

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	53
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj128ga106-i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT MICROCONTROLLERS

2.1 Basic Connection Requirements

Getting started with the PIC24FJ256GA110 family family of 16-bit microcontrollers requires attention to a minimal set of device pin connections before proceeding with development.

The following pins must always be connected:

- All VDD and Vss pins (see Section 2.2 "Power Supply Pins")
- All AVDD and AVss pins, regardless of whether or not the analog device features are used (see Section 2.2 "Power Supply Pins")
- MCLR pin (see Section 2.3 "Master Clear (MCLR) Pin")
- ENVREG/DISVREG and VCAP/VDDCORE pins (PIC24F J devices only) (see Section 2.4 "Voltage Regulator Pins (ENVREG/DISVREG and VCAP/VDDCORE)")

These pins must also be connected if they are being used in the end application:

- PGECx/PGEDx pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see **Section 2.5 "ICSP Pins"**)
- OSCI and OSCO pins when an external oscillator source is used

(see Section 2.6 "External Oscillator Pins")

Additionally, the following pins may be required:

• VREF+/VREF- pins used when external voltage reference for analog modules is implemented

Note: The AVDD and AVss pins must always be connected, regardless of whether any of the analog modules are being used.

The minimum mandatory connections are shown in Figure 2-1.

Key (all values are recommendations):

C1 through C6: 0.1 µF, 20V ceramic

C7: 10 $\mu\text{F},\,6.3\text{V}$ or greater, tantalum or ceramic

R1: 10 kΩ

R2: 100Ω to 470Ω

- Note 1: See Section 2.4 "Voltage Regulator Pins (ENVREG/DISVREG and VCAP/VDDCORE)" for explanation of ENVREG/DISVREG pin connections.
 - 2: The example shown is for a PIC24F device with five VDD/VSs and AVDD/AVSs pairs. Other devices may have more or less pairs; adjust the number of decoupling capacitors appropriately.

4.2.2 DATA MEMORY ORGANIZATION AND ALIGNMENT

To maintain backward compatibility with PIC^{\circledast} devices and improve data space memory usage efficiency, the PIC24F instruction set supports both word and byte operations. As a consequence of byte accessibility, all Effective Address (EA) calculations are internally scaled to step through word-aligned memory. For example, the core recognizes that Post-Modified Register Indirect Addressing mode [Ws++] will result in a value of Ws + 1 for byte operations and Ws + 2 for word operations.

Data byte reads will read the complete word which contains the byte, using the LSb of any EA to determine which byte to select. The selected byte is placed onto the LSB of the data path. That is, data memory and registers are organized as two parallel, byte-wide entities with shared (word) address decode, but separate write lines. Data byte writes only write to the corresponding side of the array or register which matches the byte address.

All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, so care must be taken when mixing byte and word operations or translating from 8-bit MCU code. If a misaligned read or write is attempted, an address error trap will be generated. If the error occurred on a read, the instruction underway is completed; if it occurred on a write, the instruction will be executed but the write will not occur. In either case, a trap is then executed, allowing the system and/or user to examine the machine state prior to execution of the address Fault.

All byte loads into any W register are loaded into the Least Significant Byte. The Most Significant Byte is not modified.

A Sign-Extend (SE) instruction is provided to allow users to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, users can clear the MSB of any W register by executing a Zero-Extend (ZE) instruction on the appropriate address.

Although most instructions are capable of operating on word or byte data sizes, it should be noted that some instructions operate only on words.

4.2.3 NEAR DATA SPACE

The 8-Kbyte area between 0000h and 1FFFh is referred to as the near data space. Locations in this space are directly addressable via a 13-bit absolute address field within all memory direct instructions. The remainder of the data space is indirectly addressable. Additionally, the whole data space is addressable using MOV instructions, which support Memory Direct Addressing with a 16-bit address field.

4.2.4 SFR SPACE

The first 2 Kbytes of the near data space, from 0000h to 07FFh, are primarily occupied with Special Function Registers (SFRs). These are used by the PIC24F core and peripheral modules for controlling the operation of the device.

SFRs are distributed among the modules that they control and are generally grouped together by module. Much of the SFR space contains unused addresses; these are read as '0'. A diagram of the SFR space, showing where SFRs are actually implemented, is shown in Table 4-2. Each implemented area indicates a 32-byte region where at least one address is implemented as an SFR. A complete listing of implemented SFRs, including their addresses, is shown in Tables 4-3 through 4-29.

			SFR	Space Add	ress					
	xx00 xx20 xx40		xx40	xx60	xx	80	xxA0	xxC0	xxE0	
000h	Core			ICN		Interrupts				
100h	Tin	ners	(Capture			C	Compare		
200h	l ² C™	UART	SPI/UART	SPI/I ² C SPI		PI	UART	0		
300h	A/D	A/D/CTMU	_	—	-	_	—	_	_	
400h	—	—	_	_	_	_			—	
500h	_	_	_	_			_	_	_	
600h	PMP	RTC/Comp	CRC	_			PPS		—	
700h	—	—	System	NVM/PMD	_	_	—	—	—	

