

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	e200z7
Core Size	32-Bit Tri-Core
Speed	264MHz
Connectivity	CANbus, EBI/EMI, Ethernet, FlexCANbus, LINbus, SCI, SPI
Peripherals	DMA, LVD, POR, Zipwire
Number of I/O	-
Program Memory Size	8MB (8M × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 16b Sigma-Delta, eQADC
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	516-BGA
Supplier Device Package	516-MAPBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5777csk3mmo3

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.2 Block diagram

The following figure shows a top-level block diagram of the MPC5777C. The purpose of the block diagram is to show the general interconnection of functional modules through the crossbar switch.

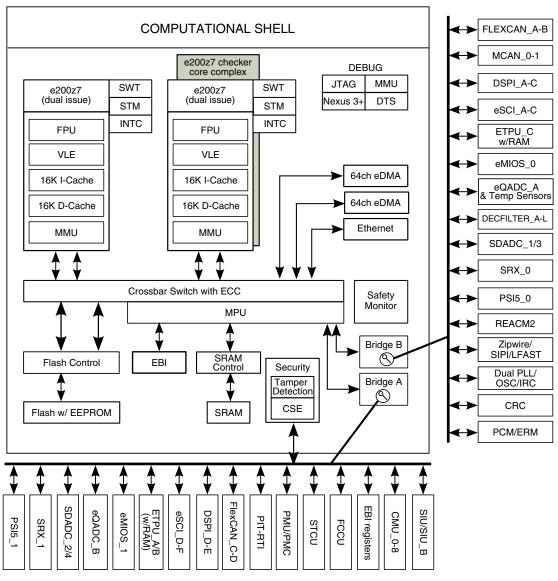


Figure 1. MPC5777C block diagram

2 Pinouts

2.1 416-ball MAPBGA pin assignments

Figure 2 shows the 416-ball MAPBGA pin assignments.

O-multiple	Parameter	O a se aliti a se a				
Symbol	Farameter	Conditions	Min	Тур	Max	Unit
V _{STBY_BO}	Standby RAM brownout flag trip point voltage	—	-	—	0.9 ¹²	V
V _{RL_SD} SDADC ground reference voltage		—		V _{SSA_SD}		V
V _{DDA_SD}	SDADC supply voltage ¹³	—	4.5	—	5.5	V
V _{DDA_EQA/B}	eQADC supply voltage	—	4.75	_	5.25	V
V _{RH_SD}	SDADC reference	-	4.5	V _{DDA_SD}	5.5	V
$V_{DDA_SD} - V_{RH_SD}$	SDADC reference differential voltage	—	—	—	25	mV
$V_{SSA_SD} - V_{RL_SD}$	V _{RL_SD} differential voltage	-	-25	—	25	mV
V _{RH_EQ}	eQADC reference	-	4.75	—	5.25	V
V _{DDA_EQA/B} – V _{RH_EQ}	eQADC reference differential voltage	—	_	—	25	mV
$V_{SSA_EQ} - V_{RL_EQ}$	V _{RL_EQ} differential voltage	-	-25	—	25	mV
$V_{SSA_{EQ}} - V_{SS}$	V _{SSA_EQ} differential voltage	—	-25	—	25	mV
$V_{SSA_SD} - V_{SS}$	V _{SSA_SD} differential voltage	—	-25	—	25	mV
V _{RAMP}	Slew rate on power supply pins	—	_	—	100	V/ms
		Current				_
I _{IC}	DC injection current (per pin) ^{14,} 15, 16	Digital pins and analog pins	-3.0	—	3.0	mA
I _{MAXSEG}	Maximum current per power segment ^{17, 18}	—	-80	—	80	mA

Table 3.	Device o	perating	conditions ((continued))
----------	-----------------	----------	--------------	-------------	---

- Maximum operating frequency is applicable to the computational cores and platform for the device. See the Clocking chapter in the MPC5777C Microcontroller Reference Manual for more information on the clock limitations for the various IP blocks on the device.
- 2. If frequency modulation (FM) is enabled, the maximum frequency still cannot exceed this value.
- 3. The maximum specification for operating junction temperature T_J must be respected. Thermal characteristics provides details.
- 4. Core voltage as measured on device pin to guarantee published silicon performance
- 5. During power ramp, voltage measured on silicon might be lower. Maximum performance is not guaranteed, but correct silicon operation is guaranteed. See power management and reset management for description.
- 6. Maximum core voltage is not permitted for entire product life. See absolute maximum rating.
- 7. When internal LVD/HVDs are disabled, external monitoring is required to guarantee device operation. Failure to monitor externally supply voltage may result in erroneous operation of the device.
- 8. This LVD/HVD disabled supply voltage condition only applies after LVD/HVD are disabled by the application during the reset sequence, and the LVD/HVD are active until that point.
- 9. This spec does not apply to V_{DDEH1} .
- 10. When internal flash memory regulator is used:
 - Flash memory read operation is supported for a minimum V_{DDPMC} value of 3.15 V.
 - Flash memory read, program, and erase operations are supported for a minimum V_{DDPMC} value of 3.5 V.

When flash memory power is supplied externally (V_{DDPMC} shorted to V_{DDFLA}): The V_{DDPMC} range must be within the limits specified for LVD_FLASH and HVD_FLASH monitoring. Table 29 provides the monitored LVD_FLASH and HVD_FLASH limits.

- 11. If the standby RAM regulator is not used, the V_{STBY} supply input pin must be tied to ground.
- 12. V_{STBY_BO} is the maximum voltage that sets the standby RAM brownout flag in the device logic. The minimum voltage for RAM data retention is guaranteed always to be less than the V_{STBY_BO} maximum value.

