDADC electrical specifications (continued)

Table continues on the next page ...

Symbol	Baramatar	Conditions		Value	Ð	Unit
Symbol	Parameter	Conditions	Min	Тур	Max	
THD _{DIFF150}	Total harmonic	Gain = 1	65	—	—	dBFS
	distortion in differential mode, 150 Ksps	4.5 V < V _{DDA_SD} < 5.5 V				
	output rate	$V_{RH_SD} = V_{DDA_SD}$				
		Gain = 2	68	_	_	
		4.5 V < V _{DDA_SD} < 5.5 V				
		$V_{RH_SD} = V_{DDA_SD}$				
		Gain = 4	74	_	—	
		4.5 V < V _{DDA_SD} < 5.5 V				
		$V_{RH_{SD}} = V_{DDA_{SD}}$				
		Gain = 8	80		—	
		4.5 V < V _{DDA_SD} < 5.5 V				
		$V_{RH_{SD}} = V_{DDA_{SD}}$				
		Gain = 16	80			
		4.5 V < V _{DDA_SD} < 5.5 V				
		$V_{RH_{SD}} = V_{DDA_{SD}}$				
THD _{DIFF333}	Total harmonic	Gain = 1	65	_	—	dBFS
	distortion in differential	4.5 V < V _{DDA_SD} < 5.5 V				
	output rate	$V_{RH_{SD}} = V_{DDA_{SD}}$				
		Gain = 2	68	_	—	
		4.5 V < V _{DDA_SD} < 5.5 V				
		$V_{RH_{SD}} = V_{DDA_{SD}}$				
		Gain = 4	74		—	
		4.5 V < V _{DDA_SD} < 5.5 V				
		$V_{RH_{SD}} = V_{DDA_{SD}}$				
		Gain = 8	80		_	
		4.5 V < V _{DDA_SD} < 5.5 V				
		$V_{RH_{SD}} = V_{DDA_{SD}}$				
		Gain = 16	80	_	_	
		4.5 V < V _{DDA_SD} < 5.5 V				
		$V_{RH_{SD}} = V_{DDA_{SD}}$				

Table 18. SDADC electrical specifications (continued)

Table continues on the next page ...

Figure 10. Rise/fall time

3.10.2 LFAST and MSC/DSPI LVDS interface electrical characteristics

The following table contains the electrical characteristics for the LFAST interface.

Table 20. LVDS pad startup and receiver electrical characteristics¹

Symbol	Parameter	Conditions		Unit						
Symbol	Farameter	Conditions	Min	Тур	Max					
STARTUP ² , ³										
t _{STRT_BIAS}	Bias current reference startup time ⁴	—	—	0.5	4	μs				

Table continues on the next page...

Part name	Part type	Nominal	Description
Q1	p-MOS	3 A - 20 V	SQ2301ES / FDC642P or equivalent: low threshold p-MOS, Vth < 2.0 V, Rdson @ 4.5 V < 100 m $\Omega,$ Cg < 5 nF
D1	Schottky	2 A - 20 V	SS8P3L or equivalent: Vishay™ low Vf Schottky diode
L	Inductor	3–4 µH - 1.5 A	Buck shielded coil low ESR
CI	Capacitor	22 µF - 20 V	Ceramic capacitor, total ESR < 70 m Ω
CE	Capacitor	0.1 µF - 7 V	Ceramic—one capacitor for each V _{DD} pin
CV	Capacitor	22 μF - 20 V	Ceramic V_{DDPMC} (optional 0.1 μ F capacitor in parallel)
CD	Capacitor	22 µF - 20 V	Ceramic supply decoupling capacitor, ESR < 50 m Ω (as close as possible to the p-MOS source)
R	Resistor	2.0-4.7 kΩ	Pullup for power p-MOS gate
СВ	Capacitor	22 µF - 20 V	Ceramic, connect 100 nF capacitor in parallel (as close as possible to package to reduce current loop from $V_{\rm DDPWR}$ to $V_{\rm SSPWR})$

Table 26. Recommended operating characteristics

The following diagram shows the SMPS configuration connection.