 TABLE 4-2:
 IMPLEMENTED REGIONS OF SFR DATA SPACE

Legend: — = No implemented SFRs in this block

TABLE 4-5: INTERRUPT CONTROLLER REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON1	0080	NSTDIS	—	_	_			—	—	—		_	MATHERR	ADDRERR	STKERR	OSCFAIL		0000
INTCON2	0082	ALTIVT	DISI	_	—	_	_	_	_	_	_	_	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP	0000
IFS0	0084	_	_	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPF1IF	T3IF	T2IF	OC2IF	IC2IF		T1IF	OC1IF	IC1IF	INT0IF	0000
IFS1	0086	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	_	IC8IF	IC7IF	_	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF	0000
IFS2	0088	_	_	PMPIF	OC8IF	OC7IF	OC6IF	OC5IF	IC6IF	IC5IF	IC4IF	IC3IF		_	_	SPI2IF	SPF2IF	0000
IFS3	008A	_	RTCIF		_		_	_	_	_	INT4IF	INT3IF		_	MI2C2IF	SI2C2IF		0000
IFS4	008C	—	—	CTMUIF	—	_	_	—	LVDIF	_	—	—	_	CRCIF	U2ERIF	U1ERIF	-	0000
IFS5	008E	_	_	IC9IF	OC9IF	SPI3IF	SPF3IF	U4TXIF	U4RXIF	U4ERIF		MI2C3IF	SI2C3IF	U3TXIF	U3RXIF	U3ERIF		0000
IEC0	0094	—	—	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPF1IE	T3IE	T2IE	OC2IE	IC2IE	_	T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1	0096	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	—	IC8IE	IC7IE	—	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	0000
IEC2	0098	_	_	PMPIE	OC8IE	OC7IE	OC6IE	OC5IE	IC6IE	IC5IE	IC4IE	IC3IE		_	-	SPI2IE	SPF2IE	0000
IEC3	009A	—	RTCIE	_	—	_	_	—	—	—	INT4IE	INT3IE	_	—	MI2C2IE	SI2C2IE	-	0000
IEC4	009C	—	—	CTMUIE	—	_	_	—	LVDIE	_	—	—	_	CRCIE	U2ERIE	U1ERIE	-	0000
IEC5	009E	—	—	IC9IE	OC9IE	SPI3IE	SPF3IE	U4TXIE	U4RXIE	U4ERIE	_	MI2C3IE	SI2C3IE	U3TXIE	U3RXIE	U3ERIE	-	0000
IPC0	00A4	—	T1IP2	T1IP1	T1IP0	_	OC1IP2	OC1IP1	OC1IP0	—	IC1IP2	IC1IP1	IC1IP0	—	INT0IP2	INT0IP1	INT0IP0	4444
IPC1	00A6	—	T2IP2	T2IP1	T2IP0	_	OC2IP2	OC2IP1	OC2IP0	_	IC2IP2	IC2IP1	IC2IP0	—	—	—	-	4440
IPC2	00A8	—	U1RXIP2	U1RXIP1	U1RXIP0	_	SPI1IP2	SPI1IP1	SPI1IP0	—	SPF1IP2	SPF1IP1	SPF1IP0	—	T3IP2	T3IP1	T3IP0	4444
IPC3	00AA	_	_	_	—	_	_	—	_	_	AD1IP2	AD1IP1	AD1IP0	—	U1TXIP2	U1TXIP1	U1TXIP0	0044
IPC4	00AC	—	CNIP2	CNIP1	CNIP0	_	CMIP2	CMIP1	CMIP0	_	MI2C1IP2	MI2C1IP1	MI2C1IP0	—	SI2C1IP2	SI2C1IP1	SI2C1IP0	4444
IPC5	00AE	_	IC8IP2	IC8IP1	IC8IP0	_	IC7IP2	IC7IP1	IC7IP0	_	_	—	_	—	INT1IP2	INT1IP1	INT1IP0	4404
IPC6	00B0	—	T4IP2	T4IP1	T4IP0	_	OC4IP2	OC4IP1	OC4IP0	_	OC3IP2	OC3IP1	OC3IP0		_	_	_	4440
IPC7	00B2	—	U2TXIP2	U2TXIP1	U2TXIP0	_	U2RXIP2	U2RXIP1	U2RXIP0	_	INT2IP2	INT2IP1	INT2IP0	—	T5IP2	T5IP1	T5IP0	4444
IPC8	00B4	—	—	_	—	_	—	_	—	_	SPI2IP2	SPI2IP1	SPI2IP0		SPF2IP2	SPF2IP1	SPF2IP0	0044
IPC9	00B6	_	IC5IP2	IC5IP1	IC5IP0	_	IC4IP2	IC4IP1	IC4IP0	_	IC3IP2	IC3IP1	IC3IP0	—	—	—	_	4440
IPC10	00B8	—	OC7IP2	OC7IP1	OC7IP0	_	OC6IP2	OC6IP1	OC6IP0	_	OC5IP2	OC5IP1	OC5IP0	—	IC6IP2	IC6IP1	IC6IP0	4444
IPC11	00BA	_	_	_	—	_	_	—	_	_	PMPIP2	PMPIP1	PMPIP0	—	OC8IP2	OC8IP1	OC8IP0	0044
IPC12	00BC	—	—	_	—	_	MI2C2IP2	MI2C2IP1	MI2C2IP0	_	SI2C2IP2	SI2C2IP1	SI2C2IP0		_	_	_	0440
IPC13	00BE	—	—		—	_	INT4IP2	INT4IP1	INT4IP0	_	INT3IP2	INT3IP1	INT3IP0	—	—	—	_	0440
IPC15	00C2	—	—	_	—	_	RTCIP2	RTCIP1	RTCIP0	_	_	_	_		_	_	_	0400
IPC16	00C4	—	CRCIP2	CRCIP1	CRCIP0	_	U2ERIP2	U2ERIP1	U2ERIP0	_	U1ERIP2	U1ERIP1	U1ERIP0		_	_	_	4440
IPC18	00C8	—	—		—		_	—	—	_		—		—	LVDIP2	LVDIP1	LVDIP0	0004
IPC19	00CA	_	_	_	—	_	_	—	_	_	CTMUIP2	CTMUIP1	CTMUIP0	—	—	—	_	0040
IPC20	00CC	_	U3TXIP2	U3TXIP1	U3TXIP0	_	U3RXIP2	U3RXIP1	U3RXIP0	_	U3ERIP2	U3ERIP1	U3ERIP0	—	—	—	_	4440
IPC21	00CE	—	U4ERIP2	U4ERIP1	U4ERIP0	_	_	—	—	_	MI2C3IP2	MI2C3IP1	MI2C3IP0	—	SI2C3IP2	SI2C3IP1	SI2C3IP0	4044
IPC22	00D0	_	SPI3IP2	SPI3IP1	SPI3IP0	_	SPF3IP2	SPF3IP1	SPF3IP0	_	U4TXIP2	U4TXIP1	U4TXIP0	_	U4RXIP2	U4RXIP1	U4RXIP0	4444
IPC23	00D2	_	—	_	_	_	_	_	_	_	IC9IP2	IC9IP1	IC9IP0	_	OC9IP2	OC9IP1	OC9IP0	0044
INTTREG	00E0	CPUIRQ	_	VHOLD	_	ILR3	ILR2	ILR1	ILR0	_	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