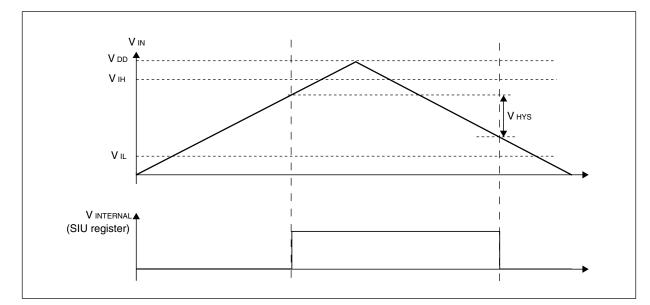


Figure 4. I/O input DC electrical characteristics definition

Symbol	Parameter	Conditions		Value		Unit	
Symbol	Parameter	Conditions	Min	Тур	Max		
V _{IHCMOS_H}	Input high level CMOS (with	3.0 V < V _{DDEx} < 3.6 V and	0.65 * V _{DDEx}	_	V _{DDEx} + 0.3	V	
	hysteresis)	4.5 V < V _{DDEx} < 5.5 V					
VIHCMOS	Input high level CMOS (without	$3.0 \text{ V} < \text{V}_{\text{DDEx}} < 3.6 \text{ V}$ and	0.55 * V _{DDEx}		V _{DDEx} + 0.3	V	
	hysteresis)	4.5 V < V _{DDEx} < 5.5 V					
V _{ILCMOS_H}	Input low level CMOS (with	3.0 V < V _{DDEx} < 3.6 V and	-0.3		0.35 * V _{DDEx}	V	
	hysteresis)	4.5 V < V _{DDEx} < 5.5 V					
VILCMOS	Input low level CMOS (without	$3.0 \text{ V} < \text{V}_{\text{DDEx}} < 3.6 \text{ V}$ and	-0.3	_	0.4 * V _{DDEx}	V	
	hysteresis)	4.5 V < V _{DDEx} < 5.5 V					
V _{HYSCMOS}	Input hysteresis CMOS	$3.0 \text{ V} < \text{V}_{\text{DDEx}} < 3.6 \text{ V}$ and	0.1 * V _{DDEx}		—	V	
		4.5 V < V _{DDEx} < 5.5 V					
		Input Characteristics ¹					
I _{LKG}	Digital input leakage	$V_{SS} < V_{IN} < V_{DDEx}/V_{DDEHx}$			2.5	μA	
I _{LKG_FAST}	Digital input leakage for EBI address/control signal pads	$V_{SS} < V_{IN} < V_{DDEx}/V_{DDEHx}$	—	—	2.5	μA	
I _{LKGA}	Analog pin input leakage (5 V range)	$V_{SSA_SD} < V_{IN} < V_{DDA_SD}, \\ V_{SSA_EQ} < V_{IN} < V_{DDA_EQA/B}$	—		220	nA	
C _{IN}	Digital input capacitance	GPIO and EBI input pins	—	_	7	pF	

Table 6.	I/O input DC electrical characteristics
----------	---

1. For LFAST, microsecond bus, and LVDS input characteristics, see dedicated communication module sections.

Table 7 provides current specifications for weak pullup and pulldown.

Table 9. GPIO and EBI data pad output buffer electrical characteristics (SR pads)¹ (continued)

Symbol	Parameter	Conditions ²			Value ³		Unit
Symbol				Min	Тур	Max	
t _{R_F}	GPIO pad output	PCR[SRC] = 11b	C _L = 25 pF			1.2	ns
	transition time (rise/fall)	4.5 V < V _{DDEx} < 5.5 V	C _L = 50 pF	_		2.5	
			C _L = 200 pF	_	_	8	
		PCR[SRC] = 11b	C _L = 25 pF	_	_	1.7	
		3.0 V < V _{DDEx} < 3.6 V	C _L = 50 pF	_	—	3.25	
			C _L = 200 pF	_	—	12	
		PCR[SRC] = 10b	C _L = 50 pF		_	5	
		4.5 V < V _{DDEx} < 5.5 V	C _L = 200 pF	_	—	18]
		PCR[SRC] = 10b	C _L = 50 pF		—	7	
		3.0 V < V _{DDEx} < 3.6 V	C _L = 200 pF	_	—	25	
		PCR[SRC] = 01b	C _L = 50 pF	_		13	
		4.5 V < V _{DDEx} < 5.5 V	C _L = 200 pF	_		24	1
			C _L = 50 pF	_		25	
		3.0 V < V _{DDEx} < 3.6 V	C _L = 200 pF			30	
		PCR[SRC] = 00b	C _L = 50 pF	_		24	
		4.5 V < V _{DDEx} < 5.5 V	C _L = 200 pF			50	
		PCR[SRC] = 00b	C _L = 50 pF			40	
		3.0 V < V _{DDEx} < 3.6 V	C _L = 200 pF	_		51	
t _{PD}	GPIO pad output		C _L = 50 pF			6	ns
	propagation delay time	4.5 V < V _{DDEx} < 5.5 V	C _L = 200 pF	_		13	
			C _L = 50 pF			8.25	
		3.0 V < V _{DDEx} < 3.6 V	C _L = 200 pF			19.5	
		PCR[SRC] = 10b	C _L = 50 pF			9	
		4.5 V < V _{DDEx} < 5.5 V	C _L = 200 pF		_	22	
			C _L = 50 pF			12.5	
		3.0 V < V _{DDEx} < 3.6 V	C _L = 200 pF		_	35	
		PCR[SRC] = 01b	C _L = 50 pF			27	
		4.5 V < V _{DDEx} < 5.5 V	C _L = 200 pF			40	
		PCR[SRC] = 01b	C _L = 50 pF			45	1
		3.0 V < V _{DDEx} < 3.6 V	C _L = 200 pF			65	1
		PCR[SRC] = 00b	C _L = 50 pF			40	1
		4.5 V < V _{DDEx} < 5.5 V	C _L = 200 pF			65	1
			C _L = 50 pF			75	1
		3.0 V < V _{DDEx} < 3.6 V				100	1
SKEW_W	Difference between rise and fall time		<u> - </u>	— —		25	%

1. All GPIO pad output specifications are valid for 3.0 V < V_{DDEx} < 5.5 V, except where explicitly stated.

1. PCR[DSC] values refer to the setting of that register field in the SIU.

3.6.3 I/O pad current specifications

The I/O pads are distributed across the I/O supply segments. Each I/O supply segment is associated with a V_{DDEx} supply segment.

Table 11 provides I/O consumption figures.

