

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	53
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj128ga106t-i-pt

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagram (80-Pin TQFP)

Pin Diagram (100-Pin TQFP)

TABLE 4-6: TIMER REGISTER MAP

DS39	
905E-	
page	
42	

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100								Timer1	Register								0000
PR1	0102								Timer1 Peri	iod Registe	r							FFFF
T1CON	0104	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKPS1	TCKPS0	_	TSYNC	TCS	_	0000
TMR2	0106		Timer2 Register											0000				
TMR3HLD	0108		Timer3 Holding Register (for 32-bit timer operations only)										0000					
TMR3	010A		Timer3 Register											0000				
PR2	010C		Timer2 Period Register										FFFF					
PR3	010E								Timer3 Peri	iod Registe	r							FFFF
T2CON	0110	TON	_	TSIDL	_	_	_		_	_	TGATE	TCKPS1	TCKPS0	T32	_	TCS	_	0000
T3CON	0112	TON	_	TSIDL	_	_	_		_	_	TGATE	TCKPS1	TCKPS0		—	TCS	_	0000
TMR4	0114								Timer4	Register								0000
TMR5HLD	0116						Tim	ner5 Holdin	g Register (for 32-bit o	perations o	nly)						0000
TMR5	0118								Timer5	Register								0000
PR4	011A								Timer4 Peri	iod Registe	r							FFFF
PR5	011C								Timer5 Peri	iod Registe	r							FFFF
T4CON	011E	TON	—	TSIDL	—	—	—	—	—	—	TGATE	TCKPS1	TCKPS0	T32	—	TCS	—	0000
T5CON	0120	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKPS1	TCKPS0	_	_	TCS	_	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

	Vector		ΑΙντ	Interrupt Bit Locations			
Interrupt Source	Number	IVT Address	Address	Flag	Enable	Priority	
ADC1 Conversion Done	13	00002Eh	00012Eh	IFS0<13>	IEC0<13>	IPC3<6:4>	
Comparator Event	18	000038h	000138h	IFS1<2>	IEC1<2>	IPC4<10:8>	
CRC Generator	67	00009Ah	00019Ah	IFS4<3>	IEC4<3>	IPC16<14:12>	
CTMU Event	77	0000AEh	0001AEh	IFS4<13>	IEC4<13>	IPC19<6:4>	
External Interrupt 0	0	000014h	000114h	IFS0<0>	IEC0<0>	IPC0<2:0>	
External Interrupt 1	20	00003Ch	00013Ch	IFS1<4>	IEC1<4>	IPC5<2:0>	
External Interrupt 2	29	00004Eh	00014Eh	IFS1<13>	IEC1<13>	IPC7<6:4>	
External Interrupt 3	53	00007Eh	00017Eh	IFS3<5>	IEC3<5>	IPC13<6:4>	
External Interrupt 4	54	000080h	000180h	IFS3<6>	IEC3<6>	IPC13<10:8>	
I2C1 Master Event	17	000036h	000136h	IFS1<1>	IEC1<1>	IPC4<6:4>	
I2C1 Slave Event	16	000034h	000134h	IFS1<0>	IEC1<0>	IPC4<2:0>	
I2C2 Master Event	50	000078h	000178h	IFS3<2>	IEC3<2>	IPC12<10:8>	
I2C2 Slave Event	49	000076h	000176h	IFS3<1>	IEC3<1>	IPC12<6:4>	
I2C3 Master Event	85	0000BEh	0001BEh	IFS5<5>	IEC5<5>	IPC21<6:4>	
I2C3 Slave Event	84	0000BCh	0001BCh	IFS5<4>	IEC5<4>	IPC21<2:0>	
Input Capture 1	1	000016h	000116h	IFS0<1>	IEC0<1>	IPC0<6:4>	
Input Capture 2	5	00001Eh	00011Eh	IFS0<5>	IEC0<5>	IPC1<6:4>	
Input Capture 3	37	00005Eh	00015Eh	IFS2<5>	IEC2<5>	IPC9<6:4>	
Input Capture 4	38	000060h	000160h	IFS2<6>	IEC2<6>	IPC9<10:8>	
Input Capture 5	39	000062h	000162h	IFS2<7>	IEC2<7>	IPC9<14:12>	
Input Capture 6	40	000064h	000164h	IFS2<8>	IEC2<8>	IPC10<2:0>	
Input Capture 7	22	000040h	000140h	IFS1<6>	IEC1<6>	IPC5<10:8>	
Input Capture 8	23	000042h	000142h	IFS1<7>	IEC1<7>	IPC5<14:12>	
Input Capture 9	93	0000CEh	0001CEh	IFS5<13>	IEC5<13>	IPC23<6:4>	
Input Change Notification	19	00003Ah	00013Ah	IFS1<3>	IEC1<3>	IPC4<14:12>	
LVD Low-Voltage Detect	72	0000A4h	0001A4h	IFS4<8>	IEC4<8>	IPC18<2:0>	
Output Compare 1	2	000018h	000118h	IFS0<2>	IEC0<2>	IPC0<10:8>	
Output Compare 2	6	000020h	000120h	IFS0<6>	IEC0<6>	IPC1<10:8>	
Output Compare 3	25	000046h	000146h	IFS1<9>	IEC1<9>	IPC6<6:4>	
Output Compare 4	26	000048h	000148h	IFS1<10>	IEC1<10>	IPC6<10:8>	
Output Compare 5	41	000066h	000166h	IFS2<9>	IEC2<9>	IPC10<6:4>	
Output Compare 6	42	000068h	000168h	IFS2<10>	IEC2<10>	IPC10<10:8>	
Output Compare 7	43	00006Ah	00016Ah	IFS2<11>	IEC2<11>	IPC10<14:12>	
Output Compare 8	44	00006Ch	00016Ch	IFS2<12>	IEC2<12>	IPC11<2:0>	
Output Compare 9	92	0000CCh	0001CCh	IFS5<12>	IEC5<12>	IPC23<2:0>	
Parallel Master Port	45	00006Eh	00016Eh	IFS2<13>	IEC2<13>	IPC11<6:4>	
Real-Time Clock/Calendar	62	000090h	000190h	IFS3<14>	IEC3<14>	IPC15<10:8>	
SPI1 Error	9	000026h	000126h	IFS0<9>	IEC0<9>	IPC2<6:4>	
SPI1 Event	10	000028h	000128h	IFS0<10>	IEC0<10>	IPC2<10:8>	
SPI2 Error	32	000054h	000154h	IFS2<0>	IEC2<0>	IPC8<2:0>	
SPI2 Event	33	000056h	000156h	IFS2<1>	IEC2<1>	IPC8<6:4>	
SPI3 Error	90	0000C8h	0001C8h	IFS5<10>	IEC5<10>	IPC22<10:8>	
SPI3 Event	91	0000CAh	0001CAh	IFS5<11>	IEC5<11>	IPC22<14:12>	