DS39905E-page 41

TABLE 4-26: PERIPHERAL PIN SELECT REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	0680	-		INT1R5	INT1R4	INT1R3	INT1R2	INT1R1	INT1R0		—	_	_		—	-		3F00
RPINR1	0682	_	_	INT3R5	INT3R4	INT3R3	INT3R2	INT3R1	INT3R0	_	_	INT2R5	INT2R4	INT2R3	INT2R2	INT2R1	INT2R0	3F3F
RPINR2	0684	_	_	—	-	_	—	—	_	_	—	INT4R5	INT4R4	INT4R3	INT4R2	INT4R1	INT4R0	003F
RPINR3	0686	_	_	T3CKR5	T3CKR4	T3CKR3	T3CKR2	T3CKR1	T3CKR0	_	—	T2CKR5	T2CKR4	T2CKR3	T2CKR2	T2CKR1	T2CKR0	3F3F
RPINR4	0688	_	_	T5CKR5	T5CKR4	T5CKR3	T5CKR2	T5CKR1	T5CKR0	_	—	T4CKR5	T4CKR4	T4CKR3	T4CKR2	T4CKR1	T4CKR0	3F3F
RPINR7	068E	_	_	IC2R5	IC2R4	IC2R3	IC2R2	IC2R1	IC2R0	_	—	IC1R5	IC1R4	IC1R3	IC1R2	IC1R1	IC1R0	3F3F
RPINR8	0690			IC4R5	IC4R4	IC4R3	IC4R2	IC4R1	IC4R0		—	IC3R5	IC3R4	IC3R3	IC3R2	IC3R1	IC3R0	3F3F
RPINR9	0692	_		IC6R5	IC6R4	IC6R3	IC6R2	IC6R1	IC6R0		—	IC5R5	IC5R4	IC5R3	IC5R2	IC5R1	IC5R0	3F3F
RPINR10	0694	_		IC8R5	IC8R4	IC8R3	IC8R2	IC8R1	IC8R0		—	IC7R5	IC7R4	IC7R3	IC7R2	IC7R1	IC7R0	3F3F
RPINR11	0696	_		OCFBR5	OCFBR4	OCFBR3	OCFBR2	OCFBR1	OCFBR0		—	OCFAR5	OCFAR4	OCFAR3	OCFAR2	OCFAR1	OCFAR0	3F3F
RPINR15	069E	—	_	IC9R5	IC9R4	IC9R3	IC9R2	IC9R1	IC9R0	—	—	—	—	_	—	—	_	3F00
RPINR17	06A2	—	_	U3RXR5	U3RXR4	U3RXR3	U3RXR2	U3RXR1	U3RXR0	—	—	—	—	—	—	—	_	3F00
RPINR18	06A4	—	_	U1CTSR5	U1CTSR4	U1CTSR3	U1CTSR2	U1CTSR1	U1CTSR0	—	—	U1RXR5	U1RXR4	U1RXR3	U1RXR2	U1RXR1	U1RXR0	3F3F
RPINR19	06A6	—	_	U2CTSR5	U2CTSR4	U2CTSR3	U2CTSR2	U2CTSR1	U2CTSR0	—	—	U2RXR5	U2RXR4	U2RXR3	U2RXR2	U2RXR1	U2RXR0	3F3F
RPINR20	06A8	—	_	SCK1R5	SCK1R4	SCK1R3	SCK1R2	SCK1R1	SCK1R0	—	—	SDI1R5	SDI1R4	SDI1R3	SDI1R2	SDI1R1	SDI1R0	3F3F
RPINR21	06AA	—	_	U3CTSR5	U3CTSR4	U3CTSR3	U3CTSR2	U3CTSR1	U3CTSR0	—	—	SS1R5	SS1R4	SS1R3	SS1R2	SS1R1	SS1R0	3F3F
RPINR22	06AC	—	_	SCK2R5	SCK2R4	SCK2R3	SCK2R2	SCK2R1	SCK2R0	—	—	SDI2R5	SDI2R4	SDI2R3	SDI2R2	SDI2R1	SDI2R0	3F3F
RPINR23	06AE	—	_	—	—	—	—	—	—	—	—	SS2R5	SS2R4	SS2R3	SS2R2	SS2R1	SS2R0	3F3F
RPINR27	06B6	_	_	U4CTSR5	U4CTSR4	U4CTSR3	U4CTSR2	U4CTSR1	U4CTSR0	_	_	U4RXR5	U4RXR4	U4RXR3	U4RXR2	U4RXR1	U4RXR0	3F3F
RPINR28	06B8	_	_	SCK3R5	SCK3R4	SCK3R3	SCK3R2	SCK3R1	SCK3R0	_	_	SDI3R5	SDI3R4	SDI3R3	SDI3R2	SDI3R1	SDI3R0	003F
RPINR29	06BA	_	_	—	_	_	_	_	_	_	_	SS3R5	SS3R4	SS3R3	SS3R2	SS3R1	SS3R0	003F
RPOR0	06C0	_	_	RP1R5	RP1R4	RP1R3	RP1R2	RP1R1	RP1R0	_	_	RP0R5	RP0R4	RP0R3	RP0R2	RP0R1	RP0R0	0000
RPOR1	06C2	_	_	RP3R5	RP3R4	RP3R3	RP3R2	RP3R1	RP3R0	_	_	RP2R5	RP2R4	RP2R3	RP2R2	RP2R1	RP2R0	0000
RPOR2	06C4	_	_	RP5R5 ⁽¹⁾	RP5R4 ⁽¹⁾	RP5R3 ⁽¹⁾	RP5R2 ⁽¹⁾	RP5R1 ⁽¹⁾	RP5R0 ⁽¹⁾	_	_	RP4R5	RP4R4	RP4R3	RP4R2	RP4R1	RP4R0	0000
RPOR3	06C6	_	_	RP7R5	RP7R4	RP7R3	RP7R2	RP7R1	RP7R0	_	_	RP6R5	RP6R4	RP6R3	RP6R2	RP6R1	RP6R0	0000
RPOR4	06C8	-		RP9R5	RP9R4	RP9R3	RP9R2	RP9R1	RP9R0	_	_	RP8R5	RP8R4	RP8R3	RP8R2	RP8R1	RP8R0	0000
RPOR5	06CA	-		RP11R5	RP11R4	RP11R3	RP11R2	RP11R1	RP11R0	_	_	RP10R5	RP10R4	RP10R3	RP10R2	RP10R1	RP10R0	0000
RPOR6	06CC			RP13R5	RP13R4	RP13R3	RP13R2	RP13R1	RP13R0		—	RP12R5	RP12R4	RP12R3	RP12R2	RP12R1	RP12R0	0000
RPOR7	06CE			RP15R5 ⁽¹⁾	RP15R4 ⁽¹⁾	RP15R3 ⁽¹⁾	RP15R2 ⁽¹⁾	RP15R1 ⁽¹⁾	RP15R0 ⁽¹⁾		—	RP14R5	RP14R4	RP14R3	RP14R2	RP14R1	RP14R0	0000
RPOR8	06D0			RP17R5	RP17R4	RP17R3	RP17R2	RP17R1	RP17R0		—	RP16R5	RP16R4	RP16R3	RP16R2	RP16R1	RP16R0	0000
RPOR9	06D2			RP19R5	RP19R4	RP19R3	RP19R2	RP19R1	RP19R0		—	RP18R5	RP18R4	RP18R3	RP18R2	RP18R1	RP18R0	0000
RPOR10	06D4			RP21R5	RP21R4	RP21R3	RP21R2	RP21R1	RP21R0		—	RP20R5	RP20R4	RP20R3	RP20R2	RP20R1	RP20R0	0000
RPOR11	06D6			RP23R5	RP23R4	RP23R3	RP23R2	RP23R1	RP23R0		—	RP22R5	RP22R4	RP22R3	RP22R2	RP22R1	RP22R0	0000
RPOR12	06D8	-		RP25R5	RP25R4	RP25R3	RP25R2	RP25R1	RP25R0	_	_	RP24R5	RP24R4	RP24R3	RP24R2	RP24R1	RP24R0	0000
RPOR13	06DA	-		RP27R5	RP27R4	RP27R3	RP27R2	RP27R1	RP27R0	_	_	RP26R5	RP26R4	RP26R3	RP26R2	RP26R1	RP26R0	0000
RPOR14	06DC	_	_	RP29R5	RP29R4	RP29R3	RP29R2	RP29R1	RP29R0		_	RP28R5	RP28R4	RP28R3	RP28R2	RP28R1	RP28R0	0000
RPOR15	06DE	—	_	RP31R5 ⁽²⁾	RP31R4 ⁽²⁾	RP31R3 ⁽²⁾	RP31R2 ⁽²⁾	RP31R1 ⁽²⁾	RP31R0 ⁽²⁾	_	_	RP30R5	RP30R4	RP30R3	RP30R2	RP30R1	RP30R0	0000
ALTRP	06E2	_	-	—		-	—	_	—		—	—	_	-	_	-	SCK1CM	xxx0

