
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	e200z7
Core Size	32-Bit Tri-Core
Speed	264MHz
Connectivity	CANbus, EBI/EMI, Ethernet, FlexCANbus, LINbus, SCI, SPI
Peripherals	DMA, LVD, POR, Zipwire
Number of I/O	-
Program Memory Size	8MB (8M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 16b Sigma-Delta, eQADC
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	416-BGA
Supplier Device Package	416-MAPBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5777csk3mme3

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	_
A	VSS	VDD	RSTOUT	ANAO_SDA O	ANA4	ANAS	ANA11	ANA15	VDDA_SD	REFBYPCA 25	VRL_SD	VRH_SD	AN28	AN32	AN36	VDDA_E Q	REFBYPCB 25	VRL_EQ	VRH_EQ	ANB7_SDD 7	ANB11	ANB14	ANB17	ANB21	ANB23	VSS	,
в	VDDEH1	VSS	VDD	TEST	ANA1_SDA 1	ANA5	ANA10	ANA14	VDDA_MISC	VSSA_SD	REFBYPCA 75	AN24	AN27	AN29	AN33	VDDA_E Q	VSSA_EQ	REFBYPCB 75	ANB6_SDD 6	ANB8	ANB10	ANB15	ANB18	ANB22	VSS	TCRCLKC	
с	ETPUA30	ETPUA31	VSS	VDD	ANA2_SDA 2	ANA6	ANA9	ANA13	ANA17_SDB 1	B3	C1	C3	AN26	AN30	AN34	AN37	AN38	ANBO_SDD 0	ANB4_SDD 4	ANB5_SDD 5	ANB12	ANB16	ANB19	VSS	ETPUCO	ETPUC1	
D	ETPUA27	ETPUA28	ETPUA29	VSS	VDD	ANA3_SDA 3	ANA7	ANA12	ANA16_SDB 0	ANA18_SD B2	ANA20_SD CO	ANA22_SD C2	AN25	AN31	AN35	AN39	ANB1_SDD 1	ANB2_SDD 2	ANB3_SDD 3	ANB9	ANB13	ANB20	VSS	SENT2_A	ETPUC2	ETPUC3	
E	ETPUA23	ETPUA24	ETPUA25	ETPUA26																			VDDEH7	ETPUC4	ETPUCS	ETPUC6	
	ETPUA19	ETPUA20	ETPUA21	ETPUA22																			ETPUC7	ETPUC8	ETPUC9	ETPUC10	
	ETPUA15	ETPUA16	ETPUA17	ETPUA18																			ETPUC11	ETPUC12	ETPUC13	ETPUC14	
•	ETPUA11	ETPUA12	ETPUA14	ETPUA13																			ETPUC15	ETPUC16	ETPUC17	ETPUC18	
	ETPUA7	ETPUA8	ETPUA9	ETPUA10																			ETPUC19	ETPUC20	ETPUC21	ETPUC22	
	ETPUA3	ETPUA4	ETPUAS	ETPUA6						VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS						ETPUC23	ETPUC24	ETPUC25	ETPUC26	
	TCRCLKA	ETPUAO	ETPUA1	ETPUA2						VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS						ETPUC27	ETPUC28	ETPUC29	ETPUC30	
۱.	NC	TXDA	RXDA	VSTBY						VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS						ETPUC31	ETPUB15	ETPUB14	VDDEH7	
•	RXDB	BOOTCFG 1	WKPCFG	VDD						VDDE2	VSS	VSS	VSS	VSS	VSS	VSS	VSS						VDDEH6	ETPUB11	ETPUB12	ETPUB13	
, -	TXDB	PLLCFG1	PLLCFG2	VDDEH1						VDDE2	VDDE2	VSS	VSS	VSS	VSS	VSS	VSS						ETPUB7	ETPUB8	ETPUB9	ETPUB10	
۲	JCOMP	RESET	PLLCFG0	RDY						VDDE2	VDDE2	VSS	VSS	VSS	VSS	VSS	VSS						ETPUB3	ETPUB4	ETPUB5	ETPUB6	
	VDDE2	мско	MSEO1	EVTI						VDDE2	VDDE2	VDDE2	VSS	VSS	VSS	VSS	VSS						TCRCLKB	ETPUBO	ETPUB1	ETPUB2	
'	EVTO	MSEOO	MD00	MDO1						VDDE2	VDDE2	VDDE2	VSS	VSS	VSS	VSS	VSS						ETPUB19	ETPUB18	ETPUB17		
1	MDO2	MDO3	MDO4	MDO5																			ETPUB26	ETPUB22	ETPUB21	ETPUB20	
۷	MDO6	MDO7	MD08	VDDE2																			REGSEL	ETPUB25	ETPUB24	ETPUB23	
-	MDO9	MDO10	MDO11	MDO15																			ETPUB29	ETPUB28	ETPUB27	REGCTL	
^	MDO12	MDO13	MDO14	NC																			VDDPMC	ETPUB30	VDDPWR	VSSSYN	
в	TDO	тск	TMS	VDD	FEC_TXCLK																		VDD	ETPUB31	VSSPWR	EXTAL	
с	VDDE2	TDI	VDD	VSS	REFCLK	PCSA1	PCSA2	PCSB4	PCSB1	VDDEH3	VDDEH4			<u> </u>				EMIOS31	CNRXB	CNRXD	VDDEH5	PCSC1	VSSPMC	VDD	VDDEH6	XTAL	
D	ENGCLK	VDD	VSS FEC_RX_D	-	FEC_TXD1	PCSA5	SOUTA	SCKA	PCSBO	PCSB3	EMIOS2			<u> </u>				EMIOS30	CNTXB	CNTXD	SCKC	RXDC	PCSC3	VSS	VDD	VDDFLA	
E	VDD	VSS	v	FEC_TX_EN		PCSAD	PCSA3	SCKB	SINB	EMIOSO	EMIOS3			<u> </u>			EMIOS25	EMIOS29	CNRXA	CNRXC	PCSCO	SINC	PCSC2	PCSC5	VSS	VDD	
F	VSS	VDDE2A	FEC_RXD0	FEC_RXD1	VDDEH3A	PCSB5	SINA	PCSB2	SOUTB	EMIOS1	EMIOS4	EMIOS7	EMIOS11	EMIOS12	EMIÖS16	EMIOS20	EMIOS24	EMIOS28	CNTXA	CNTXC	SOUTC	VDDEH4	TXDC	PCSC4	VDDEH5	VSS	I
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	

Figure 2. MPC5777C 416-ball MAPBGA (full diagram)