TABLE 7-2:	IMPLEMENTED INTERRUPT VECTORS

R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
NSTDIS	—			—	_	—	_					
bit 15						·	bit 8					
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0					
_	—		MATHERR	ADDRERR	STKERR	OSCFAIL	_					
bit 7							bit 0					
Legend:												
R = Readabl	e bit	W = Writable	bit	U = Unimplem	nented bit, read	1 as '0'						
-n = Value at	-n = Value at POR '1' = Bit is set				ared	x = Bit is unknown						
bit 15	NSTDIS: Inte	rrupt Nesting D	isable bit									
	1 = Interrupt r	nesting is disab	led									
	0 = Interrupt r	nesting is enab	led									
bit 14-5	Unimplemen	ted: Read as '	0'									
bit 4	MATHERR: A	MATHERR: Arithmetic Error Trap Status bit										
	1 = Overflow trap has occurred											
	0 = Overflow trap has not occurred											
bit 3	ADDRERR: A	Address Error T	rap Status bit									
	$1 = \text{Address} \epsilon$	error trap has o	ccurred									
hit 0	0 - Address e	ak Error Trop (
DIL Z	JINERR: Sla											
	1 = Stack error	or trap has occup	occurred									
bit 1	OSCFAIL: Os	scillator Failure	Trap Status bit	ł								
	1 = Oscillator	failure trap has	s occurred									
	0 = Oscillator	failure trap has	s not occurred									
bit 0	Unimplemen	ted: Read as '	0'									

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1

U-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0				
_	RTCIE				_		_				
bit 15							bit 8				
U-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	U-0				
	INT4IE ⁽¹⁾	INT3IE ⁽¹⁾	_	—	MI2C2IE	SI2C2IE	_				
bit 7							bit 0				
Legend:											
R = Readat	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'					
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown					
bit 15	Unimplemen	Unimplemented: Read as '0'									
bit 14	RTCIE: Real-	RTCIE: Real-Time Clock/Calendar Interrupt Enable bit									
	1 = Interrupt r	equest enable									
1.1.40 7	0 = Interrupt r	request not ena	ibled								
DIT 13-7	Unimplemen	ted: Read as 10) [.] —								
bit 6	INT4IE: Exter	nal Interrupt 4	Enable bit("								
	0 = Interrupt r	request not ena	bled								
bit 5	INT3IE: Exter	nal Interrupt 3	Enable bit ⁽¹⁾								
	1 = Interrupt r	equest enabled	b								
	0 = Interrupt r	request not ena	bled								
bit 4-3	Unimplemen	ted: Read as '	כ'								
bit 2	MI2C2IE: Mas	ster I2C2 Even	t Interrupt Ena	ble bit							
	1 = Interrupt r	equest enabled	d 								
	0 = Interrupt r	request not ena	bled								
bit 1	SI2C2IE: Slav	ve I2C2 Event I	nterrupt Enabl	e bit							
	1 = Interrupt r	request enabled) Ibled								
bit 0	Unimplemen	ted. Read as '	וסוכם ז'								
	oninpienien										
Note 1: 1	f an external inte	rrupt is enabled	d, the interrupt	input must also	o be configured	to an available	RPn or RPIn				

REGISTER 7-14: IEC3: INTERRUPT ENABLE CONTROL REGISTER 3

Note 1: If an external interrupt is enabled, the interrupt input must also be configured to an available RPn or RPIn pin. See Section 10.4 "Peripheral Pin Select" for more information.