To ensure device reliability, the average current of the I/O on a single segment should remain below the I_{MAXSEG} value given in Table 1.

To ensure device functionality, the average current of the I/O on a single segment should remain below the I_{MAXSEG} value given in Table 3.

NOTE

The MPC5777C I/O Signal Description and Input Multiplexing Tables are contained in a Microsoft Excel® file attached to the Reference Manual. In the spreadsheet, select the I/O Signal Table tab.

Symbol	Parameter	Conditions	Value			Unit
Symbol		Conditions	Min	Тур	Мах	
I _{AVG_GPIO}	Average I/O current for GPIO pads	C _L = 25 pF, 2 MHz	—	—	0.42	mA
	(per pad)	$V_{DDEx} = 5.0 V \pm 10\%$				
		C _L = 50 pF, 1 MHz	—	—	0.35	
		$V_{DDEx} = 5.0 V \pm 10\%$				
I _{AVG_EBI}		$C_{DRV} = 10 \text{ pF}, f_{EBI} = 66 \text{ MHz}$			9	mA
	bus output pins (per pad)	$V_{DDEx} = 3.3 V \pm 10\%$				
		$C_{DRV} = 20 \text{ pF}, f_{EBI} = 66 \text{ MHz}$		_	18	
		$V_{DDEx} = 3.3 V \pm 10\%$				
		$C_{DRV} = 30 \text{ pF}, \text{ f}_{EBI} = 66 \text{ MHz}$		_	30	
		$V_{DDEx} = 3.3 V \pm 10\%$				

Table 11. I/O consumption

3.7 Oscillator and PLL electrical specifications

The on-chip dual PLL—consisting of the peripheral clock and reference PLL (PLL0) and the frequency-modulated system PLL (PLL1)—generates the system and auxiliary clocks from the main oscillator driver.

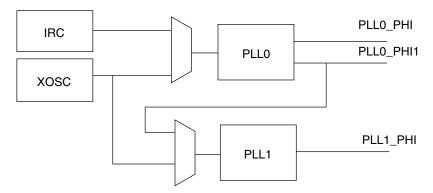


Figure 6. PLL integration

3.7.1 PLL electrical specifications

Table 12. PLL0 electrical characteristics

Symphol	Parameter	Conditions	Value			Unit
Symbol	Farameter	Conditions	Min	Тур	Max	
f _{PLL0IN}	PLL0 input clock ^{1, 2}	—	8	_	44	MHz
Δ _{PLL0IN}	PLL0 input clock duty cycle ²	—	40	—	60	%
f _{PLL0VCO}	PLL0 VCO frequency	—	600		1250	MHz
f _{PLL0PHI}	PLL0 output frequency	—	4.762	_	200	MHz
t _{PLL0LOCK}	PLL0 lock time	—	_		110	μs
$ \Delta_{PLL0PHISPJ} $	PLL0_PHI single period jitter	f _{PLL0PHI} = 200 MHz, 6-sigma	_		200	ps
	f _{PLL0IN} = 20 MHz (resonator)					
Δ _{PLL0PHI1SPJ}	PLL0_PHI1 single period jitter	f _{PLL0PHI1} = 40 MHz, 6-sigma	_	_	300 ³	ps
	f _{PLL0IN} = 20 MHz (resonator)					
Δ _{PLL0LTJ}	PLL0 output long term jitter ³	10 periods accumulated jitter (80 MHz		_	±250	ps
	f _{PLL0IN} = 20 MHz (resonator),	equivalent frequency), 6-sigma pk-pk				
	VCO frequency = 800 MHz	16 periods accumulated jitter (50 MHz equivalent frequency), 6-sigma pk-pk	—	_	±300	ps
		long term jitter (< 1 MHz equivalent frequency), 6-sigma pk-pk)	—	_	±500	ps
I _{PLL0}	PLL0 consumption	FINE LOCK state	_	—	7.5	mA

 f_{PLLOIN} frequency must be scaled down using PLLDIG_PLL0DV[PREDIV] to ensure PFD input signal is in the range 8 MHz to 20 MHz.

2. PLLOIN clock retrieved directly from either internal IRC or external XOSC clock. Input characteristics are granted when using internal IRC or external oscillator is used in functional mode.

3. Noise on the V_{DD} supply with frequency content below 40 kHz and above 50 MHz is filtered by the PLL. Noise on the V_{DD} supply with frequency content in the range of 40 kHz – 50 MHz must be filtered externally to the device.

- 5. Below disruptive current conditions, the channel being stressed has conversion values of \$3FF for analog inputs greater than V_{BH} and \$000 for values less than V_{BL}. Other channels are not affected by non-disruptive conditions.
- 6. Exceeding limit may cause conversion error on stressed channels and on unstressed channels. Transitions within the limit do not affect device reliability or cause permanent damage.
- Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values using V_{POSCLAMP} = V_{DDA} + 0.5 V and V_{NEGCLAMP} = -0.3 V, then use the larger of the calculated values.
- 8. Condition applies to two adjacent pins at injection limits.
- 9. Performance expected with production silicon.
- 10. All channels have same 10 k Ω < Rs < 100 k Ω Channel under test has Rs = 10 k Ω , $I_{INJ}=I_{INJMAX}$, I_{INJMIN} .
- 11. The TUE specification is always less than the sum of the INL, DNL, offset, and gain errors due to cancelling errors.
- 12. TUE does not apply to differential conversions.
- Variable gain is controlled by setting the PRE_GAIN bits in the ADC_ACR1-8 registers to select a gain factor of ×1, ×2, or ×4. Settings are for differential input only. Tested at ×1 gain. Values for other settings are guaranteed as indicated.
- 14. Guaranteed 10-bit monotonicity.
- 15. At $V_{RH_EQ} V_{RL_EQ}$ = 5.12 V, one LSB = 1.25 mV.

3.8.2 Sigma-Delta ADC (SDADC)

The SDADC is a 16-bit Sigma-Delta analog-to-digital converter with a 333 Ksps maximum output conversion rate.

NOTE

The voltage range is 4.5 V to 5.5 V for SDADC specifications, except where noted otherwise.