2.2 516-ball MAPBGA pin assignments

Figure 3 shows the 516-ball MAPBGA pin assignments.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
_		VDD	RSTOUT	ANAO_SDA O	ANA4	ANA9	ANA11	ANA15	VDDA_SD	REFBYPCA 25	VRL_SD	VRH_SD	AN28	AN29	AN36	VDDA_E Q	REFBYPCB 25	VRL_EQ	VRH_EQ	ANB5_SDD 5	ANB9	ANB12	ANB18	ANB21	VSS	
	VDDEH1	VSS	VDD	TEST	ANA1_SDA 1	ANA5	ANA10	ANA14	VDDA_MISC	VSSA_SD	REFBYPCA 75	AN24	AN27	AN30	AN32	VDDA_E Q	VSSA_EQ	REFBYPCB 75	ANB4_SDD 4	ANB8	ANB10	ANB13	ANB19	ANB22	VSS	VSS
1	ETPUA30	ETPUA31	VSS	VDD	ANA2_SDA 2	ANA6	ANA7	ANA13	ANA17_SDB 1	ANA19_SD B3	ANA21_SD C1	ANA22_SD C2	AN25	AN31	AN34	AN39	AN37	ANBO_SDD O	ANB7_SDD 7	ANB6_SDD 6	ANB11	ANB15	ANB20	VSS	ETPUCO	ETPUC1
1	ETPUA27	ETPUA28	ETPUA29	VSS	VDD	ANA3_SDA 3	ANAS	ANA12	ANA16_SDB 0	ANA18_SD B2	ANA20_SD CO	ANA23_SD C3	AN26	AN33	AN35	AN38	ANB1_SDD 1	ANB2_SDD 2	ANB3_SDD 3	ANB14	ANB16	ANB17	VSS	SENT2_A	ETPUC2	ETPUC3
	ETPUA23	ETPUA24	ETPUA25	ETPUA26	VSS	VDD	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS	ANB23	VSS	VSS	VDDEH7	ETPUC4	ETPUC5	ETPUC6
1	ETPUA19	ETPUA20	ETPUA21	ETPUA22	VSS	VDDE8		VDDE8		VDDE8	VDDE8		VSS	VSS		VDDE10	VDDE10		VDDE10		VDDE10	TCRCLKC	ETPUC7	ETPUC8	ETPUC9	ETPUC10
1	ETPUA11	ETPUA13	ETPUA15	ETPUA17	ETPUA18																	ETPUC11	ETPUC12	ETPUC13	ETPUC14	ETPUC15
	ETPUAS	ETPUA7	ETPUA8	ETPUA3	ETPUA14	ETPUA16															ETPUC19	ETPUC16	ETPUC17	ETPUC18	ETPUC20	ETPUC21
	ETPUA1	ETPUA2	ETPUA9	ETPUA4	ETPUA12						-		-	-		-		_				ETPUC22	ETPUC23	ETPUC24	ETPUC26	ETPUC27
	TXDB	TXDA	RXDA	TCRCLKA	ETPUA6	ETPUA10				VSS	VSS	VSS	VSS	VSS	VSS	vss	VSS				ETPUC25	ETPUC28	ETPUC29	ETPUC30	ETPUC31	D_DAT15
	PLLCFG1	PLLCFG2	BOOTCFG1	BOOTCFGO	RXDB	ETPUAD				VSS	VSS	VSS	VSS	VSS	VSS	vss	VSS				NC	D_DAT14	D_DAT13	D_DAT12	D_DAT11	D_DAT10
l	NC	D_BDIP	PLLCFG0	VSTBY	WKPCFG					VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS					D_DAT9	D_DAT8	D_DAT7	D_DAT5	VDDEH7
	D_WE0	D_WE2	D_WE3	VDD	RESET	VDDE8				VDDE2	VSS	VSS	VSS	vss	VSS	vss	VSS				VDDE10	D_DAT6	VDDEH6	D_DAT2	D_DAT3	D_DAT4
	D_ADD9	D_ADD10	D_ADD11	VDDEH1	D_WE1	NC				VDDE2	VDDE2	VSS	VSS	VSS	VSS	VSS	VSS				VDDE10	ETPUB13	D_OE	D_ALE	D_DATO	D_DAT1
1	D_ADD12	D_ADD13	D_ADD14	D_ADD15	D_ADD16					VDDE2	VDDE2	VSS	VSS	VSS	VSS	VSS	VSS					ETPUB9	ETPUB12	ETPUB14	ETPUB15	D_RD_WR
	VDDE2	D_ADD18	D_ADD19	D_ADD20	D_ADD17	D_CS3				VDDE2	VDDE2	VDDE2	VSS	VSS	VSS	VSS	VSS				ETPUB17	ETPUB3	ETPUB7	ETPUB8	ETPUB10	ETPUB11
	D_CS2	JCOMP	RDY	мско	MSEO1	MSEO0				VDDE2	VDDE2	VDDE2	VSS	VSS	VSS	VSS	VSS				ETPUB23	ETPUB1	ETPUB2	ETPUB4	ETPUB5	ETPUB6
	EVTI	EVTO	MD00	MDO2	MDO3																	ETPUB21	ETPUB22	ETPUB16	TCRCLKB	ETPUB0
	MDO4	MDO5	MDO6	VDDE2	MDO8	MD01															ETPUB25	ETPUB29	REGSEL	ETPUB20	ETPUB19	ETPUB18
	MDO7	MDO9	MDO10	MDO11	MDO12																	ETPUB31	ETPUB26	ETPUB27	ETPUB24	REGCTL
	MDO13	MDO14	MDO15	NC	VDDE8	VSS		PCSA5		SOUTB	NC		VDDE9	NC		EMIOS23	EMIOS31		CNRXB		VSS	VDDE10	VDDPMC	ETPUB28	VDDPWR	VSSSYN
	TDO	тск	TMS	VDD	VSS	VDDE9	VDDE9	SCKA	SINB	D_CS1	D_ADD21	D_ADD29	EMIOS1	EMIOS11	EMIOS17	EMIOS19	EMIOS29	VDDE9	VDDE9	VDDE9	VDDE9	VSS	VDD	ETPUB30	VSSPWR	EXTAL
	VDDE2	TDI	VDD	VSS	FEC_TXCLK _REFCLK	PCSA1	SOUTA	SCKB	PCSB3	VDDEH3	VDDEH4	VDD	EMIOSO	EMIOS8	EMIOS13	EMIOS22	EMIOS24	EMIOS28	CNTXB	CNRXD	VDDEH5	PCSC1	VSSPMC	VDD	VDDEH6	XTAL
	ENGCLK	VDD	VSS	FEC_TXD0	FEC_TXD1	PCSAD	PCSA3	PCSB2	D_CSO	D_ADD22	D_ADD25	D_ADD28	EMIOS2	EMIOS7	EMIOS12	EMIOS16	EMIOS18	EMIOS27	CNRXA	CNTXD	SCKC	RXDC	PCSC3	VSS	VDD	VDDFLA
	VDD	VSS	FEC_RX_D V	FEC_TX_EN	PCSA4	PCSB5	SINA	PCSB1	D_TS	D_ADD23	D_ADD26	D_ADD30	EMIOS3	EMIOS6	EMIOS10	EMIOS15	EMIOS21	EMIOS26	CNTXA	CNRXC	PCSCO	SINC	PCSC2	PCSC5	VSS	VDD
		VDDE2A	FEC_RXD0	FEC_RXD1	VDDEH3A	PCSA2	PCSB4	PCSBO	D_TA	D_ADD24	D_ADD27	D_CLKOUT	EMIOS4	EMIOS5	EMIOS9	EMIOS20	EMIOS14	EMIOS25	EMIOS30	CNTXC	SOUTC	VDDEH4	TXDC	PCSC4	VDDEH5	
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26

Figure 3. MPC5777C 516-ball MAPBGA (full diagram)

The following information includes details about power considerations, DC/AC electrical characteristics, and AC timing specifications.

3.1 Absolute maximum ratings

Absolute maximum specifications are stress ratings only. Functional operation at these maxima is not guaranteed.

CAUTION

Stress beyond listed maxima may affect device reliability or cause permanent damage to the device.

See Operating conditions for functional operation specifications.

Electrical characteristics

Table 9. GPIO and EBI data pad output buffer electrical characteristics (SR pads)¹ (continued)

Symbol	Parameter	Conditions ²			Value ³		Unit
Symbol				Min	Тур	Max	
t _{R_F}	GPIO pad output	PCR[SRC] = 11b	C _L = 25 pF			1.2	ns
	transition time (rise/fall)	4.5 V < V _{DDEx} < 5.5 V	C _L = 50 pF	_		2.5	
			C _L = 200 pF	_	_	8	
		PCR[SRC] = 11b	C _L = 25 pF	_	—	1.7	
		3.0 V < V _{DDEx} < 3.6 V	C _L = 50 pF	_	—	3.25	
			C _L = 200 pF	_	—	12	
		PCR[SRC] = 10b	C _L = 50 pF		_	5	
		4.5 V < V _{DDEx} < 5.5 V	C _L = 200 pF	_	—	18]
		PCR[SRC] = 10b	C _L = 50 pF		—	7	
		3.0 V < V _{DDEx} < 3.6 V	C _L = 200 pF		—	25	
		PCR[SRC] = 01b	C _L = 50 pF	_		13	
		4.5 V < V _{DDEx} < 5.5 V	C _L = 200 pF	_		24	1
			C _L = 50 pF	_		25	
		3.0 V < V _{DDEx} < 3.6 V	C _L = 200 pF			30	
		PCR[SRC] = 00b	C _L = 50 pF	_		24	
		4.5 V < V _{DDEx} < 5.5 V	C _L = 200 pF			50	
		PCR[SRC] = 00b	C _L = 50 pF			40	
		3.0 V < V _{DDEx} < 3.6 V	C _L = 200 pF	_		51	
t _{PD}	GPIO pad output		C _L = 50 pF			6	ns
	propagation delay time	4.5 V < V _{DDEx} < 5.5 V	C _L = 200 pF	_		13	
			C _L = 50 pF			8.25	
		3.0 V < V _{DDEx} < 3.6 V	C _L = 200 pF			19.5	
		PCR[SRC] = 10b	C _L = 50 pF			9	
		4.5 V < V _{DDEx} < 5.5 V	C _L = 200 pF		_	22	
			C _L = 50 pF			12.5	
		3.0 V < V _{DDEx} < 3.6 V	C _L = 200 pF		_	35	
		PCR[SRC] = 01b	C _L = 50 pF			27	
		4.5 V < V _{DDEx} < 5.5 V	C _L = 200 pF			40	
		PCR[SRC] = 01b	C _L = 50 pF			45	1
		3.0 V < V _{DDEx} < 3.6 V	C _L = 200 pF			65	1
		PCR[SRC] = 00b	C _L = 50 pF			40	1
		4.5 V < V _{DDEx} < 5.5 V	C _L = 200 pF			65	1
			C _L = 50 pF			75	1
		3.0 V < V _{DDEx} < 3.6 V				100	1
SKEW_W	Difference between rise and fall time		<u> - </u>	— —		25	%

1. All GPIO pad output specifications are valid for 3.0 V < V_{DDEx} < 5.5 V, except where explicitly stated.

- 2. PCR[SRC] values refer to the setting of that register field in the SIU.
- 3. All values to be confirmed during device validation.

The following table shows the EBI CLKOUT, address, and control signal pad electrical characteristics. These pads can also be used for GPIO.

Table 10. GPIO and EBI CLKOUT, address, and control signal pad output buffer electrical characteristics (FC pads)

Symbol	Parameter	Conditions ¹			Value		Un
Symbol	Parameter	Conditions		Min	Тур	Max	7 "
	EBI Mod	e Output Specification	ns: valid for 3.0 V < \	V _{DDEx} < 3.6 V	1		
C _{DRV}	External bus load	PCR[DSC] = 01b		_		10	pF
	capacitance	PCR[DSC] = 10b		_		20	
		PCR[DSC] = 11b		_		30	
f _{MAX_EBI}	External bus maximum operating frequency	C _{DRV} = 10/20/30 pF		-	_	66	MH
	4	GPIO and EBI Mode	Output Specificatio	ns		1	
I _{OH_EBI}	GPIO and external bus	V _{OH} = 0.8 * V _{DDEx}	PCR[DSC] = 11b	30		_	m
	pad output high current	4.5 V < V _{DDEx} < 5.5 V	PCR[DSC] = 10b	22		_	
			PCR[DSC] = 01b	13		—	1
			PCR[DSC] = 00b	2	_	—	1
		V _{OH} = 0.8 * V _{DDEx}	PCR[DSC] = 11b	16	_	—	1
		3.0 V < V _{DDEx} < 3.6 V	PCR[DSC] = 10b	12		_	
			PCR[DSC] = 01b	7		_	
			PCR[DSC] = 00b	1		_	
I _{OL_EBI}	GPIO and external bus	V _{OL} = 0.2 * V _{DDEx}	PCR[DSC] = 11b	54		_	m
	pad output low current	4.5 V < V _{DDEx} < 5.5 V	PCR[DSC] = 10b	25		_	
			PCR[DSC] = 01b	16		_	1
			PCR[DSC] = 00b	2		_	
		$V_{OL} = 0.2 * V_{DDEx}$	PCR[DSC] = 11b	17		_	
		3.0 V < V _{DDEx} < 3.6 V	PCR[DSC] = 10b	14	_	_	
			PCR[DSC] = 01b	8		_	
			PCR[DSC] = 00b	1	_	—	1
t _{R_F_EBI}	GPIO and external bus	PCR[DSC] = 11b	C _L = 30 pF	—	_	1.5	n
	pad output transition		C _L = 50 pF			2.4	1
	time (rise/fall)	PCR[DSC] = 10b	C _L = 20 pF		_	1.5	1
		PCR[DSC] = 01b	C _L = 10 pF		_	1.85	1
		PCR[DSC] = 00b	C _L = 50 pF			45	1
t _{PD_EBI}	GPIO and external bus	PCR[DSC] = 11b	C _L = 30 pF			4.2	n
	pad output propagation		C _L = 50 pF			5.5	1
	delay time	PCR[DSC] = 10b	C _L = 20 pF			4.2	1
		PCR[DSC] = 01b	C _L = 10 pF	—	_	4.4	1
		PCR[DSC] = 00b	C _L = 50 pF			59	1

load_cap_sel[4:0] from DCF record	Load capacitance ^{1, 2} (pF)
01110	14.9
01111	15.8

Table 15. Selectable load capacitance (continued)

- 1. Values are determined from simulation across process corners and voltage and temperature variation. Capacitance values vary ±12% across process, 0.25% across voltage, and no variation across temperature.
- 2. Values in this table do not include the die and package capacitances given by C_{S_XTAL}/C_{S_EXTAL} in Table 14.

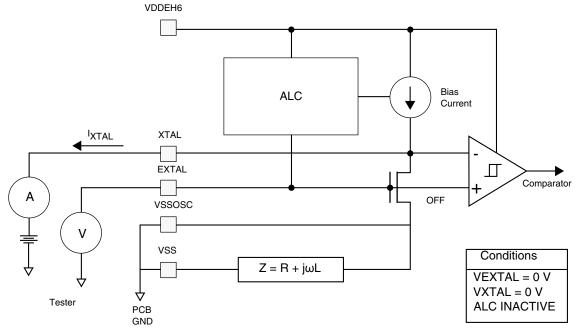


Figure 7. Test circuit

Table 16. Internal RC (IRC) oscillator electrical specifications

Symbol	Parameter	Conditions		Value		Unit
Symbol	Falantelei	Conditions	Min	Тур	Max	Onne
f _{Target}	IRC target frequency	_	_	16		MHz
δf _{var_T}	IRC frequency variation	T < 150 °C	-8	_	8	%

3.8 Analog-to-Digital Converter (ADC) electrical specifications

- 5. Below disruptive current conditions, the channel being stressed has conversion values of \$3FF for analog inputs greater than V_{BH} and \$000 for values less than V_{BL}. Other channels are not affected by non-disruptive conditions.
- 6. Exceeding limit may cause conversion error on stressed channels and on unstressed channels. Transitions within the limit do not affect device reliability or cause permanent damage.
- Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values using V_{POSCLAMP} = V_{DDA} + 0.5 V and V_{NEGCLAMP} = -0.3 V, then use the larger of the calculated values.
- 8. Condition applies to two adjacent pins at injection limits.
- 9. Performance expected with production silicon.
- 10. All channels have same 10 k Ω < Rs < 100 k Ω Channel under test has Rs = 10 k Ω , $I_{INJ}=I_{INJMAX}$, I_{INJMIN} .
- 11. The TUE specification is always less than the sum of the INL, DNL, offset, and gain errors due to cancelling errors.
- 12. TUE does not apply to differential conversions.
- Variable gain is controlled by setting the PRE_GAIN bits in the ADC_ACR1-8 registers to select a gain factor of ×1, ×2, or ×4. Settings are for differential input only. Tested at ×1 gain. Values for other settings are guaranteed as indicated.
- 14. Guaranteed 10-bit monotonicity.
- 15. At $V_{RH_EQ} V_{RL_EQ}$ = 5.12 V, one LSB = 1.25 mV.

3.8.2 Sigma-Delta ADC (SDADC)

The SDADC is a 16-bit Sigma-Delta analog-to-digital converter with a 333 Ksps maximum output conversion rate.

NOTE

The voltage range is 4.5 V to 5.5 V for SDADC specifications, except where noted otherwise.

Symbol	Parameter	Conditions		Value	9	Unit	
Symbol	Falameter	Conditions	Min	Тур	Мах		
V _{IN}	ADC input signal	—	0	_	V _{DDA_SD}	V	
V _{IN_PK2PK} 1	Input range peak to peak	Single ended V _{INM} = V _{RL_SD}		V _{RH_SD} /G	iAIN	V	
	$V_{IN_{PK2PK}} = V_{INP}^2 - V_{INM}^3$	Single ended $V_{INM} = 0.5^*V_{RH_{SD}}$ GAIN = 1		±0.5*V _{RH}	I_SD		
		Single ended $V_{INM} = 0.5^* V_{RH_SD}$ GAIN = 2,4,8,16		±V _{RH_SD} /GAIN			
		Differential 0 < V _{IN} < V _{DDEx}		±V _{RH_SD} /0	GAIN		
f _{ADCD_M}	SD clock frequency ⁴	—	4	14.4	16	MHz	
f _{ADCD_S}	Conversion rate	—	—	_	333	Ksps	
_	Oversampling ratio	Internal modulator	24	—	256	—	
RESOLUTION	SD register resolution ⁵	2's complement notation		16		bit	

Table 18. SDADC electrical specifications

Table continues on the next page...

Cumbal	Devenuetor	Canditions		Value		L Incia
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
GAIN	ADC gain	Defined through SDADC_MCR[PGAN]. Only integer powers of 2 are valid gain values.	1	—	16	_
δ _{GAIN}	Absolute value of the ADC gain error ^{6, 7}	Before calibration (applies to gain setting = 1)	—	—	1.5	%
		After calibration	—	_	5	mV
		$\Delta V_{RH_SD} < 5\%, \Delta V_{DDA_SD} < 10\%$				
		$\Delta T_{\rm J} < 50 \ ^{\circ}{\rm C}$				
		After calibration	_	_	7.5	
		$\Delta V_{RH_{SD}} < 5\%, \Delta V_{DDA_{SD}} < 10\%$				
		$\Delta T_{\rm J} < 100 \ ^{\circ}{\rm C}$				
		After calibration	_	_	10	
		$\Delta V_{RH_{SD}} < 5\%, \Delta V_{DDA_{SD}} < 10\%$				
		$\Delta T_{\rm J} < 150 \ ^{\circ}{\rm C}$				
V _{OFFSET}	Conversion offset ^{6, 7}	Before calibration (applies to all gain settings: 1, 2, 4, 8, 16)	—	10*(1+1/ gain)	20	mV
		After calibration	—	—	5	
		$\Delta V_{\text{DDA}_\text{SD}} < 10\%$				
		$\Delta T_{\rm J} < 50 \ ^{\circ}{\rm C}$				
		After calibration	_	—	7.5	
		$\Delta V_{\text{DDA}_\text{SD}} < 10\%$				
		ΔT _J < 100 °C				
		After calibration	_	_	10	
		$\Delta V_{\text{DDA}_\text{SD}} < 10\%$				
		ΔT _J < 150 °C				

Table 18. SDADC electrical specifications (continued
--

Table continues on the next page ...