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0						
_	CRCIP2	CRCIP1	CRCIP0	_	U2ERIP2	U2ERIP1	U2ERIP0						
bit 15							bit 8						
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0						
	U1ERIP2	U1ERIP1	U1ERIP0			—	—						
bit 7							bit 0						
Legend:													
R = Readab	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'							
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown						
bit 15	Unimplemen	ted: Read as '	0'										
bit 14-12	CRCIP<2:0>	: CRC Generat	or Error Interru	upt Priority bits									
	111 = Interru	 Interrupt is priority / (nignest priority interrupt) • 											
	•	•											
	•	•											
	001 = Interru 000 = Interru	pt is priority 1	abled										
bit 11	Unimplemen	ted: Read as '	0'										
bit 10-8	U2ERIP<2:0:	>: UART2 Error	⁻ Interrupt Prio	rity bits									
	111 = Interru	pt is priority 7 (highest priority	/ interrupt)									
	•	•											
	•												
	• 001 = Interru	nt is priority 1											
	000 = Interru	pt source is dis	abled										
bit 7	Unimplemen	ited: Read as '	0'										
bit 6-4	U1ERIP<2:0:	>: UART1 Erro	⁻ Interrupt Prio	rity bits									
	111 = Interru	pt is priority 7 (highest priority	/ interrupt)									
	•												
	•												
	• 001 = Interru	nt is priority 1											
	000 = Interru	pt source is dis	abled										
bit 3-0	Unimplemen	ted: Read as '	0'										

REGISTER 7-32: IPC16: INTERRUPT PRIORITY CONTROL REGISTER 16

REGISTER 10-11: RPINR15: PERIPHERAL PIN SELECT INPUT REGISTER 15

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
—	—	IC9R5	IC9R4	IC9R3	IC9R2	IC9R1	IC9R0	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	_	—	—	—	—	
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'		
-n = Value at POR		'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown		

bit 15-14Unimplemented: Read as '0'bit 13-8IC9R<5:0>: Assign Input Capture 9 (IC9) to Corresponding RPn or RPIn Pin bitsbit 7-0Unimplemented: Read as '0'

REGISTER 10-12: RPINR17: PERIPHERAL PIN SELECT INPUT REGISTER 17

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	U3RXR5	U3RXR4	U3RXR3	U3RXR2	U3RXR1	U3RXR0
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	_
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	1 as '0'	
-n = Value at	n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown						nown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 U3RXR<5:0>: Assign UART3 Receive (U3RX) to Corresponding RPn or RPIn Pin bits

bit 7-0 Unimplemented: Read as '0'

REGISTER 13-2: ICxCON2: INPUT CAPTURE x CONTROL REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0				
	_	_	_	_	_	_	IC32				
bit 15							bit 8				
R/W-0	R/W-0, HS	U-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-1				
ICTRIG	TRIGSTAT	—	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0				
bit 7							bit 0				
Legend:		HS = Hardwa	re Settable bit								
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown				
			. 1								
bit 15-9	Unimplement	ted: Read as ')' 								
bit 8	IC32: Cascad	e Iwo IC Modu	iles Enable bit	(32-bit operation	DN)	aat in hath mad					
	1 = 1Cx and 10 0 = 1Cx function	ions independe	ntly as a 16-hi	z-bil module (li t module	lis bit must be	set in both mot	ules)				
bit 7		Frigger/Sync Se	elect bit	lineaalo							
Sit 1	1 = Trigger ICx from source designated by SYNCSELx bits										
	0 = Synchron	ize ICx with so	urce designate	d by SYNCSE	Lx bits						
bit 6	TRIGSTAT: Ti	mer Trigger Sta	atus bit								
	1 = Timer sou	urce has been t	triggered and is	s running (set ir	n hardware, ca	n be set in soft	ware)				
	0 = Timer sou	urce has not be	en triggered a	nd is being held	d clear						
bit 5	Unimplement	ted: Read as ')'								
bit 4-0	SYNCSEL<4:	0>: Trigger/Sy	nchronization S	Source Selectio	on bits						
	111111 = Rese	erved									
	11100 = Inpu	t Capture 6									
	11100 = CTM	1U ⁽¹⁾									
	11011 = A/D ⁽	1)									
	11010 = Com	parator $3^{(1)}$									
	11001 = Com	$parator 2^{(1)}$									
	10111 = Inpu	t Capture 4									
	10110 = Inpu	t Capture 3									
	10101 = Inpu	t Capture 2									
	10100 = Inpu	t Capture 1									
	10011 = Inpu	t Capture 8									
	1000x = rese	rved									
	01111 = Time	er5									
	01110 = Time	er4									
	01101 = Time	er3									
	01100 = Time	er1									
	01010 = Inpu	t Capture 5									
	01001 = Outp	out Compare 9									
	01000 = Outp	out Compare 8									
	00111 = Outp	out Compare 7									
	00110 = Outp	out Compare 5									
	00100 = Outp	out Compare 4									
	00011 = Outp	out Compare 3									
	00010 = Outp	out Compare 2									
	00001 = Outp	out Compare 1		dula							
	00000 = NOt	synchronized to	o any other mo	uule							

Note 1: Use these inputs as trigger sources only and never as sync sources.

-											
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
—	—		DISSCK ⁽¹⁾	DISSDO ⁽²⁾	MODE16	SMP	CKE ⁽³⁾				
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
SSEN [®]	CKP	MSTEN	SPRE2	SPRE1	SPRE0	PPRE1	PPRE0				
bit 7							bit 0				
Levend											
R - Road	able bit	M = M/ritabla	hit		ontod hit road	L ac 'O'					
		41' = Bit is set	DIL	$0^{\circ} = \text{Bit is clear}$	ared	v = Bitis unkr					
							lowin				
bit 15-13 Unimplemented: Read as '0'											
bit 12	DISSCK: Dis	able SCKx pin	。 bit (SPI Master	modes only) ⁽¹⁾)						
	1 = Internal S	SPI clock is dis	abled; pin func	tions as I/O							
	0 = Internal S	SPI clock is ena	abled								
bit 11	DISSDO: Dis	able SDOx pin	bit ⁽²⁾								
	1 = SDOx pi	n is not used by	/ module; pin fu	unctions as I/O							
hit 10		ord/Byte Comm	unication Sele	ct bit							
bit io	1 = Commun	nication is word	-wide (16 bits)								
	0 = Commun	nication is byte-	wide (8 bits)								
bit 9	SMP: SPIx D	ata Input Samp	le Phase bit								
	Master mode	- 									
	1 = Input dat 0 = Input dat	a sampled at e	nd of data outp hiddle of data o	out time							
	Slave mode:			aparano							
	SMP must be	cleared when	SPIx is used ir	n Slave mode.							
bit 8	CKE: SPIx C	lock Edge Sele	ct bit ⁽³⁾								
	1 = Serial ou	tput data chang	ges on transitio	on from active c	lock state to Id	le clock state (s	see bit 6)				
hit 7	SSEN. Slave	Select Enable	(Slave mode) l	hit(4)		e clock state (s	see bit 0)				
bit i	$1 = \overline{SSx} pin i$	used for Slave	mode	Sit							
	$0 = \overline{SSx} pin I$	not used by mo	dule; pin contro	olled by port fur	nction						
bit 6	CKP: Clock F	Polarity Select I	pit								
	1 = Idle state	e for clock is a l	nigh level; activ	e state is a low	level						
hit E		tor Mode Enck	ow level, active	e state is a nigh	level						
DIUD	1 = Master m	node									
	0 = Slave mo	ode									
Note 1.		CKy must be c	onfigured to an	available RPn	nin (or to ASC		20				
	Section 10.4 "Pe	eripheral Pin S	elect" for more	e information.							
2:	If DISSDO = 0, S	DOx must be o	onfigured to ar	n available RPn	pin. See Sect	ion 10.4 "Perij	oheral Pin				
~	Select" for more	information.			hand a second						
3:	SPI modes (FRM	ot used in the F IEN = 1).	ramed SPI mo	aes. The user s	noula program	this bit to '0' fo	or the ⊢ramed				
4:	If SSEN = 1, \overline{SSx}	must be confic	jured to an ava	ilable RPn pin.	See Section 1	0.4 "Periphera	al Pin Select"				
	for more informat	iSEN = 1, SSX must be configured to an available RPn pin. See Section 10.4 "Peripheral Pin Select" more information.									

REGISTER 15-2: SPIxCON1: SPIx CONTROL REGISTER 1

FIGURE 15-3: SPI MASTER/SLAVE CONNECTION (STANDARD MODE)

FIGURE 15-4: SPI MASTER/SLAVE CONNECTION (ENHANCED BUFFER MODES)

REGISTER 1	16-1: I2CxC	CON: I2Cx CO	ONTROL REC	GISTER			
R/W-0	U-0	R/W-0	R/W-1, HC	R/W-0	R/W-0	R/W-0	R/W-0
I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN
bit 15					•	•	bit 8
R/W-0	R/W-0	R/W-0	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN
bit 7							bit 0
Legend:		HC = Hardwa	re Clearable bi	t			
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit. read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 15	I2CEN: I2Cx I 1 = Enables ti 0 = Disables I	Enable bit he I2Cx module. A	e and configure III I ² C pins are	es the SDAx an controlled by p	d SCLx pins as ort functions.	s serial port pin	s
bit 14	Unimplemen	ted: Read as					
DIT 13	1 = Discontinues	p in idle Mode ues module op s module opera	Dit eration when d ition in Idle mod	evice enters ar de	Idle mode		
bit 12	SCLREL: SC 1 = Releases 0 = Holds SC If STREN = 1 Bit is R/W (i.e at beginning c If STREN = 0 Bit is R/S (i.e transmission.	Lx Release Co SCLx clock Lx clock low (c ., software ma of slave transm ., software ma	ntrol bit (when lock stretch) y write '0' to ini ission. Hardwa ay only write '1	operating as I ² tiate stretch an re clear at end ' to release cl	C Slave) d write '1' to re of slave recept ock). Hardware	elease clock). H tion. e clear at begi	lardware clear nning of slave
bit 11	IPMIEN: Intel 1 = IPMI Supp 0 = IPMI mod	ligent Peripher port mode is er e disabled	al Managemen nabled; all addr	t Interface (IPM esses Acknowl	1I) Enable bit edged		
bit 10	A10M: 10-Bit 1 = I2CxADD 0 = I2CxADD	Slave Address is a 10-bit slav is a 7-bit slave	ing bit e address address				
bit 9	DISSLW: Disa 1 = Slew rate 0 = Slew rate	able Slew Rate control disable control enable	Control bit d				
bit 8	SMEN: SMBus Input Levels bit 1 = Enables I/O pin thresholds compliant with SMBus specification 0 = Disables SMBus input thresholds						
bit 7	 General Call Enable bit (when operating as I²C slave) 1 = Enables interrupt when a general call address is received in the I2CxRSR (module is enabled for reception) Operating and the set of the set of						
bit 6	STREN: SCL Used in conju 1 = Enables s 0 = Disables s	x Clock Stretch nction with the software or rece software or rec	Enable bit (wh SCLREL bit. eive clock streto eive clock streto	nen operating a ching ching	s I ² C slave)		

REGISTER 17-1: UXMODE: UARTX MODE REGISTER (CONTINUED)

bit 4	RXINV: Receive Polarity Inversion bit 1 = UxRX Idle state is '0' 0 = UxRX Idle state is '1'
bit 3	BRGH: High Baud Rate Enable bit
	1 = High-Speed mode (baud clock generated from FcY/4)0 = Standard mode (baud clock generated from FcY/16)
bit 2-1	PDSEL<1:0>: Parity and Data Selection bits
	 11 = 9-bit data, no parity 10 = 8-bit data, odd parity 01 = 8-bit data, even parity 00 = 8-bit data, no parity
bit 0	STSEL: Stop Bit Selection bit
	1 = Two Stop bits0 = One Stop bit

- **Note 1:** If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn pin. See **Section 10.4 "Peripheral Pin Select"** for more information.
 - 2: This feature is only available for the 16x BRG mode (BRGH = 0).

R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
BUSY	IRQM1	IRQM0	INCM1	INCM0	MODE16	MODE1	MODE0
bit 15							bit 8
DAMA	D /// 0		DANO	DAVA	DAMA	DAALO	DAMA
		R/W-0	R/W-0	R/W-0	R/W-0		
WAITB1	VVAITB0	WAITM3	WAI I M2	WAI I M1	WATTMU	WAITEN	WAITE0
							DIL U
Legend:							
R = Readat	ole bit	W = Writable	bit	U = Unimplen	nented bit, read	1 as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 15 bit 14-13	BUSY: Busy b 1 = Port is bu 0 = Port is no IRQM<1:0>: I	bit (Master moo Isy (not useful It busy nterrupt Reque	le only) when the proce est Mode bits	essor stall is ac	tive)		
	11 = Interrup or on a 10 = No inter 01 = Interrup 00 = No inter	ot generated wh read or write o rrupt generated ot generated at rrupt generated	nen Read Buffe peration when I, processor sta the end of the I	er 3 is read or W PMA<1:0> = 1 all activated read/write cycl	/rite Buffer 3 is 1 (Addressable e	written (Buffere PSP mode or	ed PSP mode), Ily)
bit 12-11	INCM<1:0>:	ncrement Mod	e bits				
	11 = PSP rea 10 = Decrem 01 = Increme 00 = No incre	ad and write bu nent ADDR<10 ent ADDR<10:(ement or decre	uffers auto-incr :0> by 1 every)> by 1 every r ement of addre	ement (Legacy read/write cycl read/write cycle ss	PSP mode on e	ly)	
bit 10	MODE16: 8/1	6-Bit Mode bit					
	1 = 16-bit mo 0 = 8-bit mod	de: Data regist le: Data registe	er is 16 bits; a er is 8 bits; a re	read or write to ad or write to th	the Data regist ne Data registe	ter invokes two r invokes one 8	8-bit transfers 8-bit transfer
bit 9-8	MODE<1:0>:	Parallel Port M	lode Select bit	S			
	11 = Master 10 = Master 01 = Enhanc 00 = Legacy	Mode 1 (PMCS Mode 2 (PMCS ed PSP, contro Parallel Slave	S1, PMRD/PM S1, PMRD <u>, PM</u> ol signals (PMF Port, control s	WR, PMENB, F IWR, PMBE, Pl RD, PMWR, PN ignals (PMRD,	PMBE, PMA <x: MA<x:0> and F ICS1, PMD<7:0 PMWR, PMCS</x:0></x: 	0> and PMD<7 PMD<7:0>) 0> and PMA<1 1 and PMD<7:	':0>) :0>) 0>)
bit 7-6	WAITB<1:0>:	Data Setup to	Read/Write W	ait State Config	guration bits ⁽¹⁾		
	11 = Data wa 10 = Data wa 01 = Data wa 00 = Data wa	ait of 4 TCY; mu ait of 3 TCY; mu ait of 2 TCY; mu ait of 1 TCY; mu	Itiplexed addre Itiplexed addre Itiplexed addre Itiplexed addre	ess phase of 4 ess phase of 3 ess phase of 2 ess phase of 1	TCY TCY TCY TCY		
bit 5-2	WAITM<3:0>	Read to Byte	Enable Strobe	Wait State Cor	nfiguration bits		
	1111 = Wait o	of additional 15	Тсү				
	 0001 = Wait o 0000 = No ad	of additional 1 ⁻ Iditional wait cy	Гсү vcles (operation	n forced into on	ie Tcy) (2)		
bit 1-0	WAITE<1:0>:	Data Hold Afte	er Strobe Wait	State Configura	ation bits ⁽¹⁾		
	11 = Wait of 10 = Wait of 01 = Wait of	4 Tcy 3 Tcy 2 Tcy					
	00 = Wait of	1 ICY					
Note 1: \	VAITB and WAIT	E bits are igno	red whenever	WAITM<3:0> =	0000.		