Symbol	Parameter	Conditions		Value	9	Unit
Symbol	Falameter	Conditions	Min	Тур	Мах	
V _{IN}	ADC input signal	—	0	_	V _{DDA_SD}	V
V _{IN_PK2PK} 1	Input range peak to peak	Single ended V _{INM} = V _{RL_SD}		V _{RH_SD} /G	iAIN	V
	$V_{IN_{PK2PK}} = V_{INP}^2 - V_{INM}^3$	Single ended $V_{INM} = 0.5^*V_{RH_{SD}}$ GAIN = 1		±0.5*V _{RF}	I_SD	
		Single ended $V_{INM} = 0.5^* V_{RH_SD}$ GAIN = 2,4,8,16		±V _{RH_SD} /(GAIN	
		Differential 0 < V _{IN} < V _{DDEx}		±V _{RH_SD} /0	GAIN	
f _{ADCD_M}	SD clock frequency ⁴	—	4	14.4	16	MHz
f _{ADCD_S}	Conversion rate	—	—	_	333	Ksps
_	Oversampling ratio	Internal modulator	24	—	256	—
RESOLUTION	SD register resolution ⁵	2's complement notation		16		bit

Table 18. SDADC electrical specifications

Table continues on the next page...

Symbol	Parameter	Conditions		Value		Unit
Symbol		Conditions	Min	Тур	Max	
SNR _{DIFF150}	Signal to noise ratio in	4.5 V < V _{DDA_SD} < 5.5 V ^{8, 9}	80	_	_	dB
	differential mode, 150 Ksps output rate	$V_{RH_{SD}} = V_{DDA_{SD}}$				
		GAIN = 1				
		4.5 V < V _{DDA_SD} < 5.5 V ^{8, 9}	77	_	_	
		$V_{RH_{SD}} = V_{DDA_{SD}}$				
		GAIN = 2				
		4.5 V < V _{DDA_SD} < 5.5 V ^{8, 9}	74	_	—	
		$V_{RH_{SD}} = V_{DDA_{SD}}$				
		GAIN = 4				
		4.5 V < V _{DDA_SD} < 5.5 V ^{8, 9}	71	_	—	
		$V_{RH_{SD}} = V_{DDA_{SD}}$				
		GAIN = 8				
		4.5 V < V _{DDA_SD} < 5.5 V ^{8, 9}	68	_	_	
		$V_{RH_SD} = V_{DDA_SD}$				
		GAIN = 16				
SNR _{DIFF333}		$4.5 \text{ V} < \text{V}_{\text{DDA}SD} < 5.5 \text{ V}^{8, 9}$	71	-	—	dE
	differential mode, 333 Ksps output rate	$V_{RH_{SD}} = V_{DDA_{SD}}$				
		GAIN = 1				
		$4.5 \text{ V} < \text{V}_{\text{DDA}SD} < 5.5 \text{ V}^{8, 9}$	70	-	—	
		$V_{RH_{SD}} = V_{DDA_{SD}}$				
		GAIN = 2				
		$4.5 \text{ V} < \text{V}_{\text{DDA}SD} < 5.5 \text{ V}^{8, 9}$	68	-	_	
		$V_{RH_{SD}} = V_{DDA_{SD}}$				
		GAIN = 4				
		$4.5 \text{ V} < \text{V}_{\text{DDA}SD} < 5.5 \text{ V}^{8, 9}$	65	_	_	
		$V_{RH_SD} = V_{DDA_SD}$				
		GAIN = 8				
		4.5 V < V _{DDA_SD} < 5.5 V ^{8, 9}	62	_	_	
		$V_{RH_SD} = V_{DDA_SD}$				
		GAIN = 16				

Table 18. SDADC electrical specifications (continued)

Table continues on the next page ...

Cumhal	Parameter	Conditions		Value		11
Symbol	Falameter	Conditions	Min	Тур	Max	Unit
SNR _{SE150}	Signal to noise ratio in single ended mode, 150 Ksps output rate	4.5 V < V _{DDA_SD} < 5.5 V ^{8, 9}	72	_	_	dB
		$V_{RH_SD} = V_{DDA_SD}$				
		GAIN = 1				
		4.5 V < V _{DDA_SD} < 5.5 V ^{8, 9}	69	_	_	
		$V_{RH_SD} = V_{DDA_SD}$				
		GAIN = 2				
		4.5 V < V _{DDA_SD} < 5.5 V ^{8, 9}	66	_	_	
		$V_{RH_SD} = V_{DDA_SD}$				
		GAIN = 4				
		4.5 V < V _{DDA_SD} < 5.5 V ^{8, 9}	62	_	_	
		$V_{RH_SD} = V_{DDA_SD}$				
		GAIN = 8				
		4.5 V < V _{DDA_SD} < 5.5 V ^{8, 9}	54	_	_	
		$V_{RH_SD} = V_{DDA_SD}$				
		GAIN = 16				
SINAD _{DIFF150}	Signal to noise and	Gain = 1	72	-	—	dBFS
	distortion ratio in differential mode, 150	4.5 V < V _{DDA_SD} < 5.5 V				
	Ksps output rate	$V_{RH_SD} = V_{DDA_SD}$				
		Gain = 2	72	-	—	
		4.5 V < V _{DDA_SD} < 5.5 V				
		$V_{RH_SD} = V_{DDA_SD}$				
		Gain = 4	69	—	—	
		4.5 V < V _{DDA_SD} < 5.5 V				
		$V_{RH_SD} = V_{DDA_SD}$				
		Gain = 8	68.8	—	_	
		4.5 V < V _{DDA_SD} < 5.5 V				
		$V_{RH_SD} = V_{DDA_SD}$				
		Gain = 16	64.8	—	_	
		4.5 V < V _{DDA_SD} < 5.5 V				
		$V_{RH_SD} = V_{DDA_SD}$				

Table 18. SDADC electrical specifications (continued)

Table continues on the next page ...