DS39905E-page 51

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: Bits are unimplemented in 64-pin devices; read as '0'.

2: Bits are unimplemented in 64-pin and 80-pin devices; read as '0'.

5.2 RTSP Operation

The PIC24F Flash program memory array is organized into rows of 64 instructions or 192 bytes. RTSP allows the user to erase blocks of eight rows (512 instructions) at a time and to program one row at a time. It is also possible to program single words.

The 8-row erase blocks and single row write blocks are edge-aligned, from the beginning of program memory, on boundaries of 1536 bytes and 192 bytes, respectively.

When data is written to program memory using TBLWT instructions, the data is not written directly to memory. Instead, data written using table writes is stored in holding latches until the programming sequence is executed.

Any number of TBLWT instructions can be executed and a write will be successfully performed. However, 64 TBLWT instructions are required to write the full row of memory.

To ensure that no data is corrupted during a write, any unused addresses should be programmed with FFFFFFh. This is because the holding latches reset to an unknown state, so if the addresses are left in the Reset state, they may overwrite the locations on rows which were not rewritten.

The basic sequence for RTSP programming is to set up a Table Pointer, then do a series of TBLWT instructions to load the buffers. Programming is performed by setting the control bits in the NVMCON register.

Data can be loaded in any order and the holding registers can be written to multiple times before performing a write operation. Subsequent writes, however, will wipe out any previous writes.

Note: Writing to a location multiple times without erasing is *not* recommended.

All of the table write operations are single-word writes (2 instruction cycles), because only the buffers are written. A programming cycle is required for programming each row.

5.3 JTAG Operation

The PIC24F family supports JTAG boundary scan. Boundary scan can improve the manufacturing process by verifying pin to PCB connectivity.

5.4 Enhanced In-Circuit Serial Programming

Enhanced In-Circuit Serial Programming uses an on-board bootloader, known as the program executive, to manage the programming process. Using an SPI data frame format, the program executive can erase, program and verify program memory. For more information on Enhanced ICSP, see the device programming specification.

5.5 Control Registers

There are two SFRs used to read and write the program Flash memory: NVMCON and NVMKEY.

The NVMCON register (Register 5-1) controls which blocks are to be erased, which memory type is to be programmed and when the programming cycle starts.

NVMKEY is a write-only register that is used for write protection. To start a programming or erase sequence, the user must consecutively write 55h and AAh to the NVMKEY register. Refer to **Section 5.6 "Programming Operations"** for further details.

5.6 Programming Operations

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. During a programming or erase operation, the processor stalls (waits) until the operation is finished. Setting the WR bit (NVMCON<15>) starts the operation and the WR bit is automatically cleared when the operation is finished.

7.0 INTERRUPT CONTROLLER

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "PIC24F Family Reference Manual", Section 8. "Interrupts" (DS39707).

The PIC24F interrupt controller reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the PIC24F CPU. It has the following features:

- Up to 8 processor exceptions and software traps
- 7 user-selectable priority levels
- Interrupt Vector Table (IVT) with up to 118 vectors
- A unique vector for each interrupt or exception source
- Fixed priority within a specified user priority level
- Alternate Interrupt Vector Table (AIVT) for debug support
- Fixed interrupt entry and return latencies

7.1 Interrupt Vector Table

The Interrupt Vector Table (IVT) is shown in Figure 7-1. The IVT resides in program memory, starting at location 000004h. The IVT contains 126 vectors, consisting of 8 non-maskable trap vectors, plus up to 118 sources of interrupt. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR).

Interrupt vectors are prioritized in terms of their natural priority; this is linked to their position in the vector table. All other things being equal, lower addresses have a higher natural priority. For example, the interrupt associated with vector 0 will take priority over interrupts at any other vector address.

PIC24FJ256GA110 family devices implement non-maskable traps and unique interrupts. These are summarized in Table 7-1 and Table 7-2.

7.1.1 ALTERNATE INTERRUPT VECTOR TABLE

The Alternate Interrupt Vector Table (AIVT) is located after the IVT, as shown in Figure 7-1. Access to the AIVT is provided by the ALTIVT control bit (INTCON2<15>). If the ALTIVT bit is set, all interrupt and exception processes will use the alternate vectors instead of the default vectors. The alternate vectors are organized in the same manner as the default vectors.

