

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	69
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj128ga108-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

REGISTER 3-2: CORCON: CPU CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	-	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	R/C-0	R/W-0	U-0	U-0

00	00	00	00	1000	10000	00	00
_	—			IPL3 ⁽¹⁾	PSV		—
bit 7							bit 0

Legend:	C = Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-4 Unimplemented: Read as '0'

- bit 3IPL3: CPU Interrupt Priority Level Status bit⁽¹⁾1 = CPU interrupt priority level is greater than 70 = CPU interrupt priority level is 7 or lessbit 2PSV: Program Space Visibility in Data Space Enable bit1 = Program space visible in data space0 = Program space not visible in data spacebit 1-0Unimplemented: Read as '0'
- **Note 1:** User interrupts are disabled when IPL3 = 1.

4.2.2 DATA MEMORY ORGANIZATION AND ALIGNMENT

To maintain backward compatibility with PIC^{\circledast} devices and improve data space memory usage efficiency, the PIC24F instruction set supports both word and byte operations. As a consequence of byte accessibility, all Effective Address (EA) calculations are internally scaled to step through word-aligned memory. For example, the core recognizes that Post-Modified Register Indirect Addressing mode [Ws++] will result in a value of Ws + 1 for byte operations and Ws + 2 for word operations.

Data byte reads will read the complete word which contains the byte, using the LSb of any EA to determine which byte to select. The selected byte is placed onto the LSB of the data path. That is, data memory and registers are organized as two parallel, byte-wide entities with shared (word) address decode, but separate write lines. Data byte writes only write to the corresponding side of the array or register which matches the byte address.

All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, so care must be taken when mixing byte and word operations or translating from 8-bit MCU code. If a misaligned read or write is attempted, an address error trap will be generated. If the error occurred on a read, the instruction underway is completed; if it occurred on a write, the instruction will be executed but the write will not occur. In either case, a trap is then executed, allowing the system and/or user to examine the machine state prior to execution of the address Fault.

All byte loads into any W register are loaded into the Least Significant Byte. The Most Significant Byte is not modified.

A Sign-Extend (SE) instruction is provided to allow users to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, users can clear the MSB of any W register by executing a Zero-Extend (ZE) instruction on the appropriate address.

Although most instructions are capable of operating on word or byte data sizes, it should be noted that some instructions operate only on words.

4.2.3 NEAR DATA SPACE

The 8-Kbyte area between 0000h and 1FFFh is referred to as the near data space. Locations in this space are directly addressable via a 13-bit absolute address field within all memory direct instructions. The remainder of the data space is indirectly addressable. Additionally, the whole data space is addressable using MOV instructions, which support Memory Direct Addressing with a 16-bit address field.

4.2.4 SFR SPACE

The first 2 Kbytes of the near data space, from 0000h to 07FFh, are primarily occupied with Special Function Registers (SFRs). These are used by the PIC24F core and peripheral modules for controlling the operation of the device.

SFRs are distributed among the modules that they control and are generally grouped together by module. Much of the SFR space contains unused addresses; these are read as '0'. A diagram of the SFR space, showing where SFRs are actually implemented, is shown in Table 4-2. Each implemented area indicates a 32-byte region where at least one address is implemented as an SFR. A complete listing of implemented SFRs, including their addresses, is shown in Tables 4-3 through 4-29.

	SFR Space Address												
	xx00	xx20	xx40	xx60	xx	80	xxA0	xxC0	xxE0				
000h		Core		ICN			Interrupts		_				
100h	Tim	ners	(Capture			C	ompare					
200h	l ² C™	UART	UART SPI/UART		SPI		UART I/		0				
300h	A/D	A/D/CTMU	_	_	—		—		_				
400h	_	—	_	_	_	_			_				
500h	-	—	_	_	_	_	—	—	_				
600h	PMP RTC/Comp CRC		CRC	_			PPS		—				
700h	_	—	System	NVM/PMD	_	_	—	_	—				