Cumhal	Devementer	Conditions		Value		L Insite	
Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
THD _{DIFF150}	Total harmonic distortion in differential mode, 150 Ksps	Gain = 1	65	_	_	dBFS	
		4.5 V < V _{DDA_SD} < 5.5 V					
	output rate	$V_{RH_{SD}} = V_{DDA_{SD}}$					
		Gain = 2	68	_	_		
		4.5 V < V _{DDA_SD} < 5.5 V					
		$V_{RH_{SD}} = V_{DDA_{SD}}$					
		Gain = 4	74	_	_		
		4.5 V < V _{DDA_SD} < 5.5 V					
		$V_{RH_{SD}} = V_{DDA_{SD}}$					
		Gain = 8	80	_	_		
		4.5 V < V _{DDA_SD} < 5.5 V					
		$V_{RH_{SD}} = V_{DDA_{SD}}$					
		Gain = 16	80	_	_		
		4.5 V < V _{DDA_SD} < 5.5 V					
		$V_{RH_{SD}} = V_{DDA_{SD}}$					
THD _{DIFF333}	Total harmonic	Gain = 1	65	_	—	dBFS	
	distortion in differential mode, 333 Ksps	4.5 V < V _{DDA_SD} < 5.5 V					
	output rate	$V_{RH_{SD}} = V_{DDA_{SD}}$					
		Gain = 2	68	_	_		
		4.5 V < V _{DDA_SD} < 5.5 V					
		$V_{RH_{SD}} = V_{DDA_{SD}}$					
		Gain = 4	74	_	_		
		4.5 V < V _{DDA_SD} < 5.5 V					
		$V_{RH_{SD}} = V_{DDA_{SD}}$					
		Gain = 8	80	_	_		
		4.5 V < V _{DDA_SD} < 5.5 V					
		$V_{RH_{SD}} = V_{DDA_{SD}}$					
		Gain = 16	80	_	_		
		4.5 V < V _{DDA_SD} < 5.5 V					
		$V_{RH_{SD}} = V_{DDA_{SD}}$					

Table 18. SDADC electrical specifications (continued)

Table continues on the next page ...

Symbol	Parameter	Conditions	Value			
Symbol	Farameter	Min		Typ Max		Unit
THD _{SE150}	Total harmonic	Gain = 1	68	_	—	dBFS
	distortion in single- ended mode, 150	4.5 V < V _{DDA_SD} < 5.5 V				
	Ksps output rate	$V_{RH_{SD}} = V_{DDA_{SD}}$				
		Gain = 2	68	-	—	
		4.5 V < V _{DDA_SD} < 5.5 V				
		$V_{RH_{SD}} = V_{DDA_{SD}}$				
		Gain = 4	66		_	
		4.5 V < V _{DDA_SD} < 5.5 V				
		$V_{RH_{SD}} = V_{DDA_{SD}}$				
		Gain = 8	68	_		
		4.5 V < V _{DDA_SD} < 5.5 V				
		$V_{RH_{SD}} = V_{DDA_{SD}}$				
		Gain = 16	68	_	_	
		4.5 V < V _{DDA_SD} < 5.5 V				
		$V_{RH_{SD}} = V_{DDA_{SD}}$				
SFDR	Spurious free dynamic		60	_	_	dB
	range					
Z _{DIFF}	Differential input impedance ^{10, 11}	GAIN = 1	1000	1250	1500	kΩ
		GAIN = 2	600	800	1000	
		GAIN = 4	300	400	500	
		GAIN = 8	200	250	300	
		GAIN = 16	200	250	300	
Z _{CM}	Common Mode input impedance ^{11, 12}	GAIN = 1	1400	1800	2200	kΩ
		GAIN = 2	1000	1300	1600	
		GAIN = 4	700	950	1150	
		GAIN = 8	500	650	800	
		GAIN = 16	500	650	800	
R _{BIAS}	Bare bias resistance	—	110	144	180	kΩ
ΔV_{INTCM}	Common Mode input reference voltage ¹³	—	-12	—	+12	%
V _{BIAS}	Bias voltage	—	_	V _{RH_SD} /2	_	V
δV_{BIAS}	Bias voltage accuracy	—	-2.5	_	+2.5	%
CMRR	Common mode rejection ratio	_	20	_	—	dB
R _{Caaf}	Anti-aliasing filter	External series resistance			20	kΩ
		Filter capacitances	220		_	pF
f _{PASSBAND}	Pass band ⁹	—	0.01		0.333 * f _{ADCD_S}	kHz
δ _{RIPPLE}	Pass band ripple ¹⁴	0.333 * f _{ADCD_S}	1		1	%

Table 18. SDADC electrical specifications (continued)

Table continues on the next page...

Table 21. LFAST transmitter electrical characteristics¹ (continued)

Symphol	Parameter	Conditions		Unit		
Symbol	Parameter	Conditions	Min	Тур	Мах	
V _{OS}	Common mode voltage	—	1.08		1.32	V
IV _{OD} I	Differential output voltage swing (terminated) ^{2,3}	—	110	200	285	mV
t _{TR}	Rise/fall time (10% – 90% of swing) ² , ³	—	0.26		1.5	ns
CL	External lumped differential load capacitance ²	V _{DDE} = 4.5 V	—	—	12.0	pF
		V _{DDE} = 3.0 V	_		8.5	
I _{LVDS_TX}	Transmitter DC current consumption	Enabled		—	3.2	mA

1. The LFAST pad electrical characteristics are based on worst-case internal capacitance values shown in Figure 11.

 Valid for maximum data rate f_{DATA}. Value given is the capacitance on each terminal of the differential pair, as shown in Figure 11.

3. Valid for maximum external load CL.

Table 22. MSC/DSPI LVDS transmitter electrical characteristics¹

Symbol	Parameter	Conditions		Unit		
Symbol	Farameter	Conditions	Min	Тур	Мах	
f _{DATA}	Data rate	—	—	—	80	Mbps
V _{OS}	Common mode voltage	—	1.08	—	1.32	V
IV _{OD} I	Differential output voltage swing (terminated) ^{2,3}	—	150	200	400	mV
t _{TR}	Rise/Fall time (10%–90% of swing) ² , ³	—	0.8	—	4.0	ns
CL	External lumped differential load capacitance ²	V _{DDE} = 4.5 V	_	_	50	pF
		V _{DDE} = 3.0 V	—	—	39	
I _{LVDS_TX}	Transmitter DC current consumption	Enabled	_	_	4.0	mA

1. The MSC and DSPI LVDS pad electrical characteristics are based on the application circuit and typical worst-case internal capacitance values given in Figure 11.