REGISTER 18-2: PMMODE: PARALLEL MASTER PORT MODE REGISTER

2: A single cycle delay is required between consecutive read and/or write operations.

REGISTER 19-1: RCFGCAL: RTCC CALIBRATION AND CONFIGURATION REGISTER⁽¹⁾ (CONTINUED)

bit 7-0 CAL<7:0>: RTC Drift Calibration bits

...

011111111 = Maximum positive adjustment; adds 508 RTC clock pulses every one minute

00000001 = Minimum positive adjustment; adds 4 RTC clock pulses every one minute

00000000 = No adjustment

11111111 = Minimum negative adjustment; subtracts 4 RTC clock pulses every one minute

10000000 = Maximum negative adjustment; subtracts 512 RTC clock pulses every one minute

- **Note 1:** The RCFGCAL register is only affected by a POR.
 - **2:** A write to the RTCEN bit is only allowed when RTCWREN = 1.
 - **3:** This bit is read-only; it is cleared to '0' on a write to the lower half of the MINSEC register.

REGISTER 19-2: PADCFG1: PAD CONFIGURATION CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
		—	—		_	—	—	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	
—	—	—	—	—	—	RTSECSEL ⁽¹⁾	PMPTTL	
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable I	oit	U = Unimplem	nented bit, rea	d as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown				
bit 15-2	Unimplemen	ted: Read as '0)'					
bit 1	RTSECSEL: RTCC Seconds Clock Output Select bit ⁽¹⁾							
	1 = RTCC seconds clock is selected for the RTCC pin							
	0 = RTCC ala	arm pulse is sel	ected for the F	RTCC pin				
bit 0	PMPTTL: PM	P Module TTL	Input Buffer Se	elect bit				
	1 = PMP module inputs (PMDx, PMCS1) use TTL input buffers							

0 = PMP module inputs use Schmitt Trigger input buffers

Note 1: To enable the actual RTCC output, the RTCOE (RCFGCAL<10>) bit must also be set.

REGISTER 19-10: ALMINSEC: ALARM MINUTES AND SECONDS VALUE REGISTER

U-0	R/W-x						
—	MINTEN2	MINTEN1	MINTEN0	MINONE3	MINONE2	MINONE1	MINONE0
bit 15							bit 8

U-0	R/W-x						
—	SECTEN2	SECTEN1	SECTEN0	SECONE3	SECONE2	SECONE1	SECONE0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as 'O'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	Unimplemented: Read as '0'
bit 14-12	MINTEN<2:0>: Binary Coded Decimal Value of Minute's Tens Digit bits Contains a value from 0 to 5.
bit 11-8	MINONE<3:0>: Binary Coded Decimal Value of Minute's Ones Digit bits
	Contains a value from 0 to 9.
bit 7	Unimplemented: Read as '0'
bit 6-4	SECTEN<2:0>: Binary Coded Decimal Value of Second's Tens Digit bits
	Contains a value from 0 to 5.
bit 3-0	SECONE<3:0>: Binary Coded Decimal Value of Second's Ones Digit bits
	Contains a value from 0 to 9.

19.2 Calibration

The real-time crystal input can be calibrated using the periodic auto-adjust feature. When properly calibrated, the RTCC can provide an error of less than 3 seconds per month. This is accomplished by finding the number of error clock pulses for one minute and storing the value into the lower half of the RCFGCAL register. The 8-bit signed value loaded into the lower half of RCFGCAL is multiplied by four and will be either added or subtracted from the RTCC timer, once every minute. Refer to the steps below for RTCC calibration:

- 1. Using another timer resource on the device, the user must find the error of the 32.768 kHz crystal.
- 2. Once the error is known, it must be converted to the number of error clock pulses per minute and loaded into the RCFGCAL register.

EQUATION 19-1: RTCC CALIBRATION

Error (Clocks per Minute) = (Ideal Frequency[†] – Measured Frequency) * 60 = Clocks per Minute † Ideal frequency = 32,768 Hz 3. a) If the oscillator is faster then ideal (negative result form Step 2), the RCFGCAL register value needs to be negative. This causes the specified number of clock pulses to be subtracted from the timer counter once every minute.

b) If the oscillator is slower then ideal (positive result from Step 2) the RCFGCAL register value needs to be positive. This causes the specified number of clock pulses to be added from the timer counter once every minute.

 Divide the number of error clocks per minute by 4 to get the correct CAL value and load the RCFGCAL register with the correct value.

(Each 1-bit increment in CAL adds or subtracts 4 pulses.)

Writes to the lower half of the RCFGCAL register should only occur when the timer is turned off, or immediately after the rising edge of the seconds pulse.

Note: It is up to the user to include in the error value the initial error of the crystal, drift due to temperature and drift due to crystal aging.

R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
ADON ⁽¹⁾		ADSIDL	_	—	—	FORM1	FORM0
bit 15							bit 8
R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0, HCS	R-0, HCS
SSRC2	SSRC1	SSRC0	_	—	ASAM	SAMP	DONE
bit 7					-	· · · · ·	bit 0
Legend:		HCS = Hardwa	are Clearable/	Settable bit			
R = Readable	e bit	W = Writable I	oit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkno	own
bit 15	ADON: A/D C 1 = A/D Conv 0 = A/D Conv	Operating Mode verter module is verter is off	bit ⁽¹⁾ operating				
bit 14	Unimplemen	ted: Read as '0)'				
bit 13	ADSIDL: Stop	p in Idle Mode b	bit				
	1 = Discontin 0 = Continue	ue module ope module operat	ration when de	evice enters Id le	le mode		
bit 12-10	Unimplemen	ted: Read as '0)'				
bit 9-8	FORM<1:0>:	Data Output Fo	ormat bits				
	11 = Signed f 10 = Fractiona 01 = Signed i 00 = Integer (ractional (sddd al (dddd dddd nteger (ssss s (0000 00dd d	. dddd dd00 dd00 0000) sssd dddd d ddd dddd)	0000)) ddd)			
bit 7-5	SSRC<2:0>:	Conversion Trig	ger Source Se	elect bits			
	bit 7-5 SSRC<2:0>: Conversion Trigger Source Select bits 111 = Internal counter ends sampling and starts conversion (auto-convert) 110 = CTMU event ends sampling and starts conversion 101 = Reserved 100 = Timer5 compare ends sampling and starts conversion 011 = Reserved 010 = Timer3 compare ends sampling and starts conversion 011 = Reserved 010 = Timer3 compare ends sampling and starts conversion 011 = Active transition on INTO pin ends sampling and starts conversion 000 = Clearing SAMP bit ends sampling and starts conversion						
bit 4-3	Unimplemen	ted: Read as 'o)'				
bit 2	ASAM: A/D Sample Auto-Start bit 1 = Sampling begins immediately after last conversion completes; SAMP bit is auto-set 0 = Sampling begins when the SAMP bit is set						
bit 1	SAMP: A/D S	ample Enable b	oit				
	1 = A/D samp 0 = A/D samp	ble/hold amplifie ble/hold amplifie	r is sampling i r is holding	nput			
bit 0	DONE: A/D C	Conversion Statu	us bit				
	1 = A/D conve 0 = A/D conve	ersion is done ersion is NOT d	one				
			ull mot votoin th			tia alaarad Daa	

REGISTER 21-1: AD1CON1: A/D CONTROL REGISTER 1

Note 1: Values of ADC1BUFx registers will not retain their values once the ADON bit is cleared. Read out the conversion values from the buffer before disabling the module.

REGISTER 21-2: AD1CON2: A/D CONTROL REGISTER 2

R/W-0	R/W-0	R/W-0	r-0	U-0	R/W-0	U-0	U-0
VCFG2	VCFG1	VCFG0	r	—	CSCNA	—	—
bit 15							bit 8

R-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
BUFS	—	SMPI3	SMPI2	SMPI1	SMPI0	BUFM	ALTS
bit 7							bit 0

Legend:	r = Reserved bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13

VCFG<2:0>: Voltage Reference Configuration bits

VCFG<2:0>	VR+	VR-		
000	AVDD	AVss		
001	External VREF+ pin	AVss		
010	AVDD	External VREF- pin		
011	External VREF+ pin	External VREF- pin		
1xx	AVdd	AVss		