TABLE 4-2:IMPLEMENTED REGIONS OF SFR DATA SPACE

Legend: — = No implemented SFRs in this block

TABLE 4-10: UART REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1MODE	0220	UARTEN	_	USIDL	IREN	RTSMD	_	UEN1	UEN0	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U1STA	0222	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U1TXREG	0224	—	_	—	—	—	—	—				Tra	nsmit Regis	ter				xxxx
U1RXREG	0226	—	_	—	—	—	—	—				Re	ceive Regist	er				0000
U1BRG	0228							Bau	d Rate Gen	erator Presc	aler							0000
U2MODE	0230	UARTEN	_	USIDL	IREN	RTSMD	_	UEN1	UEN0	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U2STA	0232	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U2TXREG	0234	_		_	—	—	—					Tra	nsmit Regis	ter				xxxx
U2RXREG	0236	—	_	_	_	—	_	_				Re	ceive Regist	er				0000
U2BRG	0238							Bau	d Rate Gen	erator Presc	aler							0000
U3MODE	0250	UARTEN	_	USIDL	IREN	RTSMD	_	UEN1	UEN0	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U3STA	0252	UTXISEL1	UTXINV	UTXISEL0	—	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U3TXREG	0254	—		—	—	—	_	_				Tra	nsmit Regis	ter				xxxx
U3RXREG	0256	—	-	_	—	—	—	-				Re	ceive Regist	er				0000
U3BRG	0258							Bau	d Rate Gen	erator Presc	aler							0000
U4MODE	02B0	UARTEN		USIDL	IREN	RTSMD		UEN1	UEN0	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U4STA	02B2	UTXISEL1	UTXINV	UTXISEL0	—	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U4TXREG	02B4								xxxx									
U4RXREG	02B6	—	Receive Register 000								0000							
U4BRG	02B8							Bau	d Rate Gen	erator Presc	aler							0000
Legend:	= uni	mplemented.	read as '∩'	Reset value	s are show	n in hevade	cimal											

ed, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-11: SPI REGISTER MAP

		••••		• ••••														
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI1STAT	0240	SPIEN	_	SPISIDL	—	—	SPIBEC2	SPIBEC1	SPIBEC0	SRMPT	SPIROV	SRXMPT	SISEL2	SISEL1	SISEL0	SPITBF	SPIRBF	0000
SPI1CON1	0242	_	_	—	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN	SPRE2	SPRE1	SPRE0	PPRE1	PPRE0	0000
SPI1CON2	0244	FRMEN	SPIFSD	SPIFPOL	—	—	—	—	—	_	—	—	_	—	_	SPIFE	SPIBEN	0000
SPI1BUF	0248							Tra	ansmit and I	Receive Bu	ffer							0000
SPI2STAT	0260	SPIEN		SPISIDL		—	SPIBEC2	SPIBEC1	SPIBEC0	SRMPT	SPIROV	SRXMPT	SISEL2	SISEL1	SISEL0	SPITBF	SPIRBF	0000
SPI2CON1	0262	—	_	—	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN	SPRE2	SPRE1	SPRE0	PPRE1	PPRE0	0000
SPI2CON2	0264	FRMEN	SPIFSD	SPIFPOL	_	_	_	_	—	_	_	—	_	_	_	SPIFE	SPIBEN	0000
SPI2BUF	0268		•	•		•	•	Tra	ansmit and I	Receive Bu	ffer	•		•		•	•	0000
SPI3STAT	0280	SPIEN		SPISIDL		—	SPIBEC2	SPIBEC1	SPIBEC0	SRMPT	SPIROV	SRXMPT	SISEL2	SISEL1	SISEL0	SPITBF	SPIRBF	0000
SPI3CON1	0282	_	_	—	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN	SPRE2	SPRE1	SPRE0	PPRE1	PPRE0	0000
SPI3CON2	0284	FRMEN	SPIFSD	SPIFPOL	—	—	_	—	—		_	—		_	_	SPIFE	SPIBEN	0000
SPI3BUF	0288		•	•		•		Tra	ansmit and I	Receive Bu	ffer	•			•	•	•	0000
Legend:	- 110	implomente	d road as	'n' Posot w	aluos aro st	own in hov	adacimal											

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

5.2 RTSP Operation

The PIC24F Flash program memory array is organized into rows of 64 instructions or 192 bytes. RTSP allows the user to erase blocks of eight rows (512 instructions) at a time and to program one row at a time. It is also possible to program single words.

The 8-row erase blocks and single row write blocks are edge-aligned, from the beginning of program memory, on boundaries of 1536 bytes and 192 bytes, respectively.

When data is written to program memory using TBLWT instructions, the data is not written directly to memory. Instead, data written using table writes is stored in holding latches until the programming sequence is executed.

Any number of TBLWT instructions can be executed and a write will be successfully performed. However, 64 TBLWT instructions are required to write the full row of memory.

To ensure that no data is corrupted during a write, any unused addresses should be programmed with FFFFFFh. This is because the holding latches reset to an unknown state, so if the addresses are left in the Reset state, they may overwrite the locations on rows which were not rewritten.

The basic sequence for RTSP programming is to set up a Table Pointer, then do a series of TBLWT instructions to load the buffers. Programming is performed by setting the control bits in the NVMCON register.

Data can be loaded in any order and the holding registers can be written to multiple times before performing a write operation. Subsequent writes, however, will wipe out any previous writes.

Note: Writing to a location multiple times without erasing is *not* recommended.

All of the table write operations are single-word writes (2 instruction cycles), because only the buffers are written. A programming cycle is required for programming each row.

5.3 JTAG Operation

The PIC24F family supports JTAG boundary scan. Boundary scan can improve the manufacturing process by verifying pin to PCB connectivity.

5.4 Enhanced In-Circuit Serial Programming

Enhanced In-Circuit Serial Programming uses an on-board bootloader, known as the program executive, to manage the programming process. Using an SPI data frame format, the program executive can erase, program and verify program memory. For more information on Enhanced ICSP, see the device programming specification.

5.5 Control Registers

There are two SFRs used to read and write the program Flash memory: NVMCON and NVMKEY.

The NVMCON register (Register 5-1) controls which blocks are to be erased, which memory type is to be programmed and when the programming cycle starts.

NVMKEY is a write-only register that is used for write protection. To start a programming or erase sequence, the user must consecutively write 55h and AAh to the NVMKEY register. Refer to **Section 5.6 "Programming Operations"** for further details.

5.6 Programming Operations

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. During a programming or erase operation, the processor stalls (waits) until the operation is finished. Setting the WR bit (NVMCON<15>) starts the operation and the WR bit is automatically cleared when the operation is finished.

FIGURE 7-1: PIC24F INTERRUPT VECTOR TABLE

		7	
	Reset – GOTO Instruction	000000h	
	Reset – GOTO Address	000002h	
	Reserved	000004h	
	Oscillator Fail Trap Vector	_	
	Address Error Trap Vector	_	
	Stack Error Trap Vector		
	Math Error Trap Vector	_	
	Reserved	_	
	Reserved		
	Reserved Interrupt Vector 0	000014h	-
	Interrupt Vector 0	00001411	
		_	
		_	
		-	
	Interrupt Vector 52	00007Ch	
ity	Interrupt Vector 52	00007Eh	Interrupt Vector Table (IVT) ⁽¹⁾
lior	Interrupt Vector 54	000080h	
Ē		00000011	
de de		_	
ō			
ral	Interrupt Vector 116	0000FCh	
atu	Interrupt Vector 117	0000FEh	
Decreasing Natural Order Priority	Reserved	000100h	
sing	Reserved	000102h	
eac	Reserved		
scr	Oscillator Fail Trap Vector		
ă	Address Error Trap Vector		
	Stack Error Trap Vector		
	Math Error Trap Vector		
	Reserved		
	Reserved		7
	Reserved		
	Interrupt Vector 0	000114h	
	Interrupt Vector 1		
	—		
	—		
	—	0004701	Alternate Interrupt Vector Table (AIVT) ⁽¹⁾
	Interrupt Vector 52	00017Ch	
	Interrupt Vector 53	00017Eh	
	Interrupt Vector 54	000180h	
	—	4	
	—	-	
	Interrupt Vector 116	-	
↓	Interrupt Vector 117	0001FEh	
۲	Start of Code	0001FEN 000200h	
		100020011	
Note 1: S	See Table 7-2 for the interrupt vector	or list.	

TABLE 7-1: TRAP VECTOR DETAILS

Vector Number	IVT Address	AIVT Address	Trap Source
0	000004h	000104h	Reserved
1	000006h	000106h	Oscillator Failure
2	000008h	000108h	Address Error
3	00000Ah	00010Ah	Stack Error
4	00000Ch	00010Ch	Math Error
5	00000Eh	00010Eh	Reserved
6	000010h	000110h	Reserved
7	000012h	000112h	Reserved