 Valid for maximum data rate f_{DATA}. Value given is the capacitance on each terminal of the differential pair, as shown in Figure 11.

3. Valid for maximum external load C_L.

The following table describes the supply stability capacitances required on the device for proper operation.

Symbol	Parameter	Conditions	Value ¹			Unit
Symbol	Farameter	Conditions	Min	Тур	Max	Unit
C _{LV}	Minimum V _{DD} external bulk capacitance ^{2, 3}	LDO mode	4.7	_	—	μF
		SMPS mode	22	_	_	μF
C _{SMPSPWR}	Minimum SMPS driver supply capacitance	—	22	_	_	μF
C _{HV_PMC}	Minimum V _{DDPMC} external bulk capacitance ^{4, 5}	LDO mode	22	_	—	μF
		SMPS mode	22	_	—	μF
C _{HV_IO}	Minimum V _{DDEx} /V _{DDEHx} external capacitance ²	—	—	4.7 ⁶	_	μF
C _{HV_FLA}	Minimum V _{DD_FLA} external capacitance ⁷	—	1.0	2.0	_	μF
C _{HV_ADC_EQA/B}	Minimum V _{DDA_EQA/B} external capacitance ⁸	—	0.01	_	_	μF
C _{REFEQ}	Minimum REF _{BYPCA/B} external capacitance ⁹	—	0.01	_		μF
C _{HV_ADC_SD}	Minimum V _{DDA_SD} external capacitance ¹⁰	—	1.0	2.2		μF

Table 28. Device power supply integration

1. See Figure 14 for capacitor integration.

- 2. Recommended X7R or X5R ceramic low ESR capacitors, ±15% variation over process, voltage, temperature, and aging.
- 3. Each V_{DD} pin requires both a 47 nF and a 0.01 µF capacitor for high-frequency bypass and EMC requirements.
- 4. Recommended X7R or X5R ceramic low ESR capacitors, ±15% variation over process, voltage, temperature, and aging.
- 5. Each V_{DDPMC} pin requires both a 47 nF and a 0.01 µF capacitor for high-frequency bypass and EMC requirements.
- 6. The actual capacitance should be selected based on the I/O usage in order to keep the supply voltage within its operating range.
- 7. The recommended flash regulator composition capacitor is 2.0 μ F typical X7R or X5R, with -50% and +35% as min and max. This puts the min cap at 0.75 μ F.
- For noise filtering it is recommended to add a high frequency bypass capacitance of 0.1 μF between V_{DDA_EQA/B} and V_{SSA_EQ}.
- 9. For noise filtering it is recommended to add a high frequency bypass capacitance of 0.1 µF between REF_{BYPCA/B} and V_{SS}.
- 10. For noise filtering it is recommended to add a high frequency bypass capacitance of 0.1 μF between V_{DDA_SD} and V_{SSA_SD}.

3.11.3 Device voltage monitoring

The LVD/HVDs for the device and their levels are given in the following table. Voltage monitoring threshold definition is provided in the following figure.

3.12 Flash memory specifications

3.12.1 Flash memory program and erase specifications

NOTE

All timing, voltage, and current numbers specified in this section are defined for a single embedded flash memory within an SoC, and represent average currents for given supplies and operations.

Table 30 shows the estimated Program/Erase times.

Symbol	Symbol Characteristic ¹			tory nming ^{3, 4}	F	ield Upda	te	Unit
			Initial Max	Initial Max, Full Temp	Typical End of Life ⁵	Lifetime Max ⁶		
			20°C ≤T _A ≤30°C	-40°C ≤T _J ≤150°C	-40°C ≤T _J ≤150°C	≤ 1,000 cycles	≤ 250,000 cycles	
t _{dwpgm}	Doubleword (64 bits) program time	43	100	150	55	500		μs
t _{ppgm}	Page (256 bits) program time	73	200	300	108	500		μs
t _{qppgm}	Quad-page (1024 bits) program time	268	800	1,200	396	2,000		μs
t _{16kers}	16 KB Block erase time	168	290	320	250	1,000		ms
t _{16kpgm}	16 KB Block program time	34	45	50	40	1,000		ms
t _{32kers}	32 KB Block erase time	217	360	390	310	1,200		ms
t _{32kpgm}	32 KB Block program time	69	100	110	90	1,200		ms
t _{64kers}	64 KB Block erase time	315	490	590	420	1,600		ms
t _{64kpgm}	64 KB Block program time	138	180	210	170	1,600		ms
t _{256kers}	256 KB Block erase time	884	1,520	2,030	1,080	4,000	_	ms
t _{256kpgm}	256 KB Block program time	552	720	880	650	4,000	_	ms

 Table 30.
 Flash memory program and erase specifications

1. Program times are actual hardware programming times and do not include software overhead. Block program times assume quad-page programming.

2. Typical program and erase times represent the median performance and assume nominal supply values and operation at 25 °C. Typical program and erase times may be used for throughput calculations.

- 3. Conditions: \leq 150 cycles, nominal voltage.
- 4. Plant Programing times provide guidance for timeout limits used in the factory.
- 5. Typical End of Life program and erase times represent the median performance and assume nominal supply values. Typical End of Life program and erase values may be used for throughput calculations.
- 6. Conditions: $-40^{\circ}C \le T_J \le 150^{\circ}C$, full spec voltage.

