

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	53
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj128ga106-e-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION. QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2010, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 978-1-60932-670-8

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEEL0Q® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

|--|

Features	PIC24FJ64GA110	PIC24FJ128GA110	PIC24FJ192GA110	PIC24FJ256GA110
Operating Frequency		DC – 3	32 MHz	
Program Memory (bytes)	64K	128K	192K	256K
Program Memory (instructions)	22,016	44,032	67,072	87,552
Data Memory (bytes)		. 16,	384	·
Interrupt Sources (soft vectors/NMI traps)		66 (62/4)	
I/O Ports		Ports A, B,	C, D, E, F, G	
Total I/O Pins		8	35	
Remappable Pins		46 (32 I/O, 1	14 input only)	
Timers:		5	(1)	
32 Bit (from paired 16 bit timers)		0	2	
Input Capture Channels		9	(1)	
Output Compare/PWM		9	(1)	
Channels		Ū		
Input Change Notification Interrupt		8	35	
Serial Communications:				
UART		4	(1)	
SPI (3-wire/4-wire)		3	(1)	
I ² C™		:	3	
Parallel Communications (PMP/PSP)		Y	es	
JTAG Boundary Scan		Y	/es	
10-Bit Analog-to-Digital Module (input channels)		1	16	
Analog Comparators			3	
CTMU Interface		Y	es	
Resets (and delays)	POR, B REPEAT Ins	OR, RESET Instruction struction, Hardware Tra (PWRT, OS	n, MCLR, WDT; Illegal aps, Configuration Wc T, PLL Lock)	Opcode, ord Mismatch
Instruction Set	76 Bas	e Instructions, Multiple	e Addressing Mode Va	ariations
Packages		100-Pi	n TQFP	

Note 1: Peripherals are accessible through remappable pins.

REGISTER 3-2: CORCON: CPU CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	R/C-0	R/W-0	U-0	U-0

00	00	00	00	1000	10110	00	00
—	_		_	IPL3 ⁽¹⁾	PSV		_
bit 7							bit 0

Legend:	C = Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-4 **Unimplemented:** Read as '0'

- bit 3IPL3: CPU Interrupt Priority Level Status bit⁽¹⁾1 = CPU interrupt priority level is greater than 70 = CPU interrupt priority level is 7 or lessbit 2PSV: Program Space Visibility in Data Space Enable bit1 = Program space visible in data space0 = Program space not visible in data spacebit 1-0Unimplemented: Read as '0'
- **Note 1:** User interrupts are disabled when IPL3 = 1.

TABLE 4-10: UART REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1MODE	0220	UARTEN	_	USIDL	IREN	RTSMD		UEN1	UEN0	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U1STA	0222	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U1TXREG	0224	—	_	—	_	—	_	—				Tra	nsmit Regist	ter				XXXX
U1RXREG	0226	—	_	—	_	—	_	—				Re	ceive Regist	er				0000
U1BRG	0228							Bau	d Rate Ger	erator Presc	aler							0000
U2MODE	0230	UARTEN	—	USIDL	IREN	RTSMD	—	UEN1	UEN0	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U2STA	0232	UTXISEL1	UTXINV	UTXISEL0	—	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U2TXREG	0234	—	_	_	—	_	—	_				Tra	insmit Regist	ter				xxxx
U2RXREG	0236	—	—	—	—	—	—	—	- Receive Register 00									
U2BRG	0238							Bau	d Rate Ger	erator Presc	aler							0000
U3MODE	0250	UARTEN	_	USIDL	IREN	RTSMD	—	UEN1	UEN0	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U3STA	0252	UTXISEL1	UTXINV	UTXISEL0	—	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U3TXREG	0254	—	_	—	—	—	—	_				Tra	nsmit Regist	ter				XXXX
U3RXREG	0256	—	_	—	—	—	—	_				Re	ceive Regist	er				0000
U3BRG	0258							Bau	d Rate Ger	erator Presc	aler							0000
U4MODE	02B0	UARTEN	_	USIDL	IREN	RTSMD	—	UEN1	UEN0	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U4STA	02B2	UTXISEL1	UTXINV	UTXISEL0	—	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U4TXREG	02B4	—	_	—	_	—	_	—				Tra	nsmit Regist	ter				XXXX
U4RXREG	02B6	—	_	—	_	—	—					Re	ceive Regist	er				0000
U4BRG	02B8							Bau	d Rate Ger	erator Presc	aler							0000
Lanandi		malamaatad	read as 'o'	Depatycelus	a ara ahau	n in hovoda	aimal											