The AIVT supports emulation and debugging efforts by providing a means to switch between an application and a support environment without requiring the interrupt vectors to be reprogrammed. This feature also enables switching between applications for evaluation of different software algorithms at run time. If the AIVT is not needed, the AIVT should be programmed with the same addresses used in the IVT.

7.2 Reset Sequence

A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The PIC24F devices clear their registers in response to a Reset which forces the PC to zero. The micro-controller then begins program execution at location 000000h. The user programs a GOTO instruction at the Reset address, which redirects program execution to the appropriate start-up routine.

Note: Any unimplemented or unused vector locations in the IVT and AIVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

REGISTER 7-19:	IPC2: INTERRUPT PRIORITY CONTROL REGISTER 2
----------------	--

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	U1RXIP2	U1RXIP1	U1RXIP0		SPI1IP2	SPI1IP1	SPI1IP0
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	SPF1IP2	SPF1IP1	SPF1IP0		T3IP2	T3IP1	T3IP0
bit 7							bit 0
Logondi							
R - Readable	a hit	M = M/ritable k	nit	II – I Inimpler	nented hit rear	1 ac 'O'	
-n = Value at	POR	'1' = Bit is set	JIL	0' = Bit is clea	ared	x = Bit is unkr	lown
in value at		i Ditio cot					
bit 15	Unimplemen	ted: Read as '0)'				
bit 14-12	U1RXIP<2:0>	UART1 Rece	iver Interrupt F	Priority bits			
	111 = Interru	pt is priority 7 (h	nighest priority	interrupt)			
	•						
	•						
	001 = Interrup	pt is priority 1	abled				
bit 11	Unimplemen	ted: Read as '()'				
bit 10-8	SPI1IP<2:0>:	SPI1 Event Int	errupt Priority	bits			
	111 = Interru	pt is priority 7 (h	nighest priority	interrupt)			
	•						
	•						
	001 = Interru	pt is priority 1					
	000 = Interru	pt source is disa	abled				
bit 7	Unimplemen	ted: Read as '0)'				
bit 6-4	SPF1IP<2:0>	: SPI1 Fault Int	errupt Priority	bits			
	111 = Interru	pt is priority 7 (r	lignest priority	interrupt)			
	•						
	•	at in mainaite d					
	001 = Interru	ot source is disa	abled				
bit 3	Unimplemen	ted: Read as 'o)'				
bit 2-0	T3IP<2:0>: ⊺	imer3 Interrupt	Priority bits				
	111 = Interru	pt is priority 7 (h	nighest priority	interrupt)			
	•						
	•						
	001 = Interru	ot is priority 1					
	000 = Interru	pt source is disa	adied				

REGISTER 7-21:	IPC4: INTERRUPT PRIORITY CONTROL REGISTER 4
----------------	--

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0	
	CNIP2	CNIP1	CNIP0	_	CMIP2	CMIP1	CMIP0	
bit 15					I		bit 8	
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0	
	MI2C1IP2	MI2C1IP1	MI2C1IP0	<u> </u>	SI2C1IP2	SI2C1IP1	SI2C1IP0	
bit 7								
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown	
6:4 <i>4 C</i>		tad. Deed as '	、 ,					
		ted: Read as () atification later	www.undt Duinewider, bit	-			
DIT 14-12	111 - Intorru	nput Change N	ouncation inter	interrupt)	5			
	•		lighest phonty	interrupt)				
	•							
	•							
	001 = Interru	pt is priority 1 pt source is dis:	abled					
bit 11	Unimplemen	ted: Read as ')'					
bit 10-8	CMIP<2:0>: (Comparator Inte	errupt Priority b	oits				
	111 = Interru	, pt is priority 7 (ł	nighest priority	interrupt)				
	•							
	•							
	• 001 = Interru	ot is priority 1						
	000 = Interru	pt source is disa	abled					
bit 7	Unimplemen	ted: Read as 'd)'					
bit 6-4	MI2C1IP<2:0	>: Master I2C1	Event Interrup	t Priority bits				
	111 = Interru	pt is priority 7 (ł	nighest priority	interrupt)				
	•							
	•							
	001 = Interru	pt is priority 1						
	000 = Interru	pt source is disa	abled					
bit 3	Unimplemented: Read as '0'							
bit 2-0	SI2C1IP<2:0	Slave I2C1 E	vent Interrupt	Priority bits				
	111 = Interru	pt is priority 7 (ł	nighest priority	interrupt)				
	•							
	•							
	001 = Interru	pt is priority 1						
	000 = Interru	pt source is disa	abled					

REGISTER 7-38: IPC23: INTERRUPT PRIORITY CONTROL REGISTER 23

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—	IC9IP2	IC9IP1	IC9IP0	—	OC9IP2	OC9IP1	OC9IP0
bit 7							bit 0

mented bit, read as	0'
eared x =	Bit is unknown
) 	emented bit, read as f leared x =

bit 15-7	Unimplemented: Read as '0'
bit 6-4	IC9IP<2:0>: Input Capture Channel 9 Interrupt Priority bits
	111 = Interrupt is priority 7 (highest priority interrupt)
	•
	•
	•
	001 = Interrupt is priority 1
	000 = Interrupt source is disabled
bit 3	Unimplemented: Read as '0'
bit 2-0	OC9IP<2:0>: Output Compare Channel 9 Interrupt Priority bits
	111 = Interrupt is priority 7 (highest priority interrupt)
	•
	•
	•
	001 = Interrupt is priority 1
	000 = Interrupt source is disabled

15.0 SERIAL PERIPHERAL INTERFACE (SPI)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "PIC24F Family Reference Manual", Section 23. "Serial Peripheral Interface (SPI)" (DS39699).

The Serial Peripheral Interface (SPI) module is a synchronous serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, display drivers, A/D Converters, etc. The SPI module is compatible with Motorola's SPI and SIOP interfaces. All devices of the PIC24FJ256GA110 family include three SPI modules

The module supports operation in two buffer modes. In Standard mode, data is shifted through a single serial buffer. In Enhanced Buffer mode, data is shifted through an 8-level FIFO buffer.

Note: Do not perform read-modify-write operations (such as bit-oriented instructions) on the SPIxBUF register in either Standard or Enhanced Buffer mode.