Figure 13. SMPS configuration

NOTE

The REGSEL pin is tied to V_{DDPMC} to select SMPS. If REGSEL is 0, the chip boots with the linear regulator.

See Power sequencing requirements for details about V_{DDPMC} and $V_{\text{DDPWR}}.$

Symbol	Characteristic	Min	Typical	Max	Units
t _{done}	Time from 0 to 1 transition on the MCR-EHV bit initiating a program/erase until the MCR-DONE bit is cleared.	_	_	5	ns
t _{dones}	Time from 1 to 0 transition on the MCR-EHV bit aborting a program/erase until the MCR-DONE bit is set to a 1.		16 plus four system clock periods	20.8 plus four system clock periods	μs
t _{drcv}	Time to recover once exiting low power mode.	16 plus seven system clock periods.	_	45 plus seven system clock periods	μs
t _{aistart}	Time from 0 to 1 transition of UT0-AIE initiating a Margin Read or Array Integrity until the UT0-AID bit is cleared. This time also applies to the resuming from a suspend or breakpoint by clearing AISUS or clearing NAIBP		_	5	ns
t _{aistop}	Time from 1 to 0 transition of UT0-AIE initiating an Array Integrity abort until the UT0-AID bit is set. This time also applies to the UT0-AISUS to UT0-AID setting in the event of a Array Integrity suspend request.		_	80 plus fifteen system clock periods	ns
t _{mrstop}	Time from 1 to 0 transition of UT0-AIE initiating a Margin Read abort until the UT0-AID bit is set. This time also applies to the UT0-AISUS to UT0-AID setting in the event of a Margin Read suspend request.	10.36 plus four system clock periods	_	20.42 plus four system clock periods	μs

Table 33. Flash memory AC timing specifications (continued)

3.12.6 Flash memory read wait-state and address-pipeline control settings

The following table describes the recommended settings of the Flash Memory Controller's PFCR1[RWSC] and PFCR1[APC] fields at various flash memory operating frequencies, based on specified intrinsic flash memory access times of the C55FMC array at 150°C.

 Table 34.
 Flash memory read wait-state and address-pipeline control combinations

Flash memory frequency	RWSC	APC	Flash memory read latency on mini-cache miss (# of f _{PLATF} clock periods)	Flash memory read latency on mini-cache hit (# of f _{PLATF} clock periods)
0 MHz < f _{PLATF} ≤ 33 MHz	0	0	3	1
$33 \text{ MHz} < f_{\text{PLATF}} \le 100 \text{ MHz}$	2	1	5	1

Table continues on the next page...

Figure 19. JTAG test clock input timing

Figure 20. JTAG test access port timing

Figure 26. Synchronous output timing

Electrical characteristics

Figure 28. ALE signal timing

Electrical characteristics

Figure 30. eTPU timing

3.13.8 eMIOS timing Table 41. eMIOS timing¹

Spec	Characteristic	Symbol	Min	Max	Unit
1	eMIOS Input Pulse Width	t _{MIPW}	4	—	t _{CYC_PER} ²
2	eMIOS Output Pulse Width	t _{MOPW}	1 ³	—	t _{CYC_PER} ²

- 1. eMIOS timing specified at V_{DD} = 1.08 V to 1.32 V, V_{DDEH} = 3.0 V to 5.5 V, T_A = T_L to T_H , and C_L = 50 pF with SRC = 0b00.
- 2. For further information on t_{CYC_PER} , see Table 3.
- 3. This specification does not include the rise and fall times. When calculating the minimum eMIOS pulse width, include the rise and fall times defined in the slew rate control fields (SRC) of the pad configuration registers (PCR).