ed, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-11: SPI REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI1STAT	0240	SPIEN	_	SPISIDL	—	—	SPIBEC2	SPIBEC1	SPIBEC0	SRMPT	SPIROV	SRXMPT	SISEL2	SISEL1	SISEL0	SPITBF	SPIRBF	0000
SPI1CON1	0242	—	_	—	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN	SPRE2	SPRE1	SPRE0	PPRE1	PPRE0	0000
SPI1CON2	0244	FRMEN	SPIFSD	SPIFPOL	_	—	—	—	—	_	—	—	—	—	—	SPIFE	SPIBEN	0000
SPI1BUF	0248							Tra	ansmit and I	Receive Bu	ffer							0000
SPI2STAT	0260	SPIEN	—	SPISIDL	—	—	SPIBEC2	SPIBEC1	SPIBEC0	SRMPT	SPIROV	SRXMPT	SISEL2	SISEL1	SISEL0	SPITBF	SPIRBF	0000
SPI2CON1	0262	—	—	—	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN	SPRE2	SPRE1	SPRE0	PPRE1	PPRE0	0000
SPI2CON2	0264	FRMEN	SPIFSD	SPIFPOL	—	—	_	_	—	_	—	—	—	—	_	SPIFE	SPIBEN	0000
SPI2BUF	0268							Tra	ansmit and I	Receive Bu	ffer							0000
SPI3STAT	0280	SPIEN	—	SPISIDL	—	—	SPIBEC2	SPIBEC1	SPIBEC0	SRMPT	SPIROV	SRXMPT	SISEL2	SISEL1	SISEL0	SPITBF	SPIRBF	0000
SPI3CON1	0282	—	—	—	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN	SPRE2	SPRE1	SPRE0	PPRE1	PPRE0	0000
SPI3CON2	0284	FRMEN	SPIFSD	SPIFPOL	—	—	—	—	—	—	—	—	—	—	—	SPIFE	SPIBEN	0000
SPI3BUF	0288							Tra	ansmit and I	Receive Bu	ffer							0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-12: PORTA REGISTER MAP⁽¹⁾

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7 ⁽²⁾	Bit 6 ⁽²⁾	Bit 5 ⁽²⁾	Bit 4 ⁽²⁾	Bit 3 ⁽²⁾	Bit2 ⁽²⁾	Bit 1 ⁽²⁾	Bit 0 ⁽²⁾	All Resets
TRISA	02C0	TRISA15	TRISA14	_	_	_	TRISA10	TRISA9	_	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	36FF
PORTA	02C2	RA15	RA14	—	_	_	RA10	RA9	_	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxx
LATA	02C4	LATA15	LATA14	—	—	—	LATA10	LATA9	—	LATA7	LATA6	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	xxxx
ODCA	02C6	ODA15	ODA14	_	_	_	ODA10	ODA9	_	ODA7	ODA6	ODA5	ODA4	ODA3	ODA2	ODA1	ODA0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Reset values shown are for 100-pin devices.

Note 1: PORTA and all associated bits are unimplemented on 64-pin devices and read as '0'. Bits are available on 80-pin and 100-pin devices only, unless otherwise noted.

2: Bits are implemented on 100-pin devices only; otherwise, read as '0'.

TABLE 4-13: PORTB REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	02C8	TRISB15	TRISB14	TRISB13	TRISB12	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	FFFF
PORTB	02CA	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx
LATB	02CC	LATB15	LATB14	LATB13	LATB12	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	xxxx
ODCB	02CE	ODB15	ODB14	ODB13	ODB12	ODB11	ODB10	ODB9	ODB8	ODB7	ODB6	ODB5	ODB4	ODB3	ODB2	ODB1	ODB0	0000

Legend: Reset values are shown in hexadecimal.