The module also supports a basic framed SPI protocol while operating in either Master or Slave mode. A total of four framed SPI configurations are supported. The SPI serial interface consists of four pins:

- SDIx: Serial Data Input
- SDOx: Serial Data Output
- SCKx: Shift Clock Input or Output
- SSx: Active-Low Slave Select or Frame Synchronization I/O Pulse

The SPI module can be configured to operate using 2, 3 or 4 pins. In the 3-pin mode, SSx is not used. In the 2-pin mode, both SDOx and SSx are not used.

Block diagrams of the module in Standard and Enhanced modes are shown in Figure 15-1 and Figure 15-2.

Note: In this section, the SPI modules are referred to together as SPIx or separately as SPI1, SPI2 or SPI3. Special Function Registers will follow a similar notation. For example, SPIxCON1 and SPIxCON2 refer to the control registers for any of the 3 SPI modules.

REGISTER	15-1: SPIxS	STAT: SPIx ST	TATUS AND	CONTROL R	EGISTER		
R/W-0	U-0	R/W-0	U-0	U-0	R-0	R-0	R-0
SPIEN ⁽¹⁾		SPISIDL	_		SPIBEC2	SPIBEC1	SPIBEC0
bit 15							bit 8
R-0	R/C-0 HS	R-0	R/M/-0	R/M-0	R/W/-0	R-0	R-0
SRMPT	SPIROV	SRXMPT	SISEL 2	SISEL 1	SISEL 0	SPITBE	SPIRBE
bit 7			OIOLLL	OIOLLI	010220	of fibr	bit 0
Logondi			hit	UC - Hardwa	ra Cattabla bit		
R - Readah	le hit	W = Writable	Dit		ne Seliable bit	ae 'O'	
n = Value a		'1' = Bit is set	JIL	$0^{\circ} = \text{Bit is clear}$	ared	x = Rit is unkr	own
					area		
bit 15	SPIEN: SPIX	Enable bit ⁽¹⁾					
	1 = Enables n 0 = Disables ı	nodule and con module	figures SCKx,	SDOx, SDIx ar	nd $\overline{\text{SSx}}$ as seria	l port pins	
bit 14	Unimplemen	ted: Read as 'd)'				
bit 13	SPISIDL: Sto	p in Idle Mode I	oit				
	1 = Discontinu 0 = Continue	ue module oper module operati	ation when de	vice enters Idle e	e mode		
bit 12-11	Unimplemen	ted: Read as 'd)'				
bit 10-8	SPIBEC<2:0>	-: SPIx Buffer E	Element Count	bits (valid in Er	nhanced Buffer	mode)	
	Master mode: Number of SF	: PI transfers pen	ding.				
	<u>Slave mode:</u> Number of SF	PI transfers unre	ead.				
bit 7	SRMPT: Shift	Register (SPIx	SR) Empty bit	(valid in Enhar	nced Buffer mod	le)	
	1 = SPIx Shif 0 = SPIx Shif	ft register is em ft register is not	pty and ready empty	to send or rece	ive		
bit 6	SPIROV: Rec	eive Overflow I	-lag bit				
	1 = A new by data in th	te/word is comp e SPIxBUF regi	letely received ster.	and discarded.	. The user softw	are has not rea	d the previous
6.4 <i>C</i>		ow has occurre	U atribit (validin		for mode)		
DIL D	1 = Receive	FIFO is empty	pty bit (valid in	Enhanced Bui	ier mode)		
hit 1_2		SPly Buffer Int	orrunt Mode hi	ite (valid in Enh	anced Buffer m	ode)	
Dit 4-2	111 = Interru	of when SPIx tr	ansmit huffer i	is full (SPITRE	hit is set)	oue)	
	110 = Interru	pt when last bit	is shifted into	SPIxSR; as a r	esult, the TX F	FO is empty	
	101 = Interru	pt when the las	t bit is shifted	out of SPIxSR;	now the transm	it is complete	
	100 = Interru	pt when one da	ta is shifted in eceive buffer is	to the SPIXSR; s full (SPIRBE b	as a result, the	IX FIFO has	one open spot
	010 = Interru	pt when SPIx re	eceive buffer is	s 3/4 or more fu	III		
	001 = Interru	pt when data is	available in re	eceive buffer (S	RMPT bit is set)	.
	000 = Interru (SRXM)	pt when the la IPT bit set)	ist data in the	e receive buffe	r is read; as a	result, the b	utter is empty
Note 1: If	SPIEN = 1, the	se functions mu	st be assigned	d to available R	Pn pins (or to A	SCK1 for the	SCK1 output)

REGISTER 17-2: UxSTA: UARTX STATUS AND CONTROL REGISTER

R/W-0	R/W-0	R/W-0	U-0	R/W-0 HC	R/W-0	R-0	R-1
UTXISEL1	UTXINV ⁽¹⁾	UTXISEL0	_	UTXBRK	UTXEN ⁽²⁾	UTXBF	TRMT
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R-1	R-0	R-0	R/C-0	R-0
URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA
bit 7							bit 0
Legend:		C = Clearable	bit	HC = Hardwa	re Clearable bi	it	
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
	 11 = Reserv 10 = Interrup the tran 01 = Interrup operation 00 = Interrup least or 	ed; do not use of when a chara ismit buffer beco of when the la ons are comple of when a chara ne character op	acter is transfe comes empty st character i ted acter is transfe en in the trans	erred to the Tra s shifted out c erred to the Tra smit buffer)	nsmit Shift Reg of the Transmi nsmit Shift Re	gister (TSR), a t Shift Registe gister (this imp	nd as a result, er; all transmit lies there is at
bit 14	UTXINV: IrDA <u>IREN = 0:</u> 1 = UxTX Idle 0 = UxTX Idle <u>IREN = 1:</u> 1 = UxTX Idle 0 = UxTX Idle	" Encoder Tra ' '0' ' '1' : '1' : '0'	nsmit Polarity	Inversion bit ⁽¹⁾			
bit 12	Unimplemen	ted: Read as ')'				
bit 11	UTXBRK: Tra	ansmit Break bi	t				
	1 = Send Svr	nc Break on ne	vt transmissior	n – Start hit foll	owed by twelve	• '∩' hits follow	ed by Stop hit.