- bit 12 Reserved: Maintain as '0'
- bit 11 Unimplemented: Read as '0'
- bit 10 **CSCNA:** Scan Input Selections for S/H Positive Input for MUX A Input Multiplexer Setting bit 1 = Scan inputs 0 = Do not scan inputs
- bit 9-8 Unimplemented: Read as '0'
- bit 7 **BUFS:** Buffer Fill Status bit (valid only when BUFM = 1)
 - 1 = A/D is currently filling buffer 08-0F, user should access data in 00-07
 - 0 = A/D is currently filling buffer 00-07, user should access data in 08-0F
- bit 6 Unimplemented: Read as '0'
- bit 5-2 SMPI<3:0>: Sample/Convert Sequences Per Interrupt Selection bits
 - 1111 = Interrupts at the completion of conversion for each 16th sample/convert sequence
 - 1110 = Interrupts at the completion of conversion for each 15th sample/convert sequence
 - 0001 = Interrupts at the completion of conversion for each 2nd sample/convert sequence
 0000 = Interrupts at the completion of conversion for each sample/convert sequence
- bit 1 BUFM: Buffer Mode Select bit
 - 1 = Buffer configured as two 8-word buffers (ADC1BUFn<15:8> and ADC1BUFn<7:0>)
 - 0 = Buffer configured as one 16-word buffer (ADC1BUFn<15:0>)
- bit 0 ALTS: Alternate Input Sample Mode Select bit
 - 1 = Uses MUX A input multiplexer settings for first sample, then alternates between MUX B and MUX A input multiplexer settings for all subsequent samples
 - 0 = Always uses MUX A input multiplexer settings

27.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers and dsPIC[®] digital signal controllers are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB C Compiler for Various Device Families
 - HI-TECH C for Various Device Families
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- · Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers
 - MPLAB ICD 3
 - PICkit™ 3 Debug Express
- Device Programmers
 - PICkit[™] 2 Programmer
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits, and Starter Kits

27.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16/32-bit microcontroller market. The MPLAB IDE is a Windows[®] operating system-based application that contains:

- A single graphical interface to all debugging tools
 - Simulator
 - Programmer (sold separately)
 - In-Circuit Emulator (sold separately)
 - In-Circuit Debugger (sold separately)
- A full-featured editor with color-coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- · High-level source code debugging
- · Mouse over variable inspection
- Drag and drop variables from source to watch windows
- · Extensive on-line help
- Integration of select third party tools, such as IAR C Compilers

The MPLAB IDE allows you to:

- Edit your source files (either C or assembly)
- One-touch compile or assemble, and download to emulator and simulator tools (automatically updates all project information)
- Debug using:
 - Source files (C or assembly)
 - Mixed C and assembly
 - Machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.

TABLE 28-19: ADC MODULE SPECIFICATIONS

AC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 2.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$							
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions		
			Device \$	Supply					
AD01	AVDD	Module VDD Supply	Greater of VDD – 0.3 or 2.0	_	Lesser of VDD + 0.3 or 3.6	V			
AD02	AVss	Module Vss Supply	Vss – 0.3		Vss + 0.3	V			
Reference Inputs									
AD05	Vrefh	Reference Voltage High	AVss + 1.7		AVDD	V			
AD06	Vrefl	Reference Voltage Low	AVss	_	AVDD – 1.7	V			
AD07	VREF	Absolute Reference Voltage	AVss – 0.3	_	AVDD + 0.3	V			
AD08	IVREF	Reference Voltage Input Current	_	—	1.25	mA	(Note 3)		
AD09	ZVREF	Reference Input Impedance	_	10K	_	Ω	(Note 4)		
Analog Input									
AD10	VINH-VINL	Full-Scale Input Span	VREFL	_	VREFH	V	(Note 2)		
AD11	VIN	Absolute Input Voltage	AVss - 0.3		AVDD + 0.3	V			
AD12	VINL	Absolute VINL Input Voltage	AVss – 0.3		AVDD/2	V			
AD17	Rin	Recommended Impedance of Analog Voltage Source	—		2.5K	Ω	10-bit		
	ADC Accuracy								
AD20b	NR	Resolution	—	10	—	bits			
AD21b	INL	Integral Nonlinearity	_	±1	<±2	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V		
AD22b	DNL	Differential Nonlinearity	—	±0.5	<±1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V		
AD23b	Gerr	Gain Error	_	±1	±3	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V		
AD24b	EOFF	Offset Error	—	±1	±2	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V		
AD25b	_	Monotonicity ⁽¹⁾	_	_	_		Guaranteed		

Note 1: The ADC conversion result never decreases with an increase in the input voltage and has no missing codes.

2: Measurements taken with external VREF+ and VREF- are used as the ADC voltage reference.

3: External reference voltage applied to VREF+/- pins. IVREF is current during conversion at 3.3V, 25°C. Parameter is for design guidance only and is not tested.

4: Impedance during sampling is at 3.3V, 25°C. Parameter is for design guidance only and is not tested.