TABLE 4-14: PORTC REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4 ⁽¹⁾	Bit 3 ⁽²⁾	Bit 2 ⁽¹⁾	Bit 1 ⁽²⁾	Bit 0	All Resets
TRISC	02D0	TRISC15	TRISC14	TRISC13	TRISC12	—	—	_	—	_	—	—	TRISC4	TRISC3	TRISC2	TRISC1	_	F01E
PORTC	02D2	RC15 ^(3,4)	RC14	RC13	RC12 ⁽³⁾	—	—	—	—	_	—	—	RC4	RC3	RC2	RC1	_	xxxx
LATC	02D4	LATC15	LATC14	LATC13	LATC12	—	—	—	—	—	—	—	LATC4	LATC3	LATC2	LATC1	_	xxxx
ODCC	02D6	ODC15	ODC14	ODC13	ODC12	—	—	_	—	—	—	—	ODC4	ODC3	ODC2	ODC1	—	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Reset values shown are for 100-pin devices.

Note 1: Bits are unimplemented in 64-pin and 80-pin devices; read as '0'.

2: Bits are unimplemented in 64-pin devices; read as '0'.

3: RC12 and RC15 are only available when the Primary Oscillator is disabled or when EC mode is selected (POSCMD<1:0> Configuration bits = 11 or 00); otherwise, read as '0'

4: RC15 is only available when POSCMD<1:0> Configuration bits = 11 or 00 and the OSCIOFN Configuration bit = 1.

TABLE 4-15: PORTD REGISTER MAP

File Name	Addr	Bit 15 ⁽¹⁾	Bit 14 ⁽¹⁾	Bit 13 ⁽¹⁾	Bit 12 ⁽¹⁾	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISD	02D8	TRISD15	TRISD14	TRISD13	TRISD12	TRISD11	TRISD10	TRISD9	TRISD8	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	FFFF
PORTD	02DA	RD15	RD14	RD13	RD12	RD11	RD10	RD9	RD8	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx
LATD	02DC	LATD15	LATD14	LATD13	LATD12	LATD11	LATD10	LATD9	LATD8	LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0	xxxx
ODCD	02DE	ODD15	ODD14	ODD13	ODD12	ODD11	ODD10	ODD9	ODD8	ODD7	ODD6	ODD5	ODD4	ODD3	ODD2	ODD1	ODD0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Reset values shown are for 100-pin devices.

Note 1: Bits are unimplemented on 64-pin devices; read as '0'.

NOTES:

	Vector		AIVT	Interrupt Bit Locations		
Interrupt Source	Number	IVI Address	Address Address		Enable	Priority
Timer1	3	00001Ah	00011Ah	IFS0<3>	IEC0<3>	IPC0<14:12>
Timer2	7	000022h	000122h	IFS0<7>	IEC0<7>	IPC1<14:12>
Timer3	8	000024h	000124h	IFS0<8>	IEC0<8>	IPC2<2:0>
Timer4	27	00004Ah	00014Ah	IFS1<11>	IEC1<11>	IPC6<14:12>
Timer5	28	00004Ch	00014Ch	IFS1<12>	IEC1<12>	IPC7<2:0>
UART1 Error	65	000096h	000196h	IFS4<1>	IEC4<1>	IPC16<6:4>
UART1 Receiver	11	00002Ah	00012Ah	IFS0<11>	IEC0<11>	IPC2<14:12>
UART1 Transmitter	12	00002Ch	00012Ch	IFS0<12>	IEC0<12>	IPC3<2:0>
UART2 Error	66	000098h	000198h	IFS4<2>	IEC4<2>	IPC16<10:8>
UART2 Receiver	30	000050h	000150h	IFS1<14>	IEC1<14>	IPC7<10:8>
UART2 Transmitter	31	000052h	000152h	IFS1<15>	IEC1<15>	IPC7<14:12>
UART3 Error	81	0000B6h	0001B6h	IFS5<1>	IEC5<1>	IPC20<6:4>
UART3 Receiver	82	0000B8h	0001B8h	IFS5<2>	IEC5<2>	IPC20<10:8>
UART3 Transmitter	83	0000BAh	0001BAh	IFS5<3>	IEC5<3>	IPC20<14:12>
UART4 Error	87	0000C2h	0001C2h	IFS5<7>	IEC5<7>	IPC21<14:12>
UART4 Receiver	88	0000C4h	0001C4h	IFS5<8>	IEC5<8>	IPC22<2:0>
UART4 Transmitter	89	0000C6h	0001C6h	IFS5<9>	IEC5<9>	IPC22<6:4>