Symbol	Characteristic	Min	Typical	Max	Units
t _{done}	Time from 0 to 1 transition on the MCR-EHV bit initiating a program/erase until the MCR-DONE bit is cleared.	—	_	5	ns
t _{dones}	program/erase until the MCR-DONE bit is set to a 1.		16 plus four system clock periods	20.8 plus four system clock periods	μs
t _{drov}	Time to recover once exiting low power mode.	16 plus seven system clock periods.		45 plus seven system clock periods	μs
t _{aistart}	Time from 0 to 1 transition of UT0-AIE initiating a Margin Read or Array Integrity until the UT0-AID bit is cleared. This time also applies to the resuming from a suspend or breakpoint by clearing AISUS or clearing NAIBP			5	ns
t _{aistop}	Time from 1 to 0 transition of UT0-AIE initiating an Array Integrity abort until the UT0-AID bit is set. This time also applies to the UT0-AISUS to UT0-AID setting in the event of a Array Integrity suspend request.	_		80 plus fifteen system clock periods	ns
t _{mrstop}	Time from 1 to 0 transition of UT0-AIE initiating a Margin Read abort until the UT0-AID bit is set. This time also applies to the UT0-AISUS to UT0-AID setting in the event of a Margin Read suspend request.	10.36 plus four system clock periods	-	20.42 plus four system clock periods	μs

Table 33. Flash memory AC timing specifications (continued)

3.12.6 Flash memory read wait-state and address-pipeline control settings

The following table describes the recommended settings of the Flash Memory Controller's PFCR1[RWSC] and PFCR1[APC] fields at various flash memory operating frequencies, based on specified intrinsic flash memory access times of the C55FMC array at 150°C.

 Table 34.
 Flash memory read wait-state and address-pipeline control combinations

Flash memory frequency	RWSC	APC	Flash memory read latency on mini-cache miss (# of f _{PLATF} clock periods)	Flash memory read latency on mini-cache hit (# of f _{PLATF} clock periods)
0 MHz < f _{PLATF} ≤ 33 MHz	0	0	3	1
$33 \text{ MHz} < f_{PLATF} \le 100 \text{ MHz}$	2	1	5	1

Table continues on the next page...

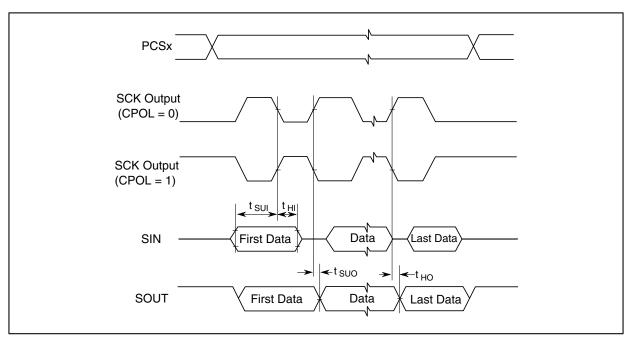


Figure 33. DSPI CMOS master mode – classic timing, CPHA = 1

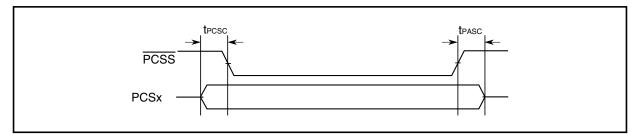


Figure 34. DSPI PCS strobe (PCSS) timing (master mode)

3.13.9.1.2 DSPI CMOS Master Mode – Modified Timing Table 44. DSPI CMOS master modified timing (full duplex and output only) – MTFE = 1, CPHA = 0 or 1¹

#	Symbol Characteristic		Condition ²	Condition ²		Value ³		
#	Symbol	Characteristic	Pad drive ⁴	Load (C _L)	Min	Мах	Unit	
1	t _{SCK}	SCK cycle time	PCR[SRC]=11b	25 pF	33.0	—	ns	
			PCR[SRC]=10b	50 pF	80.0	_		
			PCR[SRC]=01b	50 pF	200.0			
2	t _{CSC}	PCS to SCK delay	PCR[SRC]=11b	25 pF	$(N^5 \times t_{SYS}^{, 6}) - 16$		ns	
			PCR[SRC]=10b	50 pF	$(N^5 \times t_{SYS}^{, 6}) - 16$	_		
			PCR[SRC]=01b	50 pF	$(N^5 \times t_{SYS}^{, 6}) - 18$			
			PCS: PCR[SRC]=01b	50 pF	$(N^5 \times t_{SYS}^{, 6}) - 45$	_		
			SCK: PCR[SRC]=10b					

Table continues on the next page ...

3.13.9.1.4 DSPI Master Mode – Output Only

Table 46. DSPI LVDS master timing — output only — timed serial bus mode TSB = 1 or ITSB = 1, CPOL = 0 or 1, continuous SCK clock^{1, 2}

"	Cumbal	Characteriatia	Condit	ion ³	Va	lue ⁴	11	
#	Symbol	Characteristic	Pad drive ⁵	Load (C _L)	Min	Мах	- Unit	
1	t _{SCK}	SCK cycle time	LVDS	15 pF to 50 pF differential	25	—	ns	
2	t _{CSV}	PCS valid after SCK ⁶	PCR[SRC]=11b	25 pF		8	ns	
		(SCK with 50 pF differential load cap.)	PCR[SRC]=10b	50 pF		12	ns	
3	t _{CSH}	PCS hold after SCK ⁶	PCR[SRC]=11b	0 pF	-4.0	—	ns	
		(SCK with 50 pF differential load cap.)	PCR[SRC]=10b	0 pF	-4.0	_	ns	
4	t _{SDC}	SCK duty cycle (SCK with 50 pF differential load cap.)	LVDS	15 pF to 50 pF differential	1/2t _{SCK} – 2	1/2t _{SCK} + 2	ns	
			SOUT data valid time	(after SCK edge)				
5	t _{SUO}	SOUT data valid time from SCK ⁷	LVDS	15 pF to 50 pF differential		6	ns	
	SOUT data hold time (after SCK edge)							
6	t _{HO}	SOUT data hold time after SCK ⁷	LVDS	15 pF to 50 pF differential	-7.0	—	ns	

- 1. All DSPI timing specifications apply to pins when using LVDS pads for SCK and SOUT and CMOS pad for PCS with pad driver strength as defined. Timing may degrade for weaker output drivers.
- 2. TSB = 1 or ITSB = 1 automatically selects MTFE = 1 and CPHA = 1.
- 3. When a characteristic involves two signals, the pad drive and load conditions apply to each signal's pad, unless specified otherwise.
- 4. All timing values for output signals in this table are measured to 50% of the output voltage.
- 5. Pad drive is defined as the PCR[SRC] field setting in the SIU. Timing is guaranteed to same drive capabilities for all signals; mixing of pad drives may reduce operating speeds and may cause incorrect operation.
- 6. With TSB mode or Continuous SCK clock mode selected, PCS and SCK are driven by the same edge of DSPI_CLKn. This timing value is due to pad delays and signal propagation delays.
- 7. SOUT Data Valid and Data hold are independent of load capacitance if SCK and SOUT load capacitances are the same value.

Table 47. DSPI CMOS master timing – output only – timed serial bus modeTSB = 1 or ITSB = 1, CPOL = 0 or 1, continuous SCK clock $^{1, 2}$

#	Symbol	Characteristic	Condition	Condition ³		lue ⁴	Unit
*	Symbol	iboi Characterístic	Pad drive ⁵	Load (C _L)	Min	Max	
1	t _{SCK}	SCK cycle time	PCR[SRC]=11b	25 pF	33.0	_	ns
			PCR[SRC]=10b	50 pF	80.0	—	ns
			PCR[SRC]=01b	50 pF	200.0	—	ns
2	t _{CSV}	PCS valid after SCK ⁶	PCR[SRC]=11b	25 pF	7	_	ns
			PCR[SRC]=10b	50 pF	8	—	ns
			PCR[SRC]=01b	50 pF	18	—	ns
			PCS: PCR[SRC]=01b	50 pF	45	—	ns
			SCK: PCR[SRC]=10b				

Table continues on the next page ...

Electrical characteristics

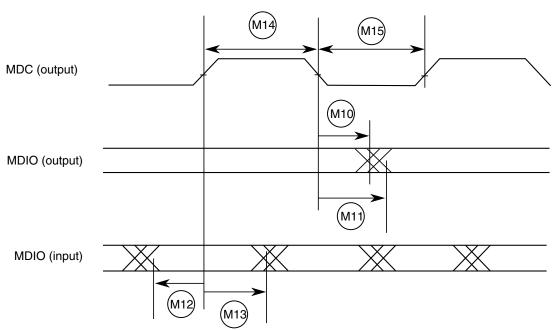


Figure 44. MII serial management channel timing diagram

3.13.10.5 RMII receive signal timing (RXD[1:0], CRS_DV)

The receiver functions correctly up to a REF_CLK maximum frequency of 50 MHz +1%. There is no minimum frequency requirement. The system clock frequency must be at least equal to or greater than the RX_CLK frequency, which is half that of the REF_CLK frequency.

Table 52.	RMII	receive	signal	timing ¹
-----------	------	---------	--------	---------------------

Symbol	Characteristic	Va	lue	Unit
Symbol		Min	Мах	Onic
R1	RXD[1:0], CRS_DV to REF_CLK setup	4	—	ns
R2	REF_CLK to RXD[1:0], CRS_DV hold	2	_	ns
R3	REF_CLK pulse width high	35%	65%	REF_CLK period
R4	REF_CLK pulse width low	35%	65%	REF_CLK period

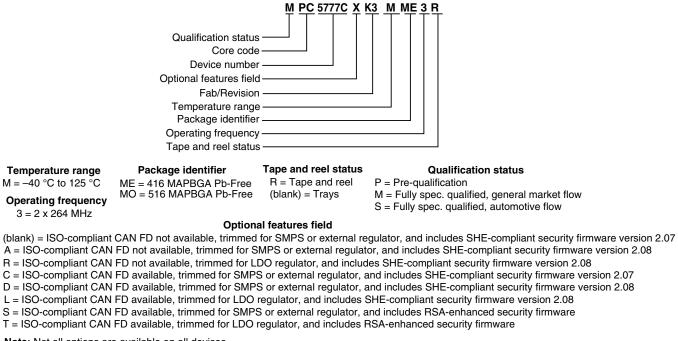
1. All timing specifications valid to the pad input levels defined in I/O pad specifications.

1 mm of wire extending from the junction. Place the thermocouple wire flat against the package case to avoid measurement errors caused by the cooling effects of the thermocouple wire.

When board temperature is perfectly defined below the device, it is possible to use the thermal characterization parameter (Ψ_{JPB}) to determine the junction temperature by measuring the temperature at the bottom center of the package case (exposed pad) using the following equation:

$$T_J = T_B + \left(\Psi_{\rm JPB} x P_D \right)$$

where:


 T_T = thermocouple temperature on bottom of the package (°C)

 Ψ_{JT} = thermal characterization parameter (°C/W)

 P_D = power dissipation in the package (W)

5 Ordering information

Figure 47 and Table 56 describe orderable part numbers for the MPC5777C.

Note: Not all options are available on all devices.

Figure 47. MPC5777C Orderable part number description

Document revision history

Part number ¹	Pockage description	Speed (MHz) ² -	Operating temperature ³	
	Package description		Min (T _L)	Max (T _H)
SPC5777CCK3MME3	MPC5777C 416 package	264	–40 °C	125 °C
	Lead-free (Pb-free)			
SPC5777CK3MME3	MPC5777C 416 package	264	–40 °C	125 °C
	Lead-free (Pb-free)			
SPC5777CCK3MMO3	MPC5777C 516 package	264	–40 °C	125 °C
	Lead-free (Pb-free)			
SPC5777CK3MMO3	MPC5777C 516 package	264	–40 °C	125 °C
	Lead-free (Pb-free)			

 Table 56.
 Example orderable part numbers

1. All packaged devices are PPC5777C, rather than MPC5777C or SPC5777C, until product qualifications are complete. The unpackaged device prefix is PCC, rather than SCC, until product qualification is complete.

Not all configurations are available in the PPC parts.

- 2. For the operating mode frequency of various blocks on the device, see Table 3.
- The lowest ambient operating temperature is referenced by T_L; the highest ambient operating temperature is referenced by T_H.

6 Document revision history

The following table summarizes revisions to this document since the previous release.

Table 57. Revision history

Revision	Date	Description of changes
11	04/2017	 In Figure 47 of Ordering information, added codes and firmware version information in definition of "Optional features field" At end of line for (<i>blank</i>), added "version 2.07" Added line for A At end of line for R, added "version 2.08" At end of line for C, added "version 2.07" Added line for D At end of line for L, added "version 2.08"