Figure 31. eMIOS timing

Table 43. DSPI CMOS master classic timing (full duplex and output only) – MTFE = 0, CPHA = 0 or 1^{1} (continued)

ш	Symbol	Characteristic	Condition	2	Value ³		Unit
#	Symbol	Characteristic	Pad drive ⁴	Load (C _L)	Min	Max	
3	t _{ASC}	After SCK delay	PCR[SRC]=11b	PCS: 0 pF	$(M^7 \times t_{SYS}^{, 6}) - 35$	—	ns
				SCK: 50 pF			
			PCR[SRC]=10b	PCS: 0 pF	$(M^7 \times t_{SYS}^{, 6}) - 35$	_	
				SCK: 50 pF			
			PCR[SRC]=01b	PCS: 0 pF	$(M^7 \times t_{SYS}^{, 6}) - 35$	_	
				SCK: 50 pF			
			PCS: PCR[SRC]=01b	PCS: 0 pF	$(M^7 \times t_{SYS}, 6) - 35$	_	
			SCK: PCR[SRC]=10b	SCK: 50 pF			
4	t _{SDC}	SCK duty cycle ⁸	PCR[SRC]=11b	0 pF	1/2t _{SCK} – 2	1/2t _{SCK} + 2	ns
			PCR[SRC]=10b	0 pF	1/2t _{SCK} – 2	1/2t _{SCK} + 2	1
			PCR[SRC]=01b	0 pF	1/2t _{SCK} – 5	1/2t _{SCK} + 5	
			PCS strob	e timing			
5	t _{PCSC}	PCSx to PCSS time ⁹	PCR[SRC]=10b	25 pF	13.0 —		ns
6	t _{PASC}	PCSS to PCSx time ⁹	PCR[SRC]=10b	PCR[SRC]=10b 25 pF 13.0		_	ns
		1	SIN setu	ıp time	I	1	
7	t _{SUI}	SIN setup time to	PCR[SRC]=11b	25 pF	29.0	_	ns
		SCK	PCR[SRC]=10b	50 pF	31.0	_	
			PCR[SRC]=01b	50 pF	62.0	—	
			SIN hole	d time			
8	t _{HI}	SIN hold time from	PCR[SRC]=11b	0 pF	-1.0		ns
		SCK	PCR[SRC]=10b	0 pF	-1.0		
			PCR[SRC]=01b	0 pF	-1.0		
			SOUT data valid tim	e (after SCK ed	dge)		
9	t _{SUO}	SOUT data valid	PCR[SRC]=11b	25 pF	—	7.0	ns
	time from SCK		PCR[SRC]=10b	50 pF	—	8.0	
			PCR[SRC]=01b	50 pF	—	18.0	
		1	SOUT data hold time	e (after SCK ec	lge)		
10	t _{HO}	SOUT data hold	PCR[SRC]=11b	25 pF	-9.0	—	ns
		ume alter SCK	PCR[SRC]=10b	50 pF	-10.0	—	
			PCR[SRC]=01b	50 pF	-21.0	—	

1. All output timing is worst case and includes the mismatching of rise and fall times of the output pads.

- 2. When a characteristic involves two signals, the pad drive and load conditions apply to each signal's pad, unless specified otherwise.
- 3. All timing values for output signals in this table are measured to 50% of the output voltage.
- 4. Pad drive is defined as the PCR[SRC] field setting in the SIU. Timing is guaranteed to same drive capabilities for all signals; mixing of pad drives may reduce operating speeds and may cause incorrect operation.
- 5. N is the number of clock cycles added to time between PCS assertion and SCK assertion and is software programmable using DSPI_CTARx[PSSCK] and DSPI_CTARx[CSSCK]. The minimum value is 2 cycles unless TSB mode or Continuous

Table 44. DSPI CMOS master modified timing (full duplex and output only) – MTFE = 1, CPHA = 0 or 1^1 (continued)

#	Symbol	Characteristic	Condition ²		Value ³		
"	Symbol	Characteristic	Pad drive ⁴	Load (C _L)	Min	Max	
10	t _{HO}	SOUT data hold	PCR[SRC]=11b	25 pF	–9.0 + t _{SYS} ⁶	_	ns
	time after SCK		PCR[SRC]=10b	50 pF	-10.0 + t _{SYS} ⁶		
		$CPHA = 0^{13}$	PCR[SRC]=01b	50 pF	–21.0 + t _{SYS} ⁶		
		SOUT data hold	PCR[SRC]=11b	25 pF	-9.0		ns
	time after SCK	time after SCK	PCR[SRC]=10b	50 pF	-10.0		
		CPHA = 1 ¹³	PCR[SRC]=01b	50 pF	-21.0		

- 1. All output timing is worst case and includes the mismatching of rise and fall times of the output pads.
- 2. When a characteristic involves two signals, the pad drive and load conditions apply to each signal's pad, unless specified otherwise.
- 3. All timing values for output signals in this table are measured to 50% of the output voltage.
- 4. Pad drive is defined as the PCR[SRC] field setting in the SIU. Timing is guaranteed to same drive capabilities for all signals; mixing of pad drives may reduce operating speeds and may cause incorrect operation.
- 5. N is the number of clock cycles added to time between PCS assertion and SCK assertion and is software programmable using DSPI_CTARx[PSSCK] and DSPI_CTARx[CSSCK]. The minimum value is 2 cycles unless TSB mode or Continuous SCK clock mode is selected, in which case, N is automatically set to 0 clock cycles (PCS and SCK are driven by the same edge of DSPI_CLKn).
- t_{SYS} is the period of DSPI_CLKn clock, the input clock to the DSPI module. Maximum frequency is 100 MHz (min t_{SYS} = 10 ns).
- M is the number of clock cycles added to time between SCK negation and PCS negation and is software programmable using DSPI_CTARx[PASC] and DSPI_CTARx[ASC]. The minimum value is 2 cycles unless TSB mode or Continuous SCK clock mode is selected, in which case, M is automatically set to 0 clock cycles (PCS and SCK are driven by the same edge of DSPI_CLKn).
- 8. t_{SDC} is only valid for even divide ratios. For odd divide ratios the fundamental duty cycle is not 50:50. For these odd divide ratios cases, the absolute spec number is applied as jitter/uncertainty to the nominal high time and low time.
- 9. PCSx and PCSS using same pad configuration.
- 10. Input timing assumes an input slew rate of 1 ns (10% 90%) and uses TTL / Automotive voltage thresholds.
- 11. P is the number of clock cycles added to delay the DSPI input sample point and is software programmable using DSPI_MCR[SMPL_PT]. The value must be 0, 1 or 2. If the baud rate divide ratio is /2 or /3, this value is automatically set to 1.
- 12. The 0 pF load condition given in the DSPI AC timing applies to theoretical worst-case hold timing. This guarantees worstcase operation, and additional margin can be achieved in the applications by applying a realistic load.
- 13. SOUT Data Valid and Data hold are independent of load capacitance if SCK and SOUT load capacitances are the same value.

Table 45. DSPI LVDS master timing – full duplex – modified transfer format (MTFE = 1),CPHA = 0 or 1 (continued)

#	Symbol	Symbol Characteristic Conc		on ¹	Value	2 ²	Unit	
# Oymbol		Characteristic	Pad drive ³	Load (C _L)	Min	Max		
9	t _{SUO}		SOUT data valid time (after SCK edge)					
		SOUT data valid time from SCK	LVDS	15 pF to 25 pF differential		7.0 + t _{SYS} ⁵	ns	
		CPHA = 0 ¹⁰						
		SOUT data valid time from SCK	LVDS	15 pF to 25 pF differential		7.0	ns	
		CPHA = 1 ¹⁰						
10	t _{HO}		SOUT dat	a hold time (after	SCK edge)			
		SOUT data hold time after SCK	LVDS	15 pF to 25 pF differential	$-7.5 + t_{SYS}^{5}$	—	ns	
		CPHA = 0 ¹⁰						
		SOUT data hold time after SCK	LVDS	15 pF to 25 pF differential	-7.5	_	ns	
		CPHA = 1 ¹⁰						