TABLE 7-2: IMPLEMENTED INTERRUPT VECTORS (CONTINUED)

7.3 Interrupt Control and Status Registers

The PIC24FJ256GA110 family of devices implements a total of 37 registers for the interrupt controller:

- INTCON1
- INTCON2
- IFS0 through IFS5
- IEC0 through IEC5
- IPC0 through IPC23 (except IPC14 and IPC17)
- INTTREG

Global interrupt control functions are controlled from INTCON1 and INTCON2. INTCON1 contains the Interrupt Nesting Disable (NSTDIS) bit, as well as the control and status flags for the processor trap sources. The INTCON2 register controls the external interrupt request signal behavior and the use of the Alternate Interrupt Vector Table.

The IFSx registers maintain all of the interrupt request flags. Each source of interrupt has a status bit which is set by the respective peripherals, or an external signal, and is cleared via software.

The IECx registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals.

The IPCx registers are used to set the interrupt priority level for each source of interrupt. Each user interrupt source can be assigned to one of eight priority levels. The INTTREG register contains the associated interrupt vector number and the new CPU interrupt priority level, which are latched into the Vector Number (VECNUM<6:0>) and the Interrupt Level (ILR<3:0>) bit fields in the INTTREG register. The new interrupt priority level is the priority of the pending interrupt.

The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the order of their vector numbers, as shown in Table 7-2. For example, the INT0 (External Interrupt 0) is shown as having a vector number and a natural order priority of 0. Thus, the INT0IF status bit is found in IFS0<0>, the INT0IE enable bit in IEC0<0> and the INT0IP<2:0> priority bits in the first position of IPC0 (IPC0<2:0>).

Although they are not specifically part of the interrupt control hardware, two of the CPU control registers contain bits that control interrupt functionality. The ALU STATUS Register (SR) contains the IPL<2:0> bits (SR<7:5>); these indicate the current CPU interrupt priority level. The user may change the current CPU priority level by writing to the IPL bits.

The CORCON register contains the IPL3 bit, which together with IPL<2:0>, indicates the current CPU priority level. IPL3 is a read-only bit so that trap events cannot be masked by the user software.

All interrupt registers are described in Register 7-1 through Register 7-38, on the following pages.

R/W-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0
ALTIVT	DISI	—	_	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	oit	U = Unimplem	ented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15	ALTIVT: Enat	ole Alternate Int	errupt Vector 7	lable bit			
	1 = Use Alter	nate Interrupt V	ector Table				
		dard (default) ve	ector table				
DIT 14	DISI: DISI In	istruction Status	S DIT				
	0 = DISI inst	ruction is active	; ctive				
bit 13-5	Unimplemen	ted: Read as '()'				
bit 4	INT4EP: Exte	ernal Interrupt 4	Edge Detect F	Polarity Select b	bit		
	1 = Interrupt of	on negative edg	le	2			
	0 = Interrupt o	on positive edge	e				
bit 3	INT3EP: Exte	ernal Interrupt 3	Edge Detect F	Polarity Select b	bit		
	1 = Interrupt o	on negative edg	le				
h # 0		on positive edge			:1		
DIT 2	INIZEP: EXte	ernal Interrupt 2	Edge Detect F	Polarity Select b	DIT		
	1 = Interrupt 0	on positive edg)e 9				
bit 1	INT1EP: Exte	ernal Interrupt 1	Edge Detect F	Polarity Select b	bit		
	1 = Interrupt of	on negative edg	le	5			
	0 = Interrupt of	on positive edge	9				
bit 0	INTOEP: Exte	ernal Interrupt 0	Edge Detect F	Polarity Select b	bit		
	1 = Interrupt of	on negative edg	le				
	0 = interrupt	on positive edge	9				

REGISTER 7-4: INTCON2: INTERRUPT CONTROL REGISTER 2

REGISTER	7-6: IFS1:	INTERRUPT	FLAG STAT	US REGISTE	R 1					
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0			
U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	_			
bit 15							bit 8			
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
IC8IF	IC7IF	_	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF			
bit 7							bit 0			
Legend:										
R = Readable	e bit	W = Writable b	bit	U = Unimplem	nented bit. read	d as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own			
bit 15	U2TXIF: UAR 1 = Interrupt r 0 = Interrupt r	T2 Transmitter equest has occ equest has not	Interrupt Flag urred occurred	Status bit						
bit 14	U2RXIF: UAF 1 = Interrupt r	RT2 Receiver In equest has occ	terrupt Flag St urred	atus bit						
bit 13	INT2IF: Exter 1 = Interrupt r 0 = Interrupt r	nal Interrupt 2 F equest has occ equest has not	Flag Status bit urred occurred							
bit 12	T5IF: Timer5 1 = Interrupt r 0 = Interrupt r	T5IF: Timer5 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred								
bit 11	T4IF: Timer4 1 = Interrupt r 0 = Interrupt r	T4IF: Timer4 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred								
bit 10	OC4IF: Output 1 = Interrupt r 0 = Interrupt r	ut Compare Cha equest has occ equest has not	annel 4 Interru urred occurred	pt Flag Status b	pit					
bit 9	OC3IF: Output 1 = Interrupt r 0 = Interrupt r	ut Compare Cha equest has occ equest has not	annel 3 Interru urred occurred	pt Flag Status b	pit					
bit 8	Unimplemen	ted: Read as '0	,							
bit 7	IC8IF: Input C 1 = Interrupt r 0 = Interrupt r	Capture Channe request has occ request has not	l 8 Interrupt Fl urred occurred	lag Status bit						
bit 6	IC7IF: Input C 1 = Interrupt r 0 = Interrupt r	Capture Channe request has occ request has not	I 7 Interrupt Fl urred occurred	lag Status bit						
bit 5	Unimplemen	ted: Read as '0	,							
bit 4	INT1IF: Exter 1 = Interrupt r 0 = Interrupt r	nal Interrupt 1 F equest has occ equest has not	Flag Status bit urred occurred							
bit 3	CNIF: Input C 1 = Interrupt r 0 = Interrupt r	hange Notificat equest has occ equest has not	ion Interrupt F urred occurred	lag Status bit						
bit 2	CMIF : Compa 1 = Interrupt r	arator Interrupt I equest has occ	Flag Status bit urred occurred							
bit 1	MI2C1IF: Mas 1 = Interrupt r 0 = Interrupt r	ster I2C1 Event equest has occ equest has not	Interrupt Flag urred occurred	Status bit						
bit 0	SI2C1IF: Slav 1 = Interrupt r 0 = Interrupt r	ve I2C1 Event Ir request has occ request has not	nterrupt Flag S urred occurred	Status bit						

REGISTER 10-7: RPINR8: PERIPHERAL PIN SELECT INPUT REGISTER 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	IC4R5	IC4R4	IC4R3	IC4R2	IC4R1	IC4R0
bit 15							bit 8
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	IC3R5	IC3R4	IC3R3	IC3R2	IC3R1	IC3R0
bit 7							bit 0
Legend:							

Logena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	IC4R<5:0>: Assign Input Capture 4 (IC4) to Corresponding RPn or RPIn Pin bits
bit 7-6	Unimplemented: Read as '0'
bit 5-0	IC3R<5:0>: Assign Input Capture 3 (IC3) to Corresponding RPn or RPIn Pin bits

REGISTER 10-8: RPINR9: PERIPHERAL PIN SELECT INPUT REGISTER 9

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	—	IC6R5	IC6R4	IC6R3	IC6R2	IC6R1	IC6R0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	IC5R5	IC5R4	IC5R3	IC5R2	IC5R1	IC5R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 IC6R<5:0>: Assign Input Capture 6 (IC6) to Corresponding RPn or RPIn Pin bits

bit 7-6 Unimplemented: Read as '0'

bit 5-0 IC5R<5:0>: Assign Input Capture 5 (IC5) to Corresponding RPn or RPIn Pin bits

REGISTER	11-1: T1CC	ON: TIMER1 C	ONTROL RI	EGISTER ⁽¹⁾						
R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0			
TON	—	TSIDL	—	—	—	—	—			
bit 15							bit 8			
11.0	D/M/ 0	D/M/ 0	D/M/ 0	11.0			11.0			
0-0				0-0			0-0			
 bit 7	IGAIL	TURFUT	TORF 30	_	TOTING	103	 bit 0			
Legend:										
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'				
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unkno						own				
bit 15	TON: Timer1	On bit								
	1 = Starts 16	6-bit Timer1								
hit 14		ted: Read as 'i	ı'							
bit 13	TSIDI : Stop	in Idle Mode bit	5							
	1 = Discontin	ue module ope	ration when de	evice enters Idle	e mode					
	0 = Continue	module operati	on in Idle mod	e						
bit 12-7	Unimplemer	Unimplemented: Read as '0'								
bit 6	TGATE: Time	er1 Gated Time	Accumulation	Enable bit						
	<u>When TCS =</u> This bit is ign	<u>1:</u> ored.								
	<u>When TCS =</u> 1 = Gated tir	<u>0:</u> ne accumulatio	n enabled							
	0 = Gated tir	ne accumulatio	n disabled							
bit 5-4	TCKPS<1:0>	: Timer1 Input	Clock Prescale	e Select bits						
	11 = 1:256									
	10 = 1:64									
	01 = 1.8 00 = 1:1									
bit 3	Unimplemer	ted: Read as ')'							
bit 2	TSYNC: Time	er1 External Clo	ock Input Sync	hronization Sel	ect bit					
	<u>When TCS =</u>	1:								
	1 = Synchro 0 = Do not s	onize external cl synchronize ext	ock input ernal clock inp	ut						
	<u>When TCS =</u> This bit is ign	<u>o:</u> ored.								
bit 1	TCS: Timer1	Clock Source S	Select bit							
	1 = Externa 0 = Internal	l clock from T10 clock (Fosc/2)	CK pin (on the	rising edge)						
bit 0	Unimplemer	nted: Read as '	כי							
Note 1: C	Changing the val	ue of TxCON w	hile the timer i	s runnina (TON	I = 1) causes th	e timer prescal	e counter to			

Note 1: Changing the value of TxCON while the timer is running (TON = 1) causes the timer prescale counter to reset and is not recommended.

REGISTER 13-1: ICxCON1: INPUT CAPTURE x CONTROL REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0		
_	_	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	_	_		
bit 15							bit 8		
U-0	R/W-0	R/W-0	R-0, HCS	R-0, HCS	R/W-0	R/W-0	R/W-0		
_	ICI1	ICI0	ICOV	ICBNE	ICM2 ⁽¹⁾	ICM1 ⁽¹⁾	ICM0 ⁽¹⁾		
bit 7							bit 0		
-									
Legend:		HCS = Hardv	vare Clearable/	Settable bit					
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown		
bit 15-14	Unimplemen	tod: Road as '	٥'						
bit 13		t Canture y Mo	∪ dule Ston in Idl	e Control hit					
bit 10	1 = Input capt	ture module ha	lts in CPU Idle	mode					
	0 = Input capt	ture module co	ntinues to oper	ate in CPU Idle	e mode				
bit 12-10	ICTSEL<2:0>	: Input Captur	e Timer Select	bits					
	111 = System clock (Fosc/2)								
	110 = Reserv	ved							
	101 = Reserv 100 = Timer1	/ed							
	011 = Timer5	5							
	010 = Timer4	Ļ							
	001 = Timer2								
hit 0.7) tod: Dood oo '	0'						
bit 6-5		ect Number of	∪ Captures per li	aterrunt hite					
bit 0-5	11 = Interrupt	on every four	captures per li	t					
	10 = Interrupt	on every third	capture event						
	01 = Interrupt	on every seco	ond capture eve	ent					
	00 = Interrupt	on every capt	ure event						
bit 4	ICOV: Input C	Capture x Over	flow Status Flag	g bit (read-only)				
	1 = Input capt	ture overflow o capture overflo	ccurred w.occurred						
bit 3	ICBNE: Input	Capture x Buf	fer Empty Statu	is bit (read-only	()				
	1 = Input capt	ture buffer is no	ot empty, at lea	st one more ca	pture value car	n be read			
	0 = Input capt	ture buffer is e	mpty						
bit 2-0	ICM<2:0>: Inj	put Capture M	ode Select bits ⁽	1)					
	111 = Interru	pt mode: Input	capture functio	ns as interrupt	pin only when d	levice is in Slee	p or Idle mode		
	(rising	edge detect of	nly, all other co	ntrol bits are no	ot applicable)				
	101 = Presca	aler Capture m	ode: Capture o	n every 16th ris	sing edge				
	100 = Presca	aler Capture m	ode: Capture o	n every 4th risi	ng edge				
	011 = Simple	e Capture mod	e: Capture on e	every rising edg	je				
	010 = Simple	e Capture mod	e: Capture on e	every failing ede	ge Ige (rising and	falling) ICI-1	0> hits do not		
	contro	l interrupt gene	eration for this r	node	ige (naing anu	anny), 101×1.			
	000 = Input c	apture module	e turned off						

Note 1: The ICx input must also be configured to an available RPn pin. For more information, see Section 10.4 "Peripheral Pin Select".

REGISTER 16-3: I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER

bit 15							bit 8
—	_	—	—	—	—	AMSK9	AMSK8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| AMSK7 | AMSK6 | AMSK5 | AMSK4 | AMSK3 | AMSK2 | AMSK1 | AMSK0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-10 Unimplemented: Read as '0'

bit 9-0

AMSK<9:0>: Mask for Address Bit x Select bits

1 = Enable masking for bit x of incoming message address; bit match not required in this position
 0 = Disable masking for bit x; bit match required in this position

DS39905E-page 192

17.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

Note:	This data sheet summarizes the features of
	this group of PIC24F devices. It is not
	intended to be a comprehensive reference
	source. For more information, refer to the
	"PIC24F Family Reference Manual",
	Section 21. "UART" (DS39708).

The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in the PIC24F device family. The UART is a full-duplex asynchronous system that can communicate with peripheral devices, such as personal computers, LIN, RS-232 and RS-485 interfaces. The module also supports a hardware flow control option with the UxCTS and UxRTS pins, and also includes an IrDA[®] encoder and decoder.

The primary features of the UART module are:

- Full-Duplex, 8 or 9-Bit Data Transmission through the UxTX and UxRX Pins
- Even, Odd or No Parity Options (for 8-bit data)
- · One or Two Stop bits
- Hardware Flow Control Option with UxCTS and UxRTS Pins

- Fully Integrated Baud Rate Generator with 16-Bit Prescaler
- Baud Rates Ranging from 1 Mbps to 15 bps at 16 MIPS
- 4-Deep, First-In-First-Out (FIFO) Transmit Data Buffer
- 4-Deep FIFO Receive Data Buffer
- Parity, Framing and Buffer Overrun Error Detection
- Support for 9-Bit mode with Address Detect (9th bit = 1)
- · Transmit and Receive Interrupts
- Loopback mode for Diagnostic Support
- · Support for Sync and Break Characters
- Supports Automatic Baud Rate Detection
- · IrDA Encoder and Decoder Logic
- 16x Baud Clock Output for IrDA Support

A simplified block diagram of the UART is shown in Figure 17-1. The UART module consists of these key important hardware elements:

- · Baud Rate Generator
- Asynchronous Transmitter
- Asynchronous Receiver

REGISTER 18-3: PMADDR: PARALLEL MASTER PORT ADDRESS REGISTER	REGISTER 18-3:	PMADDR: PARALLEL MASTER PORT ADDRESS REGISTER
--	----------------	---

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CS2	CS1	ADDR13	ADDR12	ADDR11	ADDR10	ADDR9	ADDR8
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| ADDR7 | ADDR6 | ADDR5 | ADDR4 | ADDR3 | ADDR2 | ADDR1 | ADDR0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	CS2: Chip Select 2 bit
	1 = Chip Select 2 is active
	0 = Chip Select 2 is inactive
bit 14	CS1: Chip Select 1 bit
	1 = Chip Select 1 is active
	0 = Chip Select 1 is inactive
bit 13-0	ADDR<13:0>: Parallel Port Destination Address bits

REGISTER 18-4: PMAEN: PARALLEL MASTER PORT ENABLE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PTEN15	PTEN14	PTEN13	PTEN12	PTEN11	PTEN10	PTEN9	PTEN8
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| PTEN7 | PTEN6 | PTEN5 | PTEN4 | PTEN3 | PTEN2 | PTEN1 | PTEN0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	PTEN<15:14>: PMCSx Strobe Enable bits
	 1 = PMA15 and PMA14 function as either PMA<15:14> or PMCS2 and PMCS1 0 = PMA15 and PMA14 function as port I/O
bit 13-2	PTEN<13:2>: PMP Address Port Enable bits
	1 = PMA<13:2> function as PMP address lines0 = PMA<13:2> function as port I/O
bit 1-0	PTEN<1:0>: PMALH/PMALL Strobe Enable bits
	 1 = PMA1 and PMA0 function as either PMA<1:0> or PMALH and PMALL 0 = PMA1 and PMA0 pads functions as port I/O

TABLE 28-13: EXTERNAL CLOCK TIMING REQUIREMENTS

AC CH	ARACI	ERISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$				
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions
OS10	S10FoscExternal CLKI Frequency (external clocks allowed only in EC mode)DC—32MM4—8M		MHz MHz	EC ECPLL			
		Oscillator Frequency	3 4 10 31	 	10 8 32 33	MHz MHz MHz kHz	XT XTPLL HS SOSC
OS20	Tosc	Tosc = 1/Fosc	—			—	See Parameter OS10 for Fosc value
OS25	Тсү	Instruction Cycle Time ⁽²⁾	62.5		DC	ns	
OS30	TosL, TosH	External Clock in (OSCI) High or Low Time	0.45 x Tosc	—	—	ns	EC
OS31	TosR, TosF	External Clock in (OSCI) Rise or Fall Time	—	—	20	ns	EC
OS40	TckR	CLKO Rise Time ⁽³⁾		6	10	ns	
OS41	TckF	CLKO Fall Time ⁽³⁾		6	10	ns	

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

- 2: Instruction cycle period (Tcr) equals two times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "Min." values with an external clock applied to the OSCI/CLKI pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.
- **3:** Measurements are taken in EC mode. The CLKO signal is measured on the OSCO pin. CLKO is low for the Q1-Q2 period (1/2 TCY) and high for the Q3-Q4 period (1/2 TCY).

FIGURE 28-12: SPIX MODULE MASTER MODE TIMING CHARACTERISTICS (CKE = 1)

TABLE 28-25: SPIX MODULE MASTER MODE TIMING REQUIREMENTS (CKE = 1)

АС СНА	RACTERIST	īCS	Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial				
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
SP10	TscL	SCKx Output Low Time ⁽²⁾	Tcy/2	—	—	ns	
SP11	TscH	SCKx Output High Time ⁽²⁾	TCY/2	_		ns	
SP20	TscF	SCKx Output Fall Time ⁽³⁾	-	10	25	ns	
SP21	TscR	SCKx Output Rise Time ⁽³⁾	-	10	25	ns	
SP30	TdoF	SDOx Data Output Fall Time ⁽³⁾		10	25	ns	
SP31	TdoR	SDOx Data Output Rise Time ⁽³⁾		10	25	ns	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge		_	30	ns	
SP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	—	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	20	—	—	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	20			ns	

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: The minimum clock period for SCKx is 100 ns. Therefore, the clock generated in Master mode must not violate this specification.

3: Assumes 50 pF load on all SPIx pins.

29.0 PACKAGING INFORMATION

29.1 Package Marking Information

Legend	: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.
Note:	In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.	

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

TO: RE:	Technical Publications Manager Reader Response	Total Pages Sent				
Fron	n: Name					
	Company					
	Address					
	City / State / ZIP / Country					
	Telephone: ()	FAX: ()				
Appl	lication (optional):					
Wou	ld you like a reply?YN					
Devi	ce: PIC24FJ256GA110 family	Literature Number: DS39905E				
Que	stions:					
1. \	What are the best features of this document?					
-						
2.	. How does this document meet your hardware and software development needs?					
-						
3. I	Do you find the organization of this document easy to follow? If not, why?					
-						
4.	What additions to the document do you think would enhance the structure and subject?					
-						
5.	What deletions from the document could be made without affecting the overall usefulness?					
-						
6. I	Is there any incorrect or misleading information (what and where)?				
7.	How would you improve this document?					
-						

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://support.microchip.com Web Address:

www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460

Fax: 86-25-8473-2470 China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049 ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-6578-300 Fax: 886-3-6578-370

Taiwan - Kaohsiung Tel: 886-7-213-7830 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820