- 1 = Send Sync Break on next transmission Start bit, followed by twelve '0' bits, followed by Stop bit; cleared by hardware upon completion
 0 = Sync Break transmission disabled or completed
- bit 10 UTXEN: Transmit Enable bit⁽²⁾
 - 1 = Transmit enabled; UxTX pin controlled by UARTx
 - Transmit disabled; any pending transmission is aborted and the buffer is reset, UxTX pin controlled by port
- bit 9 UTXBF: Transmit Buffer Full Status bit (read-only)
 - 1 = Transmit buffer is full
 - 0 = Transmit buffer is not full; at least one more character can be written
- bit 8 **TRMT:** Transmit Shift Register Empty bit (read-only)
 - 1 = Transmit Shift Register is empty and transmit buffer is empty (the last transmission has completed)
 0 = Transmit Shift Register is not empty, a transmission is in progress or queued
- bit 7-6 URXISEL<1:0>: Receive Interrupt Mode Selection bits
 - 11 = Interrupt is set on RSR transfer, making the receive buffer full (i.e., has 4 data characters)
 - 10 = Interrupt is set on RSR transfer, making the receive buffer 3/4 full (i.e., has 3 data characters)
 - 0x = Interrupt is set when any character is received and transferred from the RSR to the receive buffer. Receive buffer has one or more characters.
- **Note 1:** Value of bit only affects the transmit properties of the module when the IrDA[®] encoder is enabled (IREN = 1).
 - 2: If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn pin. See Section 10.4 "Peripheral Pin Select" for more information.

REGISTER 18-5: PMSTAT: PARALLEL MASTER PORT STATUS REGISTER

R-0	R/W-0, HS	U-0	U-0	R-0	R-0	R-0	R-0
IBF	IBOV	—	—	IB3F	IB2F	IB1F	IB0F
bit 15				•	•	•	bit 8
R-1	R/W-0, HS	U-0	U-0	R-1	R-1	R-1	R-1
OBE	OBUF	—	—	OB3E	OB2E	OB1E	OB0E
bit 7				•			bit 0
Legend:		HS = Hardwar	e Settable bit				
R = Readable	e bit	W = Writable	oit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15	IBF: Input Buf	fer Full Status	bit				
	1 = All writable	le input buffer r	egisters are ful	 			
	0 = Some or	all of the writad		registers are el	mpty		
DIT 14		uffer Overflow	Status bit	tor courred (n	aust he aleeree	lin coffword)	
	1 = A write at 0 = No overfle	ow occurred	nput byte regis	ster occurred (in	nust be cleared	i in soltware)	
bit 13-12	Unimplement	ted: Read as '()'				
bit 11-8	IB3F:IB0F Ing	out Buffer x Sta	tus Full bits				
	1 = Input buff	er contains dat	a that has not	been read (rea	ding buffer will	clear this bit)	
	0 = Input buff	er does not co	ntain any unrea	ad data	-		
bit 7	OBE: Output	Buffer Empty S	tatus bit				
	1 = All readat	ble output buffe	r registers are	empty	e		
	0 = Some or	all of the reada	ble output buff	er registers are	full		
bit 6	OBUF: Outpu	t Buffer Underf	low Status bit				
	1 = A read oc 0 = No under	curred from an flow occurred	empty output	byte register (r	nust be cleared	i in software)	
bit 5-4	Unimplement	ted: Read as 'd)'				
bit 3-0	OB3E:OB0E	Output Buffer x	Status Empty	bits			
	1 = Output bu	uffer is empty (\	writing data to t	the buffer will c	lear this bit)		
	0 = Output bu	uffer contains d	ata that has no	ot been transmi	tted		

REGISTER 21-2: AD1CON2: A/D CONTROL REGISTER 2

R/W-0	R/W-0	R/W-0	r-0	U-0	R/W-0	U-0	U-0
VCFG2	VCFG1	VCFG0	r	—	CSCNA	—	—
bit 15							bit 8

R-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
BUFS	—	SMPI3	SMPI2	SMPI1	SMPI0	BUFM	ALTS
bit 7							bit 0

Legend:	r = Reserved bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13

VCFG<2:0>: Voltage Reference Configuration bits

VCFG<2:0>	VR+	VR-
000	AVDD	AVss
001	External VREF+ pin	AVss
010	AVDD	External VREF- pin
011	External VREF+ pin	External VREF- pin
1xx	AVdd	AVss

- bit 12 Reserved: Maintain as '0'
- bit 11 Unimplemented: Read as '0'
- bit 10 **CSCNA:** Scan Input Selections for S/H Positive Input for MUX A Input Multiplexer Setting bit 1 = Scan inputs 0 = Do not scan inputs
- bit 9-8 Unimplemented: Read as '0'
- bit 7 **BUFS:** Buffer Fill Status bit (valid only when BUFM = 1)
 - 1 = A/D is currently filling buffer 08-0F, user should access data in 00-07
 - 0 = A/D is currently filling buffer 00-07, user should access data in 08-0F
- bit 6 Unimplemented: Read as '0'
- bit 5-2 SMPI<3:0>: Sample/Convert Sequences Per Interrupt Selection bits
 - 1111 = Interrupts at the completion of conversion for each 16th sample/convert sequence
 - 1110 = Interrupts at the completion of conversion for each 15th sample/convert sequence
 - 0001 = Interrupts at the completion of conversion for each 2nd sample/convert sequence
 0000 = Interrupts at the completion of conversion for each sample/convert sequence
- bit 1 BUFM: Buffer Mode Select bit
 - 1 = Buffer configured as two 8-word buffers (ADC1BUFn<15:8> and ADC1BUFn<7:0>)
 - 0 = Buffer configured as one 16-word buffer (ADC1BUFn<15:0>)
- bit 0 ALTS: Alternate Input Sample Mode Select bit
 - 1 = Uses MUX A input multiplexer settings for first sample, then alternates between MUX B and MUX A input multiplexer settings for all subsequent samples
 - 0 = Always uses MUX A input multiplexer settings

REGISTER 25-2: CW2: FLASH CONFIGURATION WORD 2 (CONTINUED)

bit 1-0	POSCMD<1:0>: Primar	y Oscillator Configuration bits
---------	---------------------	---------------------------------

- 11 = Primary Oscillator disabled
- 10 = HS Oscillator mode selected
- 01 = XT Oscillator mode selected
- 00 = EC Oscillator mode selected

Note 1: Implemented in 100-pin devices only; otherwise unimplemented, read as '1'.