- 1. When a characteristic involves two signals, the pad drive and load conditions apply to each signal's pad, unless specified otherwise.
- 2. All timing values for output signals in this table are measured to 50% of the output voltage.
- 3. Pad drive is defined as the PCR[SRC] field setting in the SIU. Timing is guaranteed to same drive capabilities for all signals; mixing of pad drives may reduce operating speeds and may cause incorrect operation.
- 4. N is the number of clock cycles added to time between PCS assertion and SCK assertion and is software programmable using DSPI_CTARx[PSSCK] and DSPI_CTARx[CSSCK]. The minimum value is 2 cycles unless TSB mode or Continuous SCK clock mode is selected, in which case, N is automatically set to 0 clock cycles (PCS and SCK are driven by the same edge of DSPI_CLKn).
- 5. t_{SYS} is the period of DSPI_CLKn clock, the input clock to the DSPI module. Maximum frequency is 100 MHz (min tSYS = 10 ns).
- 6. M is the number of clock cycles added to time between SCK negation and PCS negation and is software programmable using DSPI_CTARx[PASC] and DSPI_CTARx[ASC]. The minimum value is 2 cycles unless TSB mode or Continuous SCK clock mode is selected, in which case, M is automatically set to 0 clock cycles (PCS and SCK are driven by the same edge of DSPI_CLKn).
- 7. t_{SDC} is only valid for even divide ratios. For odd divide ratios the fundamental duty cycle is not 50:50. For these odd divide ratios cases, the absolute spec number is applied as jitter/uncertainty to the nominal high time and low time.
- 8. Input timing assumes an input slew rate of 1 ns (10% 90%) and LVDS differential voltage = ± 100 mV.
- P is the number of clock cycles added to delay the DSPI input sample point and is software programmable using DSPI_MCR[SMPL_PT]. The value must be 0, 1 or 2. If the baud rate divide ratio is /2 or /3, this value is automatically set to 1.
- 10. SOUT Data Valid and Data hold are independent of load capacitance if SCK and SOUT load capacitances are the same value.

Figure 38. DSPI LVDS master mode – modified timing, CPHA = 0

Figure 39. DSPI LVDS master mode – modified timing, CPHA = 1

Figure 40. DSPI LVDS and CMOS master timing – output only – modified transfer format MTFE = 1, CHPA = 1

3.13.10 FEC timing

3.13.10.1 MII receive signal timing (RXD[3:0], RX_DV, and RX_CLK)

The receiver functions correctly up to a RX_CLK maximum frequency of 25 MHz +1%. There is no minimum frequency requirement. The system clock frequency must be at least equal to or greater than the RX_CLK frequency.

Symbol	Characteristic	Va	lue	Unit	
		Min	Мах	Onit	
M1	RXD[3:0], RX_DV to RX_CLK setup	5	—	ns	
M2	RX_CLK to RXD[3:0], RX_DV hold	5	—	ns	
M3	RX_CLK pulse width high	35%	65%	RX_CLK period	
M4	RX_CLK pulse width low	35%	65%	RX_CLK period	

Table 48. MII receive signal timing¹

1. All timing specifications valid to the pad input levels defined in I/O pad current specifications.

Electrical characteristics

Figure 44. MII serial management channel timing diagram

3.13.10.5 RMII receive signal timing (RXD[1:0], CRS_DV)

The receiver functions correctly up to a REF_CLK maximum frequency of 50 MHz +1%. There is no minimum frequency requirement. The system clock frequency must be at least equal to or greater than the RX_CLK frequency, which is half that of the REF_CLK frequency.

Table 52.	RMII	receive	signal	timing ¹	
-----------	------	---------	--------	---------------------	--

Symbol	Characteristic	Va	lue	Unit	
Symbol		Min	Мах		
R1	RXD[1:0], CRS_DV to REF_CLK setup	4	—	ns	
R2	REF_CLK to RXD[1:0], CRS_DV hold	2		ns	
R3	REF_CLK pulse width high	35%	65%	REF_CLK period	
R4	REF_CLK pulse width low	35%	65%	REF_CLK period	

1. All timing specifications valid to the pad input levels defined in I/O pad specifications.

How to Reach Us:

Home Page: nxp.com

Web Support: nxp.com/support Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTest, CodeWarrior, ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorlQ, QorlQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the property of their respective owners. ARM, AMBA, ARM Powered, Artisan, Cortex, Jazelle, Keil, SecurCore, Thumb, TrustZone, and µVision are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. ARM7, ARM9, ARM11, big.LITTLE, CoreLink, CoreSight, DesignStart, Mali, mbed, NEON, POP, Sensinode, Socrates, ULINK and Versatile are trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org.

© 2013–2017 NXP B.V.

Document Number MPC5777C Revision 11, 04/2017