Cumhal	Devenueter	Conditions		Value		11
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
SNR _{SE150}	Signal to noise ratio in	4.5 V < V _{DDA_SD} < 5.5 V ^{8, 9}	72	_	_	dB
	single ended mode, 150 Ksps output rate	$V_{RH_SD} = V_{DDA_SD}$				
		GAIN = 1				
		4.5 V < V _{DDA_SD} < 5.5 V ^{8, 9}	69	_	_	
		$V_{RH_SD} = V_{DDA_SD}$				
		GAIN = 2				
		4.5 V < V _{DDA_SD} < 5.5 V ^{8, 9}	66	_	_	
		$V_{RH_SD} = V_{DDA_SD}$				
		GAIN = 4				
		4.5 V < V _{DDA_SD} < 5.5 V ^{8, 9}	62	_	_	
		$V_{RH_SD} = V_{DDA_SD}$				
		GAIN = 8				
		4.5 V < V _{DDA_SD} < 5.5 V ^{8, 9}	54	—	_	
		$V_{RH_SD} = V_{DDA_SD}$				
		GAIN = 16				
SINAD _{DIFF150}	Signal to noise and	Gain = 1	72	-	—	dBFS
	distortion ratio in differential mode, 150	4.5 V < V _{DDA_SD} < 5.5 V				
	Ksps output rate	$V_{RH_SD} = V_{DDA_SD}$				
		Gain = 2	72	-	—	
		4.5 V < V _{DDA_SD} < 5.5 V				
		$V_{RH_SD} = V_{DDA_SD}$				
		Gain = 4	69	—	—	
		4.5 V < V _{DDA_SD} < 5.5 V				
		$V_{RH_SD} = V_{DDA_SD}$				
		Gain = 8	68.8	—	_	
		4.5 V < V _{DDA_SD} < 5.5 V				
		$V_{RH_SD} = V_{DDA_SD}$				
		Gain = 16	64.8	—	_	
		4.5 V < V _{DDA_SD} < 5.5 V				
		$V_{RH_SD} = V_{DDA_SD}$				

Table 18. SDADC electrical specifications (continued)

Table continues on the next page ...

Cumhal	Parameter	Conditions		Value				
Symbol		Conditions	Min	Тур	Мах	Unit		
THD _{DIFF150}	Total harmonic	Gain = 1	65	_	_	dBFS		
	distortion in differential mode, 150 Ksps	4.5 V < V _{DDA_SD} < 5.5 V						
	output rate	$V_{RH_{SD}} = V_{DDA_{SD}}$						
		Gain = 2	68	_	_			
		4.5 V < V _{DDA_SD} < 5.5 V						
		$V_{RH_{SD}} = V_{DDA_{SD}}$						
		Gain = 4	74	_	_			
		4.5 V < V _{DDA_SD} < 5.5 V						
		$V_{RH_{SD}} = V_{DDA_{SD}}$						
		Gain = 8	80	_	_			
		4.5 V < V _{DDA_SD} < 5.5 V						
		$V_{RH_{SD}} = V_{DDA_{SD}}$						
		Gain = 16	80	_	_			
		4.5 V < V _{DDA_SD} < 5.5 V						
		$V_{RH_{SD}} = V_{DDA_{SD}}$						
THD _{DIFF333}	Total harmonic distortion in differential mode, 333 Ksps output rate	Gain = 1	65	_	_	dBFS		
		4.5 V < V _{DDA_SD} < 5.5 V						
		$V_{RH_{SD}} = V_{DDA_{SD}}$						
		Gain = 2	68	_	_			
		4.5 V < V _{DDA_SD} < 5.5 V						
		$V_{RH_{SD}} = V_{DDA_{SD}}$						
		Gain = 4	74	_	_			
		4.5 V < V _{DDA_SD} < 5.5 V						
		$V_{RH_{SD}} = V_{DDA_{SD}}$						
		Gain = 8	80	_	_			
		4.5 V < V _{DDA_SD} < 5.5 V						
		$V_{RH_{SD}} = V_{DDA_{SD}}$						
		Gain = 16	80	_	_			
		4.5 V < V _{DDA_SD} < 5.5 V						
		$V_{RH_{SD}} = V_{DDA_{SD}}$						

Table 18. SDADC electrical specifications (continued)

Table continues on the next page ...

Sympol	Parameter	Conditions		Valu	e	Unit	
Symbol	Farameter	Min T		Min Typ Max			
t _{SETTLING}	Settling time after mux change	Analog inputs are muxed HPF = ON	_	_	2*δ _{GROUP} + 3*f _{ADCD_} s	—	
		HPF = OFF	—	_	2∗δ _{GROUP} + 2*f _{ADCD_S}		
t _{ODRECOVERY} Overdrive recovery time After input comes within range from saturation		_	_	2*δ _{GROUP} + f _{ADCD_S}	—		
		HPF = ON					
HPF		HPF = OFF	—	_	2*δ _{GROUP}		
C _{S_D}	SDADC sampling	GAIN = 1, 2, 4, 8	—	_	75*GAIN	fF	
	capacitance after sampling switch ¹⁶	GAIN = 16	—	_	600	fF	
I _{BIAS}	Bias consumption	At least one SDADC enabled		—	3.5	mA	
I _{ADV_D}	SDADC supply Per SDADC enabled consumption		—	—	4.325	mA	
I _{ADR_D}	SDADC reference current consumption	Per SDADC enabled	—	_	20	μA	

Table 18. SDADC electrical specifications (continued)

- 1. For input voltage above the maximum and below the clamp voltage of the input pad, there is no latch-up concern, and the signal will only be "clipped."
- 2. VINP is the input voltage applied to the positive terminal of the SDADC
- 3. VINM is the input voltage applied to the negative terminal of the SDADC
- 4. Sampling is generated internally $f_{SAMPLING} = f_{ADCD_M/2}$
- 5. For Gain = 16, SDADC resolution is 15 bit.
- Calibration of gain is possible when gain = 1. Offset Calibration should be done with respect to 0.5^{*}V_{RH_SD} for differential mode and single ended mode with negative input = 0.5^{*}V_{RH_SD}. Offset Calibration should be done with respect to 0 for single ended mode with negative input = 0. Both Offset and Gain Calibration is guaranteed for +/-5% variation of V_{RH_SD}, +/-10% variation of V_{DDA SD}, +/-50 C temperature variation.
- 7. Offset and gain error due to temperature drift can occur in either direction (+/-) for each of the SDADCs on the device.
- SDADC is functional in the range 3.6 V < V_{DDA_SD} < 4.0 V: SNR parameter degrades by 3 dB. SDADC is functional in the range 3.0 V < V_{RH_SD} < 4.0 V: SNR parameter degrades by 9 dB.
- 9. SNR values guaranteed only if external noise on the ADC input pin is attenuated by the required SNR value in the frequency range of f_{ADCD_M} f_{ADCD_S} to f_{ADCD_M} + f_{ADCD_S}, where f_{ADCD_M} is the input sampling frequency and f_{ADCD_S} is the output sample frequency. A proper external input filter should be used to remove any interfering signals in this frequency range.
- 10. Input impedance in differential mode $Z_{IN} = Z_{DIFF}$
- 11. Input impedance given at $f_{ADCD_M} = 16$ MHz. Impedance is inversely proportional to SDADC clock frequency. Z_{DIFF} (f_{ADCD_M}) = (16 MHz / f_{ADCD_M}) * Z_{DIFF} , Z_{CM} (f_{ADCD_M}) = (16 MHz / f_{ADCD_M}) * Z_{CM} .
- 12. Input impedance in single-ended mode $Z_{IN} = (2 * Z_{DIFF} * Z_{CM}) / (Z_{DIFF} + Z_{CM})$
- 13. V_{INTCM} is the Common Mode input reference voltage for the SDADC. It has a nominal value of (V_{RH_SD} V_{RL_SD}) / 2.
- 14. The $\pm 1\%$ passband ripple specification is equivalent to 20 * log₁₀ (0.99) = 0.087 dB.
- 15. Propagation of the information from the pin to the register CDR[CDATA] and the flags SFR[DFEF] and SFR[DFFF] is given by the different modules that must be crossed: delta/sigma filters, high pass filter, FIFO module, and clock domain synchronizers. The time elapsed between data availability at the pin and internal SDADC module registers is given by the following formula, where f_{ADCD_S} is the frequency of the sampling clock, f_{ADCD_M} is the frequency of the modulator, and f_{FM_PER_CLK} is the frequency of the peripheral bridge clock feeds to the SDADC module:

 $REGISTER LATENCY = t_{LATENCY} + 0.5/f_{ADCD_S} + 2 (\sim+1)/f_{ADCD_M} + 2(\sim+1)f_{FM_PER_CLK}$

The (~+1) symbol refers to the number of clock cycles uncertainty (from 0 to 1 clock cycle) to be added due to resynchronization of the signal during clock domain crossing.

Table 29. Voltage monitor electrical characteristics^{1, 2} (continued)

			Co	nfigura	tion		Value				
Symbol	Parameter	Conditions			Pow. Up	Min	Тур	Max	Unit		
POR_HV	HV V _{DDPMC} supply power	Rising voltage (powerup)	N/A	No	Enab.	2444	2600	2756	mV		
	on reset threshold	Falling voltage (power down)				2424	2580	2736			
LVD_HV	HV internal V _{DDPMC} supply	Rising voltage (untrimmed)	4bit	No	Enab.	2935	3023	3112	mV		
	low voltage monitoring	Falling voltage (untrimmed)				2922	3010	3099	1		
		Rising voltage (trimmed)				2946	3010	3066			
		Falling voltage (trimmed)				2934	2998	3044]		
HVD_HV	HV internal V _{DDPMC} supply	Rising voltage	4bit Yes	Yes	Disab.	5696	5860	5968	mV		
high voltage monitoring		Falling voltage				5666	5830	5938]		
LVD_FLASH	FLASH supply low voltage monitoring ⁶	Rising voltage (untrimmed)	4bit	No	Enab.	2935	3023	3112	mV		
		Falling voltage (untrimmed)				2922	3010	3099			
		Rising voltage (trimmed)				2956	3010	3053			
		Falling voltage (trimmed)				2944	2998	3041			
HVD_FLASH	FLASH supply high	Rising voltage	4bit	Yes Disab. 3456 35	3530	3584	mV				
	voltage monitoring ⁶	Falling voltage				3426	3500	3554	1		
LVD_IO	Main I/O V _{DDEH1} supply	Rising voltage (untrimmed)	4bit	No	Enab.	3250	3350	3488	mV		
	low voltage monitoring	Falling voltage (untrimmed)				3220	3320	3458			
		Rising voltage (trimmed)				3347	3420	3468			
		Falling voltage (trimmed)				3317	3390	3438]		
t _{VDASSERT}	Voltage detector threshold crossing assertion	_	_	-	_	0.1	-	2.0	μs		
t _{VDRELEASE}	Voltage detector threshold crossing de-assertion	_	_	-	_	5	-	20	μs		

- 1. LVD is released after t_{VDRELEASE} temporization when upper threshold is crossed; LVD is asserted t_{VDASSERT} after detection when lower threshold is crossed.
- 2. HVD is released after t_{VDRELEASE} temporization when lower threshold is crossed; HVD is asserted t_{VDASSERT} after detection when upper threshold is crossed.
- 3. POR098_c threshold is an untrimmed value, before the completion of the power-up sequence. All other LVD/HVD thresholds are provided after trimming.
- 4. LV internal supply levels are measured on device internal supply grid after internal voltage drop.
- 5. LV external supply levels are measured on the die side of the package bond wire after package voltage drop.
- 6. V_{DDFLA} range is guaranteed when internal flash memory regulator is used.

3.11.4 Power sequencing requirements

Requirements for power sequencing include the following.

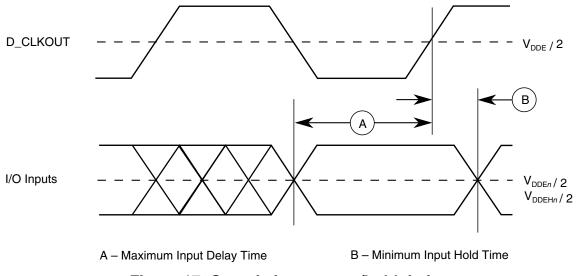


Figure 17. Generic input setup/hold timing

3.13.2 Reset and configuration pin timing

Table 35. Reset and configuration pin timing¹

Spec	Characteristic	Symbol	Min	Max	Unit
1	RESET Pulse Width	t _{RPW}	10	—	t _{cyc} ²
2	RESET Glitch Detect Pulse Width	t _{GPW}	2	—	t _{cyc} ²
3	PLLCFG, BOOTCFG, WKPCFG Setup Time to RSTOUT Valid	t _{RCSU}	10	—	t _{cyc} ²
4	PLLCFG, BOOTCFG, WKPCFG Hold Time to RSTOUT Valid	t _{RCH}	0		t _{cyc} ²

1. Reset timing specified at: V_{DDEH} = 3.0 V to 5.25 V, V_{DD} = 1.08 V to 1.32 V, TA = TL to TH.

2. For further information on t_{cyc} , see Table 3.

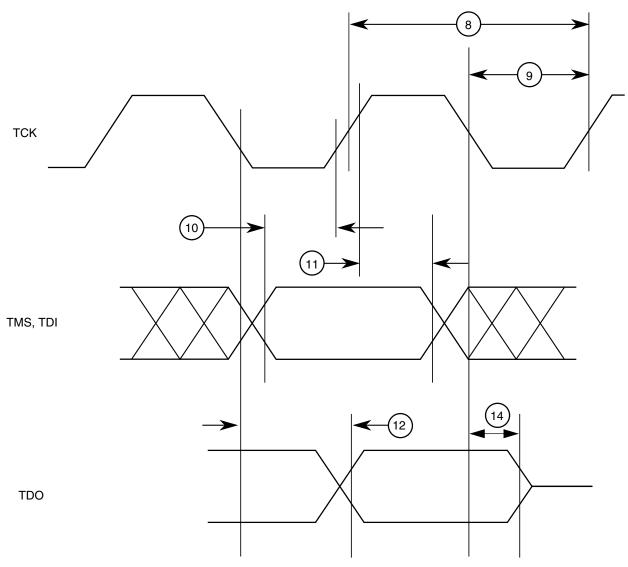


Figure 24. Nexus TCK, TDI, TMS, TDO Timing

3.13.5 External Bus Interface (EBI) timing Table 38. Bus operation timing¹

Spec	Characteristic	Symbol	66 MHz (Ext.	Iz (Ext. bus freq.) ^{2, 3}		Notes
Spec	Characteristic	Symbol	Min	Мах	Onit	NOLES
1	D_CLKOUT Period	t _C	15.2	—	ns	Signals are measured at 50% $V_{\text{DDE}}.$
2	D_CLKOUT Duty Cycle	t _{CDC}	45%	55%	t _C	—
3	D_CLKOUT Rise Time	t _{CRT}	_	4	ns	—
4	D_CLKOUT Fall Time	t _{CFT}		4	ns	—

Table continues on the next page...

 Table 38. Bus operation timing¹ (continued)

~			66 MHz (Ext	MHz (Ext. bus freq.) ^{2, 3}		
Spec	Characteristic	Symbol	Min	Мах	Unit	Notes
5	D_CLKOUT Posedge to Output Signal Invalid or High Z (Hold Time) D_ADD[9:30] D_BDIP D_CS[0:3] D_DAT[0:15] D_OE D_RD_WR D_TA D_TS	tсон	1.0/1.5	_	ns	Hold time selectable via SIU_ECCR[EBTS] bit: EBTS = 0: 1.0 ns EBTS = 1: 1.5 ns
6	D_WE[0:3]/D_BE[0:3] D_CLKOUT Posedge to Output Signal Valid (Output Delay) D_ADD[9:30] D_BDIP D_CS[0:3]	t _{COV}		8.5/9.0	ns	Output valid time selectable via SIU_ECCR[EBTS] bit: EBTS = 0: 8.5 ns EBTS = 1: 9.0 ns
	D_DAT[0:15]			11.5		
	D_OE D_RD_WR D_TA D_TS D_WE[0:3]/D_BE[0:3]			8.5/9.0		Output valid time selectable via SIU_ECCR[EBTS] bit: EBTS = 0: 8.5 ns EBTS = 1: 9.0 ns
7	Input Signal Valid to D_CLKOUT Posedge (Setup Time) D_ADD[9:30] D_DAT[0:15] D_RD_WR D_TA D_TS	t _{CIS}	7.5	_	ns	
8	D_CLKOUT Posedge to Input Signal Invalid (Hold Time) D_ADD[9:30] D_DAT[0:15] D_RD_WR D_TA D_TS	t _{СІН}	1.0	_	ns	
9	D_ALE Pulse Width	t _{APW}	6.5	_	ns	The timing is for Asynchronous

Table continues on the next page...

Electrical characteristics

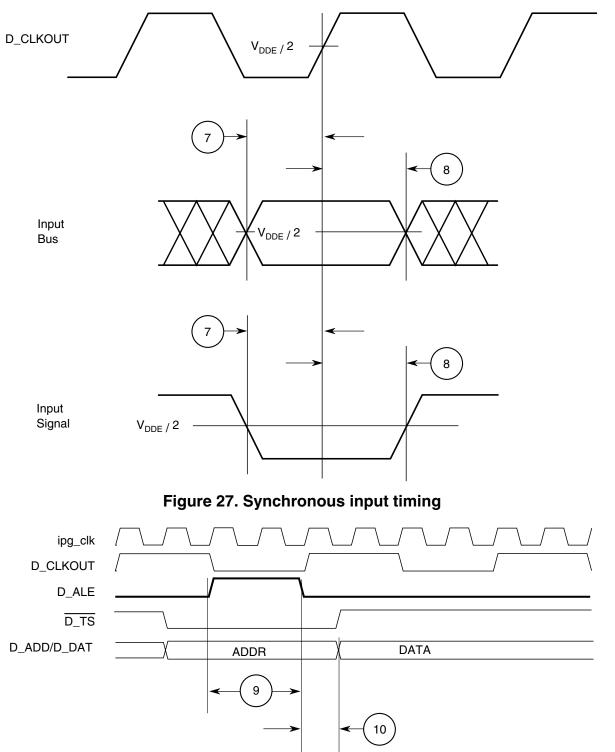


Figure 28. ALE signal timing

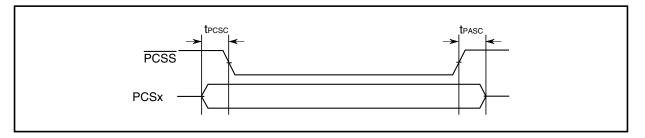


Figure 37. DSPI PCS strobe (PCSS) timing (master mode)

3.13.9.1.3 DSPI LVDS Master Mode – Modified Timing Table 45. DSPI LVDS master timing – full duplex – modified transfer format (MTFE = 1), CPHA = 0 or 1

щ	Cumhal	Characteristic	Conditio	on ¹	Value	2	11
#	Symbol	Characteristic	Pad drive ³	Load (C _L)	Min	Мах	- Unit
1	t _{SCK}	SCK cycle time	LVDS	15 pF to 25 pF differential	33.3		ns
2	t _{CSC}	PCS to SCK delay	PCS: PCR[SRC]=11b	25 pF	$(N^4 \times t_{SYS}^{, 5}) - 10$	—	ns
		(LVDS SCK)	PCS: PCR[SRC]=10b	50 pF	$(N^4 \times t_{SYS}^{, 5}) - 10$	—	ns
			PCS: PCR[SRC]=01b	50 pF	$(N^4 \times t_{SYS}^{, 5}) - 32$	—	ns
3	t _{ASC}	After SCK delay	PCS: PCR[SRC]=11b	PCS: 0 pF	$(M^6 \times t_{SYS}, 5) - 8$	—	ns
		(LVDS SCK)		SCK: 25 pF			
			PCS: PCR[SRC]=10b	PCS: 0 pF	$(M^6 \times t_{SYS}, 5) - 8$	—	ns
				SCK: 25 pF			
			PCS: PCR[SRC]=01b	PCS: 0 pF	$(M^6 \times t_{SYS}^{, 5}) - 8$		ns
				SCK: 25 pF			
4	t _{SDC}	SCK duty cycle ⁷	LVDS	15 pF to 25 pF differential	1/2t _{SCK} – 2	1/2t _{SCK} +2	ns
7	t _{SUI}			SIN setup time			
		SIN setup time to SCK	LVDS	15 pF to 25 pF differential	$23 - (P^9 \times t_{SYS}, 5)$	_	ns
		CPHA = 0 ⁸					
		SIN setup time to SCK	LVDS	15 pF to 25 pF differential	23	_	ns
		CPHA = 1 ⁸					
8	t _{HI}			SIN hold time			_
		SIN hold time from SCK	LVDS	0 pF differential	$-1 + (P^9 \times t_{SYS}, 5)$	—	ns
		CPHA = 0 ⁸					
		SIN hold time from SCK	LVDS	0 pF differential	-1	_	ns
		CPHA = 1 ⁸					

Table continues on the next page...

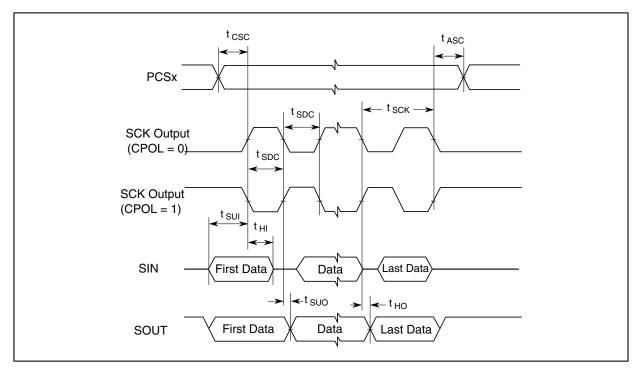


Figure 38. DSPI LVDS master mode – modified timing, CPHA = 0

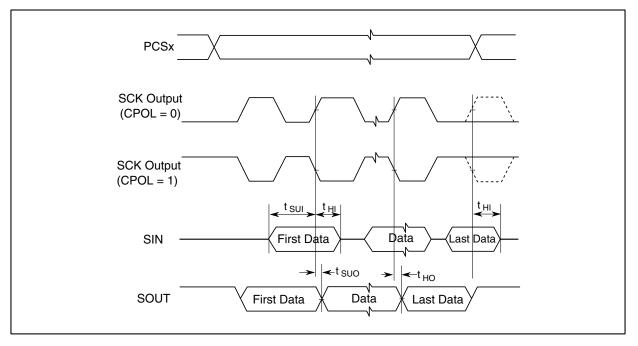


Figure 39. DSPI LVDS master mode – modified timing, CPHA = 1

Package information

6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2.

Characteristic	Symbol	Value	Unit
Junction to Ambient ^{1, 2} Natural Convection (Single layer board)	R _{OJA}	28.5	°C/W
Junction to Ambient ^{1, 3} Natural Convection (Four layer board 2s2p)	R _{OJA}	20.0	°C/W
Junction to Ambient (@200 ft./min., Single layer board)	R _{ØJMA}	21.3	°C/W
Junction to Ambient (@200 ft./min., Four layer board 2s2p)	R _{ØJMA}	15.5	°C/W
Junction to Board ⁴	R _{OJB}	8.8	°C/W
Junction to Case ⁵	R _{OJC}	4.8	°C/W
Junction to Package Top ⁶ Natural Convection	Ψ _{JT}	0.2	°C/W

Table 55. Thermal characteristics, 516-ball MAPBGA package

- 1. Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- 2. Per JEDEC JESD51-2 with the single layer board horizontal. Board meets JESD51-9 specification.
- 3. Per JEDEC JESD51-6 with the board horizontal.
- 4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Indicates the average thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1) with the cold plate temperature used for the case temperature.
- 6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2.

4.1.1 General notes for thermal characteristics

An estimation of the chip junction temperature, T_J, can be obtained from the equation:

$$T_J = T_A + \left(R_{\theta JA} * P_D \right)$$

where:

 T_A = ambient temperature for the package (°C)

 $R_{\Theta JA}$ = junction-to-ambient thermal resistance (°C/W)

 P_D = power dissipation in the package (W)

The thermal resistance values used are based on the JEDEC JESD51 series of standards to provide consistent values for estimations and comparisons. The difference between the values determined for the single-layer (1s) board compared to a four-layer board that has two signal layers, a power and a ground plane (2s2p), demonstrate that the effective thermal resistance is not a constant. The thermal resistance depends on the:

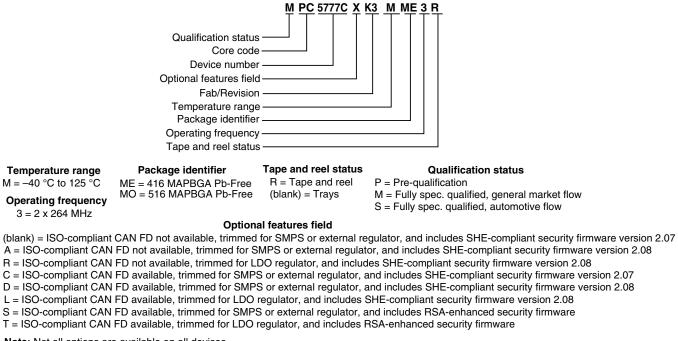
- Construction of the application board (number of planes)
- Effective size of the board which cools the component

1 mm of wire extending from the junction. Place the thermocouple wire flat against the package case to avoid measurement errors caused by the cooling effects of the thermocouple wire.

When board temperature is perfectly defined below the device, it is possible to use the thermal characterization parameter (Ψ_{JPB}) to determine the junction temperature by measuring the temperature at the bottom center of the package case (exposed pad) using the following equation:

$$T_J = T_B + \left(\Psi_{\rm JPB} x P_D \right)$$

where:


 T_T = thermocouple temperature on bottom of the package (°C)

 Ψ_{JT} = thermal characterization parameter (°C/W)

 P_D = power dissipation in the package (W)

5 Ordering information

Figure 47 and Table 56 describe orderable part numbers for the MPC5777C.

Note: Not all options are available on all devices.

Figure 47. MPC5777C Orderable part number description

How to Reach Us:

Home Page: nxp.com

Web Support: nxp.com/support Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTest, CodeWarrior, ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorlQ, QorlQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the property of their respective owners. ARM, AMBA, ARM Powered, Artisan, Cortex, Jazelle, Keil, SecurCore, Thumb, TrustZone, and µVision are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. ARM7, ARM9, ARM11, big.LITTLE, CoreLink, CoreSight, DesignStart, Mali, mbed, NEON, POP, Sensinode, Socrates, ULINK and Versatile are trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org.

© 2013–2017 NXP B.V.

Document Number MPC5777C Revision 11, 04/2017