REGISTER 25-3: CW3: FLASH CONFIGURATION WORD 3

R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1					
			_	_		_						
bit 23							bit 16					
R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1					
WPEND	WPCFG	WPDIS	—	—	—	—	—					
bit 15	bit 8											
R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1					
WPFP7	WPFP6	WPFP5	WPFP4	WPFP3	WPFP2	WPFP1	WPFP0					
bit 7	•	•		•			bit 0					
Legend:												
R = Readable	bit	PO = Program	n Once bit	U = Unimplem	nented bit, read	l as '0'						
-n = Value wh	en device is un	programmed		'1' = Bit is set		'0' = Bit is clea	ared					
bit 22 16	Reserved											
bit 25-10		mont Write Dre	tootion End D	ago Soloot hit								
DIL 15	1 = Protected	l code segmen	t upper bound	aye Select bit arv is at the last	t nade of prodr	am memory: lo	wer boundary					
	is the cod	le page specifie	ed by WPFP<7	7:0>		an memory, io						
	0 = Protected	l code segmen	t lower bound	ary is at the bo	ttom of progra	m memory (00	0000h); upper					
	boundary	is the code pa	ge specified b	y WPFP<7:0>								
bit 14	WPCFG: Con	figuration Word	d Code Page F	Protection Select	t bit							
	1 = Last page	e (at the top o - o	f program me	mory) and Flas	h Configuration	n Words are n	ot protected if					
	0 = Last page	e and Flash Co	nfiguration Wo	ords are code-pr	otected if WPE	END = 0						
bit 13	WPDIS: Segn	nent Write Prot	ection Disable	bit								
	1 = Segment	ed code protec	tion disabled									
	0 = Segmente WPFPx C	ed code prote Configuration bi	ction enabled ts	; protected see	gment defined	by WPEND,	WPCFG and					
bit 12-8	Reserved											
bit 7-0	WPFP<7:0>:	Protected Code	e Segment Bo	undary Page bit	ts							
	Designates th starting with F	e 512-word pro Page 0 at the bo	ogram code pa	ge that is the bo am memory.	oundary of the	protected code	segment,					
	If WPEND = 1											
	First address	of designated o	ode page is th	ne lower bounda	ary of the segm	ient.						
	If WPEND = c	<u>):</u>			If WPEND = 0 :							
	Last address of designated code page is the upper boundary of the segment.											

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
TBLRDH	TBLRDH	Ws,Wd	Read Prog<23:16> to Wd<7:0>	1	2	None
TBLRDL	TBLRDL	Ws,Wd	Read Prog<15:0> to Wd	1	2	None
TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None
TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog<15:0>	1	2	None
ULNK	ULNK		Unlink Frame Pointer	1	1	None
XOR	XOR	f	f = f .XOR. WREG	1	1	N, Z
	XOR	f,WREG	WREG = f .XOR. WREG	1	1	N, Z
	XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N, Z
	XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N, Z
	XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N, Z
ZE	ZE	Ws,Wnd	Wnd = Zero-Extend Ws	1	1	C, Z, N

TABLE 26-2: INSTRUCTION SET OVERVIEW (CONTINUED)

28.1 DC Characteristics

TABLE 28-1: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Max	Unit
PIC24FJ256GA110 Family:					
Operating Junction Temperature Range	TJ	-40		+140	°C
Operating Ambient Temperature Range	TA	-40		+125	°C
Power Dissipation: Internal Chip Power Dissipation: $PINT = VDD x (IDD - \Sigma IOH)$ I/O Pin Power Dissipation: $PI/O = \Sigma (\{VDD - VOH\} x IOH) + \Sigma (VOL x IOL)$	PD		Pint + Pi/c)	W
Maximum Allowed Power Dissipation	PDMAX	(TJ — TA)/θJ	A	W

TABLE 28-2: THERMAL PACKAGING CHARACTERISTICS

Characteristic	Symbol	Тур	Max	Unit	Notes
Package Thermal Resistance, 14x14x1 mm TQFP	θJA	50.0		°C/W	(Note 1)
Package Thermal Resistance, 12x12x1 mm TQFP	θJA	69.4	_	°C/W	(Note 1)
Package Thermal Resistance, 10x10x1 mm TQFP	θJA	76.6	_	°C/W	(Note 1)
Package Thermal Resistance, 9x9x0.9 mm QFN	θJA	28.0	_	°C/W	(Note 1)

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

DC CHARACTERISTICS			Standard Operating Condition Operating temperature -40 -40			tions: 2.0V to 3.6V (unless otherwise stated) -40°C \leq TA \leq +85°C for Industrial -40°C \leq TA \leq +125°C for Extended		
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions	
	VIL	Input Low Voltage ⁽⁴⁾						
DI10		I/O Pins with ST Buffer	Vss	—	0.2 Vdd	V		
DI11		I/O Pins with TTL Buffer	Vss	—	0.15 Vdd	V		
DI15		MCLR	Vss	_	0.2 VDD	V		
DI16		OSC1 (XT mode)	Vss	_	0.2 VDD	V		
DI17		OSC1 (HS mode)	Vss	_	0.2 Vdd	V		
DI18		I/O Pins with I ² C™ Buffer	Vss	_	0.3 Vdd	V		
DI19		I/O Pins with SMBus Buffer	Vss	—	0.8	V	SMBus enabled	
	Vih	Input High Voltage ^(4,5)						
DI20		I/O Pins with ST Buffer: with Analog Functions Digital Only	0.8 Vdd 0.8 Vdd	_	Vdd 5.5	V V		
DI21		I/O Pins with TTL buffer: with Analog Functions Digital Only	0.25 VDD + 0.8 0.25 VDD + 0.8	_	Vdd 5.5	V V		
DI25		MCLR	0.8 VDD	_	Vdd	V		
DI26		OSC1 (XT mode)	0.7 Vdd	—	Vdd	V		
DI27		OSC1 (HS mode)	0.7 Vdd		Vdd	V		
DI28		I/O Pins with I ² C Buffer: with Analog Functions Digital Only	0.7 Vdd 0.7 Vdd	_	VDD 5.5	V V		
DI29		I/O Pins with SMBus Buffer: with Analog Functions Digital Only	2.1 2.1		VDD 5.5	V V	$2.5V \le V\text{PIN} \le V\text{DD}$	
DI30	ICNPU	CNx Pull-up Current	50	250	400	μA	VDD = 3.3V, VPIN = 0	
DI30A	ICNPD	CNx Pull-Down Current	—	80	—	μA	VDD = 3.3V, VPIN = VDD	
DI31	IPU	Maximum Load Current for Digital High Detection w/ Internal Pull-up	—	_	30 100	μΑ μΑ	VDD = 2.0V VDD = 3.3V	

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

4: Refer to Table 1-4 for I/O pins buffer types.

5: VIH requirements are met when internal pull-ups are enabled.

NOTES: