

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	e200z7
Core Size	32-Bit Tri-Core
Speed	264MHz
Connectivity	CANbus, EBI/EMI, Ethernet, FlexCANbus, LINbus, SCI, SPI
Peripherals	DMA, LVD, POR, Zipwire
Number of I/O	-
Program Memory Size	8MB (8M × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 16b Sigma-Delta, eQADC
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	516-BGA
Supplier Device Package	516-MAPBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5777clk3mmo3r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	_
A	VSS	VDD	RSTOUT	ANAO_SDA O	ANA4	ANAS	ANA11	ANA15	VDDA_SD	REFBYPCA 25	VRL_SD	VRH_SD	AN28	AN32	AN36	VDDA_E Q	REFBYPCB 25	VRL_EQ	VRH_EQ	ANB7_SDD 7	ANB11	ANB14	ANB17	ANB21	ANB23	VSS	,
в	VDDEH1	VSS	VDD	TEST	ANA1_SDA 1	ANA5	ANA10	ANA14	VDDA_MISC	VSSA_SD	REFBYPCA 75	AN24	AN27	AN29	AN33	VDDA_E Q	VSSA_EQ	REFBYPCB 75	ANB6_SDD 6	ANB8	ANB10	ANB15	ANB18	ANB22	VSS	TCRCLKC	
с	ETPUA30	ETPUA31	VSS	VDD	ANA2_SDA 2	ANA6	ANA9	ANA13	ANA17_SDB 1	B3	C1	C3	AN26	AN30	AN34	AN37	AN38	ANBO_SDD 0	ANB4_SDD 4	ANB5_SDD 5	ANB12	ANB16	ANB19	VSS	ETPUCO	ETPUC1	
D	ETPUA27	ETPUA28	ETPUA29	VSS	VDD	ANA3_SDA 3	ANA7	ANA12	ANA16_SDB 0	ANA18_SD B2	ANA20_SD CO	ANA22_SD C2	AN25	AN31	AN35	AN39	ANB1_SDD 1	ANB2_SDD 2	ANB3_SDD 3	ANB9	ANB13	ANB20	VSS	SENT2_A	ETPUC2	ETPUC3	
E	ETPUA23	ETPUA24	ETPUA25	ETPUA26																			VDDEH7	ETPUC4	ETPUCS	ETPUC6	
	ETPUA19	ETPUA20	ETPUA21	ETPUA22																			ETPUC7	ETPUC8	ETPUC9	ETPUC10	
	ETPUA15	ETPUA16	ETPUA17	ETPUA18																			ETPUC11	ETPUC12	ETPUC13	ETPUC14	
•	ETPUA11	ETPUA12	ETPUA14	ETPUA13																			ETPUC15	ETPUC16	ETPUC17	ETPUC18	
	ETPUA7	ETPUA8	ETPUA9	ETPUA10																			ETPUC19	ETPUC20	ETPUC21	ETPUC22	
	ETPUA3	ETPUA4	ETPUAS	ETPUA6						VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS						ETPUC23	ETPUC24	ETPUC25	ETPUC26	
	TCRCLKA	ETPUAO	ETPUA1	ETPUA2						VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS						ETPUC27	ETPUC28	ETPUC29	ETPUC30	
۱.	NC	TXDA	RXDA	VSTBY						VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS						ETPUC31	ETPUB15	ETPUB14	VDDEH7	
•	RXDB	BOOTCFG 1	WKPCFG	VDD						VDDE2	VSS	VSS	VSS	VSS	VSS	VSS	VSS						VDDEH6	ETPUB11	ETPUB12	ETPUB13	
, -	TXDB	PLLCFG1	PLLCFG2	VDDEH1						VDDE2	VDDE2	VSS	VSS	VSS	VSS	VSS	VSS						ETPUB7	ETPUB8	ETPUB9	ETPUB10	
۲	JCOMP	RESET	PLLCFG0	RDY						VDDE2	VDDE2	VSS	VSS	VSS	VSS	VSS	VSS						ETPUB3	ETPUB4	ETPUB5	ETPUB6	
	VDDE2	мско	MSEO1	EVTI						VDDE2	VDDE2	VDDE2	VSS	VSS	VSS	VSS	VSS						TCRCLKB	ETPUBO	ETPUB1	ETPUB2	
'	EVTO	MSEOO	MD00	MDO1						VDDE2	VDDE2	VDDE2	VSS	VSS	VSS	VSS	VSS						ETPUB19	ETPUB18	ETPUB17		
1	MDO2	MDO3	MDO4	MDO5																			ETPUB26	ETPUB22	ETPUB21	ETPUB20	
۷	MDO6	MDO7	MD08	VDDE2																			REGSEL	ETPUB25	ETPUB24	ETPUB23	
-	MDO9	MDO10	MDO11	MDO15																			ETPUB29	ETPUB28	ETPUB27	REGCTL	
^	MDO12	MDO13	MDO14	NC																			VDDPMC	ETPUB30	VDDPWR	VSSSYN	
в	TDO	тск	TMS	VDD	FEC_TXCLK																		VDD	ETPUB31	VSSPWR	EXTAL	
с	VDDE2	TDI	VDD	VSS	REFCLK	PCSA1	PCSA2	PCSB4	PCSB1	VDDEH3	VDDEH4			<u> </u>				EMIOS31	CNRXB	CNRXD	VDDEH5	PCSC1	VSSPMC	VDD	VDDEH6	XTAL	
D	ENGCLK	VDD	VSS FEC_RX_D	-	FEC_TXD1	PCSA5	SOUTA	SCKA	PCSBO	PCSB3	EMIOS2			<u> </u>				EMIOS30	CNTXB	CNTXD	SCKC	RXDC	PCSC3	VSS	VDD	VDDFLA	
E	VDD	VSS	v	FEC_TX_EN		PCSAD	PCSA3	SCKB	SINB	EMIOSO	EMIOS3			<u> </u>			EMIOS25	EMIOS29	CNRXA	CNRXC	PCSCO	SINC	PCSC2	PCSC5	VSS	VDD	
F	VSS	VDDE2A	FEC_RXD0	FEC_RXD1	VDDEH3A	PCSB5	SINA	PCSB2	SOUTB	EMIOS1	EMIOS4	EMIOS7	EMIOS11	EMIOS12	EMIÖS16	EMIOS20	EMIOS24	EMIOS28	CNTXA	CNTXC	SOUTC	VDDEH4	TXDC	PCSC4	VDDEH5	VSS	I
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	

Figure 2. MPC5777C 416-ball MAPBGA (full diagram)

2.2 516-ball MAPBGA pin assignments

Figure 3 shows the 516-ball MAPBGA pin assignments.

Electrical characteristics

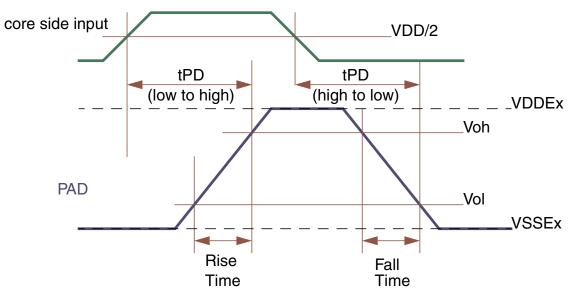


Figure 5. I/O output DC electrical characteristics definition

The following tables specify output DC electrical characteristics.

Table 9.	GPIO and EBI data pad output buffer electrical characteristics (SR
	pads) ¹

Symbol	Parameter	Conditions ²	Conditions ²			Value ³				
Symbol	Falameter	Conditions				Max	Unit			
	GPIO pad output high	$V_{OH} = 0.8 * V_{DDEx}$	PCR[SRC] = 11b or 01b	25	—	_	mA			
	current	4.5 V < V _{DDEx} < 5.5 V	PCR[SRC] = 10b or 00b	15	—	_				
		V _{OH} = 0.8 * V _{DDEx}	PCR[SRC] = 11b or 01b	13		_				
		3.0 V < V _{DDEx} < 3.6 V	PCR[SRC] = 10b or 00b	8	—	_				
I _{OL}	GPIO pad output low	$V_{OL} = 0.2 * V_{DDEx}$	PCR[SRC] = 11b or 01b	48	—	_	mA			
	current	4.5 V < V _{DDEx} < 5.5 V	PCR[SRC] = 10b or 00b	22	—	_				
		V _{OL} = 0.2 * V _{DDEx}	PCR[SRC] = 11b or 01b	17	_	_				
		3.0 V < V _{DDEx} < 3.6 V	PCR[SRC] = 10b or 00b	10.5	—					

Table continues on the next page ...

1. PCR[DSC] values refer to the setting of that register field in the SIU.

3.6.3 I/O pad current specifications

The I/O pads are distributed across the I/O supply segments. Each I/O supply segment is associated with a V_{DDEx} supply segment.

Table 11 provides I/O consumption figures.

To ensure device reliability, the average current of the I/O on a single segment should remain below the I_{MAXSEG} value given in Table 1.

To ensure device functionality, the average current of the I/O on a single segment should remain below the I_{MAXSEG} value given in Table 3.

NOTE

The MPC5777C I/O Signal Description and Input Multiplexing Tables are contained in a Microsoft Excel® file attached to the Reference Manual. In the spreadsheet, select the I/O Signal Table tab.

Symbol	Parameter	Conditions		Unit		
Symbol		Conditions	Min	Тур	Мах	
I _{AVG_GPIO}		C _L = 25 pF, 2 MHz	—	—	0.42	mA
		$V_{DDEx} = 5.0 V \pm 10\%$				
		C _L = 50 pF, 1 MHz	—	—	0.35	
		$V_{DDEx} = 5.0 V \pm 10\%$				
I _{AVG_EBI}		$C_{DRV} = 10 \text{ pF}, f_{EBI} = 66 \text{ MHz}$			9	mA
	bus output pins (per pad)	$V_{DDEx} = 3.3 V \pm 10\%$				
		$C_{DRV} = 20 \text{ pF}, f_{EBI} = 66 \text{ MHz}$		_	18	
		$V_{DDEx} = 3.3 V \pm 10\%$				
		$C_{DRV} = 30 \text{ pF}, \text{ f}_{EBI} = 66 \text{ MHz}$		_	30	
		$V_{DDEx} = 3.3 V \pm 10\%$				

Table 11. I/O consumption

3.7 Oscillator and PLL electrical specifications

The on-chip dual PLL—consisting of the peripheral clock and reference PLL (PLL0) and the frequency-modulated system PLL (PLL1)—generates the system and auxiliary clocks from the main oscillator driver.

Symbol	Parameter	Conditions		Unit		
Symbol	Farameter	Conditions	Min	Тур	Max	
f _{PLL1IN}	PLL1 input clock ¹	—	38	_	78	MHz
Δ _{PLL1IN}	PLL1 input clock duty cycle ¹	—	35	—	65	%
f _{PLL1VCO}	PLL1 VCO frequency	—	600	_	1250	MHz
f _{PLL1PHI}	PLL1 output clock PHI	—	4.762	—	264	MHz
t _{PLL1LOCK}	PLL1 lock time	—	—	—	100	μs
Δ _{PLL1PHISPJ}	PLL1_PHI single period peak-to- peak jitter	f _{PLL1PHI} = 200 MHz, 6- sigma		_	500 ²	ps
f _{PLL1MOD}	PLL1 modulation frequency	—	—	_	250	kHz
δ _{PLL1MOD}	PLL1 modulation depth (when	Center spread	0.25	_	2	%
	enabled)	Down spread	0.5	—	4	%
I _{PLL1}	PLL1 consumption	FINE LOCK state	—	—	6	mA

Table 13. PLL1 electrical characteristics

1. PLL1IN clock retrieved directly from either internal PLL0 or external XOSC clock. Input characteristics are granted when using internal PLL0 or external oscillator in functional mode.

2. Noise on the V_{DD} supply with frequency content below 40 kHz and above 50 MHz is filtered by the PLL. Noise on the V_{DD} supply with frequency content in the range of 40 kHz – 50 MHz must be filtered externally to the device.

3.7.2 Oscillator electrical specifications

NOTE

All oscillator specifications in Table 14 are valid for $V_{DDEH6} = 3.0 \text{ V}$ to 5.5 V.

Table 14. External oscillator (XOSC) electrical specifications

Symbol	Parameter	Conditions	Va	alue	Unit
Symbol	Farameter	Conditions	Min	Мах	
f _{XTAL}	Crystal frequency range	—	8	40	MHz
t _{cst}	Crystal start-up time ^{1, 2}	T _J = 150 °C	—	5	ms
t _{rec}	Crystal recovery time ³	—	—	0.5	ms
VIHEXT	EXTAL input high voltage (external reference)	V _{REF} = 0.28 * V _{DDEH6}	V _{REF} + 0.6	_	V
V _{ILEXT}	EXTAL input low voltage (external reference)	V _{REF} = 0.28 * V _{DDEH6}	—	V _{REF} – 0.6	V
C _{S_EXTAL}	Total on-chip stray capacitance on EXTAL pin ⁴	416-ball MAPBGA	2.3	3.0	pF
		516-ball MAPBGA	2.1	2.8	
C _{S_XTAL}	Total on-chip stray capacitance on XTAL pin ⁴	416-ball MAPBGA	2.3	3.0	pF
		516-ball MAPBGA	2.2	2.9	
9 _m	Oscillator transconductance ⁵	Low	3	10	mA/V
		Medium	10	27	1
		High	12	35	

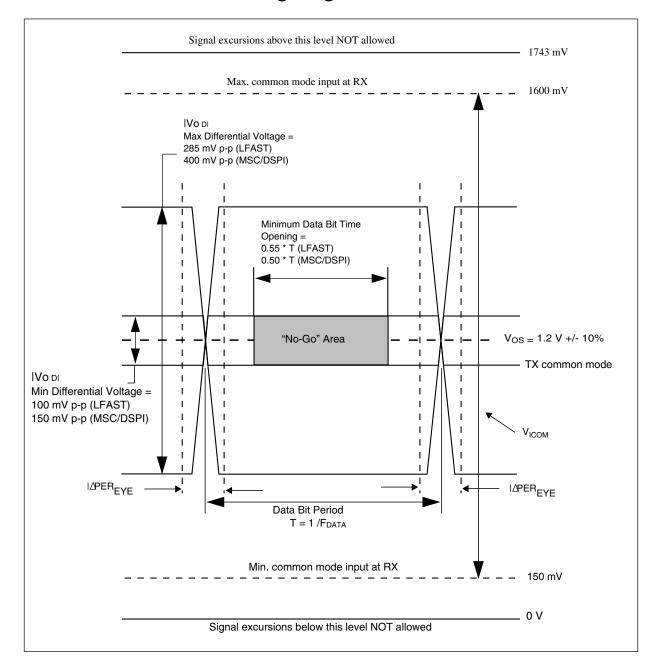
Table continues on the next page ...

3.8.1 Enhanced Queued Analog-to-Digital Converter (eQADC) Table 17. eQADC conversion specifications (operating)

Cumb al	Devenueter	Va	lue	11	
Symbol	Parameter	Min	Max	- Unit	
f _{ADCLK}	ADC Clock (ADCLK) Frequency	2	33	MHz	
CC	Conversion Cycles	2 + 13	128 + 15	ADCLK cycles	
T _{SR}	Stop Mode Recovery Time ¹	10	_	μs	
_	Resolution ²	1.25	_	mV	
INL	INL: 16.5 MHz eQADC clock ³	-4	4	LSB ⁴	
	INL: 33 MHz eQADC clock ³	-6	6	LSB	
DNL	DNL: 16.5 MHz eQADC clock ³	-3	3	LSB	
	DNL: 33 MHz eQADC clock ³	-3	3	LSB	
OFFNC	Offset Error without Calibration	0	140	LSB	
OFFWC	Offset Error with Calibration	-8	8	LSB	
GAINNC	Full Scale Gain Error without Calibration	-150	0	LSB	
GAINWC	Full Scale Gain Error with Calibration	-8	8	LSB	
I _{INJ}	Disruptive Input Injection Current ^{5, 6, 7, 8}	-3	3	mA	
E _{INJ}	Incremental Error due to injection current ^{9, 10}	—	+4	Counts	
TUE	TUE value ^{11, 12} (with calibration)	_	±8	Counts	
GAINVGA1	Variable gain amplifier accuracy (gain = 1) ¹³	-	-	Counts ¹⁵	
	INL, 16.5 MHz ADC	-4	4		
	INL, 33 MHz ADC	-8	8		
	DNL, 16.5 MHz ADC	-3 ¹⁴	3 ¹⁴		
	DNL, 33 MHz ADC	-3 ¹⁴	3 ¹⁴		
GAINVGA2	Variable gain amplifier accuracy (gain = 2) ¹³	-	-	Counts	
	INL, 16.5 MHz ADC	-5	5		
	INL, 33 MHz ADC	-8	8		
	DNL, 16.5 MHz ADC	-3	3		
	DNL, 33 MHz ADC	-3	3		
GAINVGA4	Variable gain amplifier accuracy (gain = 4) ¹³	-	-	Counts	
	INL, 16.5 MHz ADC	-7	7		
	INL, 33 MHz ADC	-8	8		
	DNL, 16.5 MHz ADC	-4	4		
	DNL, 33 MHz ADC	-4	4		
	Current consumption per ADC (two ADCs per EQADC)		10	mA	
	Reference voltage current consumption per EQADC		200		
I _{ADR}			200	μΑ	

1. Stop mode recovery time is the time from the setting of either of the enable bits in the ADC Control Register to the time that the ADC is ready to perform conversions. Delay from power up to full accuracy = 8 ms.

At V_{RH_EQ} – V_{RL_EQ} = 5.12 V, one count = 1.25 mV without using pregain. Based on 12-bit conversion result; does not account for AC and DC errors


- 3. INL and DNL are tested from V_{RL} + 50 LSB to V_{RH} 50 LSB.
- 4. At $V_{RH_{EQ}} V_{RL_{EQ}} = 5.12 \text{ V}$, one LSB = 1.25 mV.

Cumbal	Devenueter	Canditiana		Value		Unit
Symbol	Parameter	Conditions	Min	Тур	Max	
SINAD _{DIFF333}	Signal to noise and	Gain = 1	66	_		dBFS
	distortion ratio in differential mode, 333	4.5 V < V _{DDA_SD} < 5.5 V				
	Ksps output rate	$V_{RH_{SD}} = V_{DDA_{SD}}$				
		Gain = 2	66	_	_	
		4.5 V < V _{DDA_SD} < 5.5 V				
		$V_{RH_{SD}} = V_{DDA_{SD}}$				
		Gain = 4	63	_	_	
		4.5 V < V _{DDA_SD} < 5.5 V				
		$V_{RH_{SD}} = V_{DDA_{SD}}$				
		Gain = 8	62	_	_	
		4.5 V < V _{DDA_SD} < 5.5 V				
		$V_{RH_SD} = V_{DDA_SD}$				
		Gain = 16	59	_	_	
		4.5 V < V _{DDA_SD} < 5.5 V				
		$V_{RH_{SD}} = V_{DDA_{SD}}$				
SINAD _{SE150}	Signal to noise and	Gain = 1	66	_	_	dBFS
	distortion ratio in single-ended mode,	4.5 V < V _{DDA_SD} < 5.5 V				
	150 Ksps output rate	$V_{RH_SD} = V_{DDA_SD}$				
		Gain = 2	66	_	_	
		4.5 V < V _{DDA_SD} < 5.5 V				
		$V_{RH_SD} = V_{DDA_SD}$				
		Gain = 4	63	_	_	
		4.5 V < V _{DDA_SD} < 5.5 V				
		$V_{RH_SD} = V_{DDA_SD}$				
		Gain = 8	62	-	_	
		4.5 V < V _{DDA_SD} < 5.5 V				
		$V_{RH_{SD}} = V_{DDA_{SD}}$				
		Gain = 16	54	_	_	
		4.5 V < V _{DDA_SD} < 5.5 V				
		$V_{RH_{SD}} = V_{DDA_{SD}}$				

Table 18. SDADC electrical specifications (continued)

Table continues on the next page...

Electrical characteristics

3.10.1 LFAST interface timing diagrams

Figure 8. LFAST and MSC/DSPI LVDS timing definition

Table 20. LVDS pad startup and receiver electrical characteristics¹ (continued)

Symbol	Parameter	Conditions		Value		Unit
Symbol	Falameter	Conditions	Min	Тур	Max	
t _{PD2NM_TX}	Transmitter startup time (power down to Normal mode) ⁵	—	-	0.4	2.75	μs
t _{SM2NM_TX}	Transmitter startup time (Sleep mode to Normal mode) ⁶	Not applicable to the MSC/DSPI LVDS pad	-	0.2	0.5	μs
t _{PD2NM_RX}	Receiver startup time (power down to Normal mode) ⁷	—	-	20	40	ns
t _{PD2SM_RX} Receiver startup time (power down to Sleep mode) ⁸ Not applicable to the MSC/E		Not applicable to the MSC/DSPI LVDS pad	-	20	50	ns
I _{LVDS_BIAS}	LVDS bias current consumption	Tx or Rx enabled	_	_	0.95	mA
	TRANSMISSION LINE	CHARACTERISTICS (PCB Track)				
Z ₀	Transmission line characteristic impedance	—	47.5	50	52.5	Ω
Z _{DIFF}	Transmission line differential impedance	—	95	100	105	Ω
		RECEIVER	•		•	
V _{ICOM}	Common mode voltage	—	0.15 ⁹	_	1.6 ¹⁰	V
ΔVII	Differential input voltage	—	100	—	_	mV
V _{HYS}	Input hysteresis	—	25	—	_	mV
R _{IN}	Terminating resistance	V _{DDEH} = 3.0 V to 5.5 V	80	125	150	Ω
C _{IN}	Differential input capacitance ¹¹	—	_	3.5	6.0	pF
I _{LVDS_RX}	Receiver DC current consumption	Enabled	_	_	0.5	mA

1. The LVDS pad startup and receiver electrical characteristics in this table apply to both the LFAST and the MSC/DSPI LVDS pad except where noted in the conditions.

- 2. All startup times are defined after a 2 peripheral bridge clock delay from writing to the corresponding enable bit in the LVDS control registers (LCR) of the LFAST and High-Speed Debug modules.
- 3. Startup times are valid for the maximum external loads CL defined in both the LFAST/HSD and MSC/DSPI transmitter electrical characteristic tables.
- 4. Bias startup time is defined as the time taken by the current reference block to reach the settling bias current after being enabled.
- 5. Total transmitter startup time from power down to normal mode is t_{STRT_BIAS} + t_{PD2NM_TX} + 2 peripheral bridge clock periods.
- Total transmitter startup time from sleep mode to normal mode is t_{SM2NM_TX} + 2 peripheral bridge clock periods. Bias block remains enabled in sleep mode.
- Total receiver startup time from power down to normal mode is t_{STRT_BIAS} + t_{PD2NM_RX} + 2 peripheral bridge clock periods.
 Total receiver startup time from power down to sleep mode is t_{PD2SM_RX} + 2 peripheral bridge clock periods. Bias block
- remains enabled in sleep mode.
- 9. Absolute min = 0.15 V (285 mV/2) = 0 V
- 10. Absolute max = 1.6 V + (285 mV/2) = 1.743 V
- 11. Total internal capacitance including receiver and termination, co-bonded GPIO pads, and package contributions. For bare die devices, subtract the package value given in Figure 11.

Table 21. LFAST transmitter electrical characteristics¹

Symbol	Parameter	Conditions		Unit		
Symbol	Falaniciel	Conditions	Min	Тур	Max	
f _{DATA}	Data rate	—		—	240	Mbps

Table continues on the next page...

Table 21. LFAST transmitter electrical characteristics¹ (continued)

Symphol	Parameter	Conditions	Value			Unit
Symbol Parameter	Conditions	Min	Тур	Мах		
V _{OS}	Common mode voltage	—	1.08		1.32	V
IV _{OD} I	Differential output voltage swing (terminated) ^{2,3}	—	110	200	285	mV
t _{TR}	Rise/fall time (10% – 90% of swing) ² , ³	—	0.26		1.5	ns
CL	External lumped differential load capacitance ²	V _{DDE} = 4.5 V	—	—	12.0	pF
		V _{DDE} = 3.0 V	_		8.5	
I _{LVDS_TX}	Transmitter DC current consumption	Enabled		_	3.2	mA

1. The LFAST pad electrical characteristics are based on worst-case internal capacitance values shown in Figure 11.

 Valid for maximum data rate f_{DATA}. Value given is the capacitance on each terminal of the differential pair, as shown in Figure 11.

3. Valid for maximum external load CL.

Table 22. MSC/DSPI LVDS transmitter electrical characteristics¹

Symbol	Parameter	Conditions	Value			Unit	
Symbol	Farameter	Conditions	Min	Тур	Мах		
f _{DATA}	Data rate	—	—	—	80	Mbps	
V _{OS}	Common mode voltage	—	1.08	—	1.32	V	
IV _{OD} I	Differential output voltage swing (terminated) ^{2,3}	—	150	200	400	mV	
t _{TR}	Rise/Fall time (10%–90% of swing) ² , ³	—	0.8	—	4.0	ns	
CL	External lumped differential load capacitance ²	V _{DDE} = 4.5 V	_	—	50	pF	
		V _{DDE} = 3.0 V	—	—	39		
I _{LVDS_TX}	Transmitter DC current consumption	Enabled	_	_	4.0	mA	

1. The MSC and DSPI LVDS pad electrical characteristics are based on the application circuit and typical worst-case internal capacitance values given in Figure 11.

 Valid for maximum data rate f_{DATA}. Value given is the capacitance on each terminal of the differential pair, as shown in Figure 11.

3. Valid for maximum external load C_L.

3.12.2 Flash memory Array Integrity and Margin Read specifications Table 31. Flash memory Array Integrity and Margin Read specifications

Symbol	Characteristic	Min	Typical	Max ¹	Units 2
t _{ai16kseq}	Array Integrity time for sequential sequence on 16 KB block.	-	_	512 x Tperiod x Nread	
t _{ai32kseq}	Array Integrity time for sequential sequence on 32 KB block.	_	_	1024 x Tperiod x Nread	_
t _{ai64kseq}	Array Integrity time for sequential sequence on 64 KB block.	—	_	2048 x Tperiod x Nread	_
tai256kseq	Array Integrity time for sequential sequence on 256 KB block.	_	_	8192 x Tperiod x Nread	_
t _{mr16kseq}	Margin Read time for sequential sequence on 16 KB block.	73.81	_	110.7	μs
t _{mr32kseq}	Margin Read time for sequential sequence on 32 KB block.	128.43	—	192.6	μs
t _{mr64kseq}	Margin Read time for sequential sequence on 64 KB block.	237.65	—	356.5	μs
t _{mr256kseq}	Margin Read time for sequential sequence on 256 KB block.	893.01	—	1,339.5	μs

- Array Integrity times need to be calculated and is dependent on system frequency and number of clocks per read. The
 equation presented require Tperiod (which is the unit accurate period, thus for 200 MHz, Tperiod would equal 5e-9) and
 Nread (which is the number of clocks required for read, including pipeline contribution. Thus for a read setup that requires
 6 clocks to read with no pipeline, Nread would equal 6. For a read setup that requires 6 clocks to read, and has the
 address pipeline set to 2, Nread would equal 4 (or 6 2).)
- 2. The units for Array Integrity are determined by the period of the system clock. If unit accurate period is used in the equation, the results of the equation are also unit accurate.

3.12.3 Flash memory module life specifications

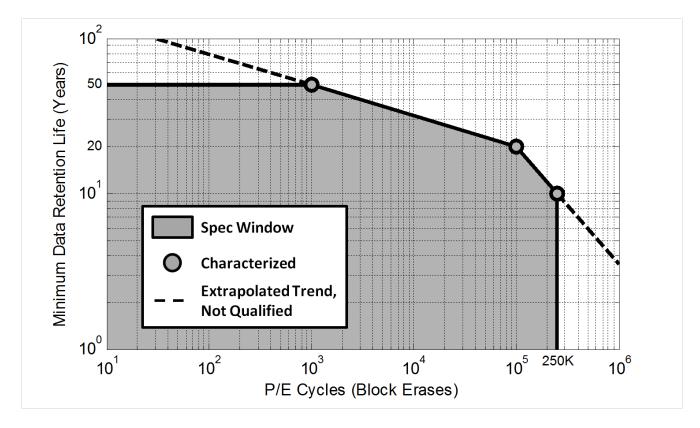

Symbol	Characteristic	Conditions	Min	Typical	Units
Array P/E cycles	Number of program/erase cycles per block for 16 KB, 32 KB and 64 KB blocks. ¹	—	250,000	-	P/E cycles
	Number of program/erase cycles per block for 256 KB blocks. ²	—	1,000	250,000	P/E cycles
Data retention	Minimum data retention.	Blocks with 0 - 1,000 P/E cycles.	50	-	Years
		Blocks with 100,000 P/E cycles.	20	-	Years
		Blocks with 250,000 P/E cycles.	10	-	Years

 Table 32.
 Flash memory module life specifications

- 1. Program and erase supported across standard temperature specs.
- 2. Program and erase supported across standard temperature specs.

3.12.4 Data retention vs program/erase cycles

Graphically, Data Retention versus Program/Erase Cycles can be represented by the following figure. The spec window represents qualified limits. The extrapolated dotted line demonstrates technology capability, however is beyond the qualification limits.

3.12.5 Flash memory AC timing specifications Table 33. Flash memory AC timing specifications

Symbol	Characteristic	Min	Typical	Max	Units
t _{psus}	Time from setting the MCR-PSUS bit until MCR-DONE bit is set to a 1.		9.4 plus four system clock periods	11.5 plus four system clock periods	μs
t _{esus}	Time from setting the MCR-ESUS bit until MCR-DONE bit is set to a 1.		16 plus four system clock periods	20.8 plus four system clock periods	μs
t _{res}	Time from clearing the MCR-ESUS or PSUS bit with EHV = 1 until DONE goes low.	_	_	100	ns

Table continues on the next page...

Electrical characteristics

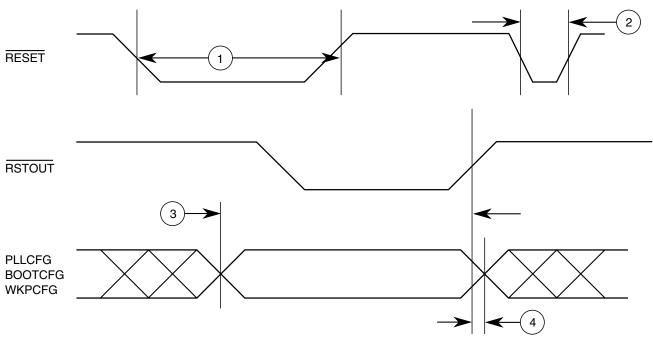


Figure 18. Reset and configuration pin timing

3.13.3 IEEE 1149.1 interface timing Table 36. JTAG pin AC electrical characteristics¹

#	Symbol	mbol Characteristic	Va	lue	Unit
#	Symbol	Characteristic	Min	Max	Unit
1	t _{JCYC}	TCK cycle time	100	—	ns
2	t _{JDC}	TCK clock pulse width	40	60	%
3	t _{TCKRISE}	TCK rise and fall times (40%–70%)	_	3	ns
4	t _{TMSS} , t _{TDIS}	TMS, TDI data setup time	5	—	ns
5	t _{TMSH} , t _{TDIH}	TMS, TDI data hold time	5	—	ns
6	t _{TDOV}	TCK low to TDO data valid	_	16 ²	ns
7	t _{TDOI}	TCK low to TDO data invalid	0	—	ns
8	t _{TDOHZ}	TCK low to TDO high impedance	_	15	ns
9	t _{JCMPPW}	JCOMP assertion time	100		ns
10	t _{JCMPS}	JCOMP setup time to TCK low	40	—	ns
11	t _{BSDV}	TCK falling edge to output valid	_	600 ³	ns
12	t _{BSDVZ}	TCK falling edge to output valid out of high impedance	_	600	ns
13	t _{BSDHZ}	TCK falling edge to output high impedance		600	ns
14	t _{BSDST}	Boundary scan input valid to TCK rising edge	15	—	ns
15	t _{BSDHT}	TCK rising edge to boundary scan input invalid	15		ns

1. These specifications apply to JTAG boundary scan only. See Table 37 for functional specifications.

- 2. Timing includes TCK pad delay, clock tree delay, logic delay and TDO output pad delay.
- 3. Applies to all pins, limited by pad slew rate. Refer to I/O delay and transition specification and add 20 ns for JTAG delay.

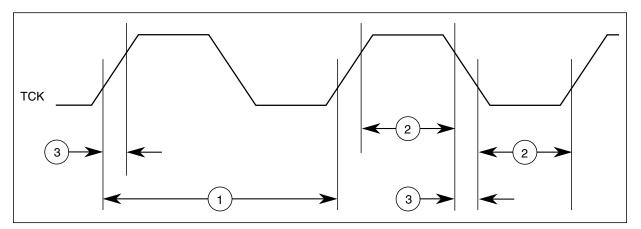


Figure 19. JTAG test clock input timing

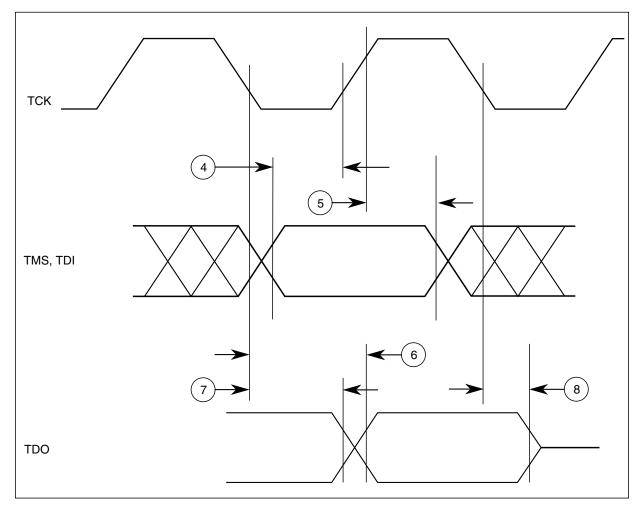


Figure 20. JTAG test access port timing

Electrical characteristics

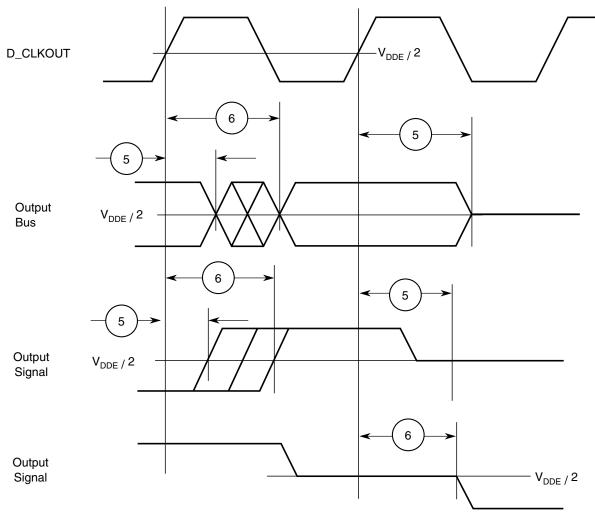


Figure 26. Synchronous output timing

Electrical characteristics

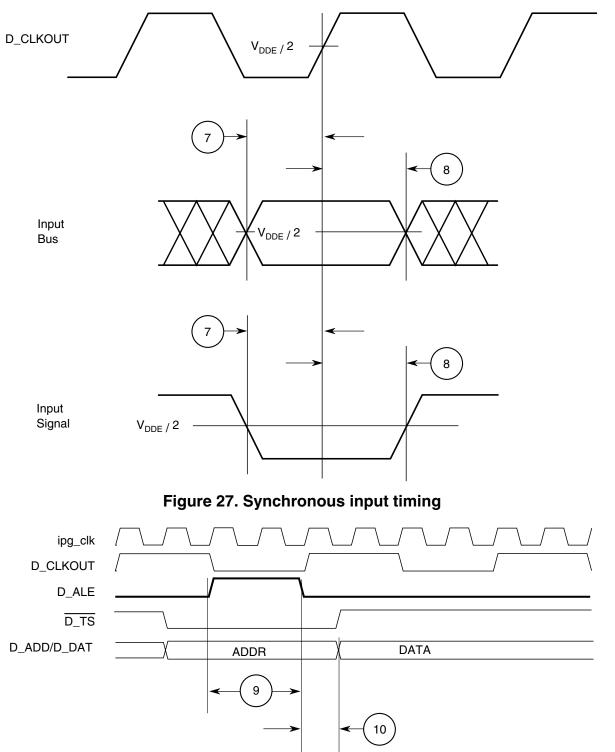


Figure 28. ALE signal timing

3.13.9 DSPI timing with CMOS and LVDS pads

NOTE

The DSPI in TSB mode with LVDS pads can be used to implement the Micro Second Channel (MSC) bus protocol.

DSPI channel frequency support is shown in Table 42. Timing specifications are shown in Table 43, Table 44, Table 45, Table 46, and Table 47.

	DSPI use mode		
CMOS (Master mode)	Full duplex – Classic timing (Table 43)	17	
	Full duplex – Modified timing (Table 44)	30	
	Output only mode (SCK/SOUT/PCS) (Table 43 and Table 44)	30	
	Output only mode TSB mode (SCK/SOUT/PCS) (Table 47)	30	
LVDS (Master mode)	Full duplex – Modified timing (Table 45)	30	
	Output only mode TSB mode (SCK/SOUT/PCS) (Table 46)	40	

Table 42. DSPI channel frequency support

1. Maximum usable frequency can be achieved if used with fastest configuration of the highest drive pads.

2. Maximum usable frequency does not take into account external device propagation delay.

3.13.9.1 DSPI master mode full duplex timing with CMOS and LVDS pads

3.13.9.1.1 DSPI CMOS Master Mode — Classic Timing

Table 43. DSPI CMOS master classic timing (full duplex and output only) – MTFE = 0, CPHA = 0 or 1^1

#	Symbol	Characteristic	Condition	2	Value	alue ³	
#	Symbol	Characteristic	Pad drive ⁴	Load (C _L)	Min	Max	Unit
1	t _{SCK}	SCK cycle time	PCR[SRC]=11b	25 pF	33.0	—	ns
			PCR[SRC]=10b	50 pF	80.0		
			PCR[SRC]=01b	50 pF	200.0	_	
2	t _{CSC}	PCS to SCK delay	PCR[SRC]=11b	25 pF	$(N^5 \times t_{SYS}^{, 6}) - 16$	_	ns
			PCR[SRC]=10b	50 pF	$(N^5 \times t_{SYS}^{, 6}) - 16$	_	
			PCR[SRC]=01b	50 pF	$(N^5 \times t_{SYS}^{, 6}) - 18$	_	
			PCS: PCR[SRC]=01b	50 pF	$(N^5 \times t_{SYS}^{, 6}) - 45$	_	
			SCK: PCR[SRC]=10b				

Table continues on the next page...

Table 47. DSPI CMOS master timing – output only – timed serial bus mode TSB = 1 or ITSB = 1, CPOL = 0 or 1, continuous SCK clock 1, 2 (continued)

#	Symbol	Characteristic	Condition	3	Val	ue ⁴	Unit
#	Symbol	Characteristic	Pad drive ⁵	Load (C _L)	Min	Max	
3	t _{CSH}	PCS hold after SCK ⁶	PCR[SRC]=11b	PCS: 0 pF	-14		ns
				SCK: 50 pF			
			PCR[SRC]=10b	PCS: 0 pF	-14		ns
				SCK: 50 pF			
			PCR[SRC]=01b	PCS: 0 pF	-33		ns
				SCK: 50 pF			
			PCS: PCR[SRC]=01b	PCS: 0 pF	-35		ns
			SCK: PCR[SRC]=10b	SCK: 50 pF			
4	t _{SDC}	SCK duty cycle ⁷	PCR[SRC]=11b	0 pF	1/2t _{SCK} – 2	1/2t _{SCK} + 2	ns
			PCR[SRC]=10b	0 pF	1/2t _{SCK} – 2	1/2t _{SCK} + 2	ns
			PCR[SRC]=01b	0 pF	1/2t _{SCK} – 5	1/2t _{SCK} + 5	ns
			SOUT data valid time (af	ter SCK edge)			
9	t _{SUO}	SOUT data valid time	PCR[SRC]=11b	25 pF		7.0	ns
		from SCK	PCR[SRC]=10b	50 pF	_	8.0	ns
		CPHA = 1 ⁸	PCR[SRC]=01b	50 pF		18.0	ns
			SOUT data hold time (aft	er SCK edge)			
10	t _{HO}	SOUT data hold time	PCR[SRC]=11b	25 pF	-9.0		ns
		after SCK	PCR[SRC]=10b	50 pF	-10.0	—	ns
		CPHA = 1 ⁸	PCR[SRC]=01b	50 pF	-21.0		ns

1. TSB = 1 or ITSB = 1 automatically selects MTFE = 1 and CPHA = 1.

2. All output timing is worst case and includes the mismatching of rise and fall times of the output pads.

3. When a characteristic involves two signals, the pad drive and load conditions apply to each signal's pad, unless specified otherwise.

- 4. All timing values for output signals in this table are measured to 50% of the output voltage.
- 5. Pad drive is defined as the PCR[SRC] field setting in the SIU. Timing is guaranteed to same drive capabilities for all signals; mixing of pad drives may reduce operating speeds and may cause incorrect operation.

6. With TSB mode or Continuous SCK clock mode selected, PCS and SCK are driven by the same edge of DSPI_CLKn. This timing value is due to pad delays and signal propagation delays.

- 7. t_{SDC} is only valid for even divide ratios. For odd divide ratios the fundamental duty cycle is not 50:50. For these odd divide ratios cases, the absolute spec number is applied as jitter/uncertainty to the nominal high time and low time.
- 8. SOUT Data Valid and Data hold are independent of load capacitance if SCK and SOUT load capacitances are the same value.

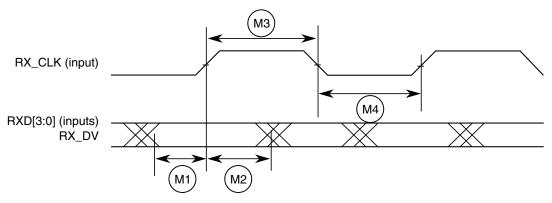


Figure 41. MII receive signal timing diagram

3.13.10.2 MII transmit signal timing (TXD[3:0], TX_EN, and TX_CLK)

The transmitter functions correctly up to a TX_CLK maximum frequency of 25 MHz +1%. There is no minimum frequency requirement. The system clock frequency must be at least equal to or greater than the TX_CLK frequency.

The transmit outputs (TXD[3:0], TX_EN) can be programmed to transition from either the rising or falling edge of TX_CLK, and the timing is the same in either case. This options allows the use of noncompliant MII PHYs.

Refer to the *MPC5777C Microcontroller Reference Manual's* Fast Ethernet Controller (FEC) chapter for details of this option and how to enable it.

Symbol	Characteristic	Value ²		Unit	
Symbol		Min	Max	Unit	
M5	TX_CLK to TXD[3:0], TX_EN invalid	4.5	_	ns	
M6	TX_CLK to TXD[3:0], TX_EN valid	—	25	ns	
M7	TX_CLK pulse width high	35%	65%	TX_CLK period	
M8	TX_CLK pulse width low	35%	65%	TX_CLK period	

Table 49. MII transmit signal timing¹

1. All timing specifications valid to the pad input levels defined in I/O pad specifications.

2. Output parameters are valid for $C_L = 25 \text{ pF}$, where C_L is the external load to the device. The internal package capacitance is accounted for, and does not need to be subtracted from the 25 pF value.

- Quality of the thermal and electrical connections to the planes
- Power dissipated by adjacent components

Connect all the ground and power balls to the respective planes with one via per ball. Using fewer vias to connect the package to the planes reduces the thermal performance. Thinner planes also reduce the thermal performance. When the clearance between the vias leave the planes virtually disconnected, the thermal performance is also greatly reduced.

As a general rule, the value obtained on a single-layer board is within the normal range for the tightly packed printed circuit board. The value obtained on a board with the internal planes is usually within the normal range if the application board has:

- One oz. (35 micron nominal thickness) internal planes
- Components are well separated
- Overall power dissipation on the board is less than 0.02 W/cm^2

The thermal performance of any component depends on the power dissipation of the surrounding components. In addition, the ambient temperature varies widely within the application. For many natural convection and especially closed box applications, the board temperature at the perimeter (edge) of the package is approximately the same as the local air temperature near the device. Specifying the local ambient conditions explicitly as the board temperature provides a more precise description of the local ambient conditions that determine the temperature of the device.

At a known board temperature, the junction temperature is estimated using the following equation:

$$T_J = T_B + \left(R_{\theta JB} * P_D \right)$$

where:

 T_B = board temperature for the package perimeter (°C)

 $R_{\Theta JB}$ = junction-to-board thermal resistance (°C/W) per JESD51-8

 P_D = power dissipation in the package (W)

When the heat loss from the package case to the air does not factor into the calculation, the junction temperature is predictable if the application board is similar to the thermal test condition, with the component soldered to a board with internal planes.

The thermal resistance is expressed as the sum of a junction-to-case thermal resistance plus a case-to-ambient thermal resistance:

Document revision history

Part number ¹	Paakaga description		Operating temperature ³	
	Package description	Speed (MHz) ²	Min (T _L)	Max (T _H)
SPC5777CCK3MME3	MPC5777C 416 package	264	–40 °C	125 °C
	Lead-free (Pb-free)			
SPC5777CK3MME3	MPC5777C 416 package	264	–40 °C	125 °C
	Lead-free (Pb-free)			
SPC5777CCK3MMO3	MPC5777C 516 package	264	–40 °C	125 °C
	Lead-free (Pb-free)			
SPC5777CK3MMO3	MPC5777C 516 package	264	–40 °C	125 °C
	Lead-free (Pb-free)			

 Table 56.
 Example orderable part numbers

1. All packaged devices are PPC5777C, rather than MPC5777C or SPC5777C, until product qualifications are complete. The unpackaged device prefix is PCC, rather than SCC, until product qualification is complete.

Not all configurations are available in the PPC parts.

- 2. For the operating mode frequency of various blocks on the device, see Table 3.
- The lowest ambient operating temperature is referenced by T_L; the highest ambient operating temperature is referenced by T_H.

6 Document revision history

The following table summarizes revisions to this document since the previous release.

Table 57. Revision history

Revision	Date	Description of changes
11	04/2017	 In Figure 47 of Ordering information, added codes and firmware version information in definition of "Optional features field" At end of line for (<i>blank</i>), added "version 2.07" Added line for A At end of line for R, added "version 2.08" At end of line for C, added "version 2.07" Added line for D At end of line for L, added "version 2.08"