Interrupt Source	Vector	IVT Address	AIVT	Inte	errupt Bit Locat	ions
interrupt Source	Number	IVI Address	Address	Flag	Enable	Priority
ADC1 Conversion Done	13	00002Eh	00012Eh	IFS0<13>	IEC0<13>	IPC3<6:4>
Comparator Event	18	000038h	000138h	IFS1<2>	IEC1<2>	IPC4<10:8>
CRC Generator	67	00009Ah	00019Ah	IFS4<3>	IEC4<3>	IPC16<14:12>
CTMU Event	77	0000AEh	0001AEh	IFS4<13>	IEC4<13>	IPC19<6:4>
External Interrupt 0	0	000014h	000114h	IFS0<0>	IEC0<0>	IPC0<2:0>
External Interrupt 1	20	00003Ch	00013Ch	IFS1<4>	IEC1<4>	IPC5<2:0>
External Interrupt 2	29	00004Eh	00014Eh	IFS1<13>	IEC1<13>	IPC7<6:4>
External Interrupt 3	53	00007Eh	00017Eh	IFS3<5>	IEC3<5>	IPC13<6:4>
External Interrupt 4	54	000080h	000180h	IFS3<6>	IEC3<6>	IPC13<10:8>
I2C1 Master Event	17	000036h	000136h	IFS1<1>	IEC1<1>	IPC4<6:4>
I2C1 Slave Event	16	000034h	000134h	IFS1<0>	IEC1<0>	IPC4<2:0>
I2C2 Master Event	50	000078h	000178h	IFS3<2>	IEC3<2>	IPC12<10:8>
I2C2 Slave Event	49	000076h	000176h	IFS3<1>	IEC3<1>	IPC12<6:4>
I2C3 Master Event	85	0000BEh	0001BEh	IFS5<5>	IEC5<5>	IPC21<6:4>
I2C3 Slave Event	84	0000BCh	0001BCh	IFS5<4>	IEC5<4>	IPC21<2:0>
Input Capture 1	1	000016h	000116h	IFS0<1>	IEC0<1>	IPC0<6:4>
Input Capture 2	5	00001Eh	00011Eh	IFS0<5>	IEC0<5>	IPC1<6:4>
Input Capture 3	37	00005Eh	00015Eh	IFS2<5>	IEC2<5>	IPC9<6:4>
Input Capture 4	38	000060h	000160h	IFS2<6>	IEC2<6>	IPC9<10:8>
Input Capture 5	39	000062h	000162h	IFS2<7>	IEC2<7>	IPC9<14:12>
Input Capture 6	40	000064h	000164h	IFS2<8>	IEC2<8>	IPC10<2:0>
Input Capture 7	22	000040h	000140h	IFS1<6>	IEC1<6>	IPC5<10:8>
Input Capture 8	23	000042h	000142h	IFS1<7>	IEC1<7>	IPC5<14:12>
Input Capture 9	93	0000CEh	0001CEh	IFS5<13>	IEC5<13>	IPC23<6:4>
Input Change Notification	19	00003Ah	00013Ah	IFS1<3>	IEC1<3>	IPC4<14:12>
LVD Low-Voltage Detect	72	0000A4h	0001A4h	IFS4<8>	IEC4<8>	IPC18<2:0>
Output Compare 1	2	000018h	000118h	IFS0<2>	IEC0<2>	IPC0<10:8>
Output Compare 2	6	000020h	000120h	IFS0<6>	IEC0<6>	IPC1<10:8>
Output Compare 3	25	000046h	000146h	IFS1<9>	IEC1<9>	IPC6<6:4>
Output Compare 4	26	000048h	000148h	IFS1<10>	IEC1<10>	IPC6<10:8>
Output Compare 5	41	000066h	000166h	IFS2<9>	IEC2<9>	IPC10<6:4>
Output Compare 6	42	000068h	000168h	IFS2<10>	IEC2<10>	IPC10<10:8>
Output Compare 7	43	00006Ah	00016Ah	IFS2<11>	IEC2<11>	IPC10<14:12>
Output Compare 8	44	00006Ch	00016Ch	IFS2<12>	IEC2<12>	IPC11<2:0>
Output Compare 9	92	0000CCh	0001CCh	IFS5<12>	IEC5<12>	IPC23<2:0>
Parallel Master Port	45	00006Eh	00016Eh	IFS2<13>	IEC2<13>	IPC11<6:4>
Real-Time Clock/Calendar	62	000090h	000190h	IFS3<14>	IEC3<14>	IPC15<10:8>
SPI1 Error	9	000026h	000126h	IFS0<9>	IEC0<9>	IPC2<6:4>
SPI1 Event	10	000028h	000128h	IFS0<10>	IEC0<10>	IPC2<10:8>
SPI2 Error	32	000054h	000154h	IFS2<0>	IEC2<0>	IPC8<2:0>
SPI2 Event	33	000056h	000156h	IFS2<1>	IEC2<1>	IPC8<6:4>
SPI3 Error	90	0000C8h	0001C8h	IFS5<10>	IEC5<10>	IPC22<10:8>
SPI3 Event	91	0000CAh	0001CAh	IFS5<11>	IEC5<11>	IPC22<14:12>

TABLE 7-2:	IMPLEMENTED INTERRUPT VECTORS
-------------------	-------------------------------

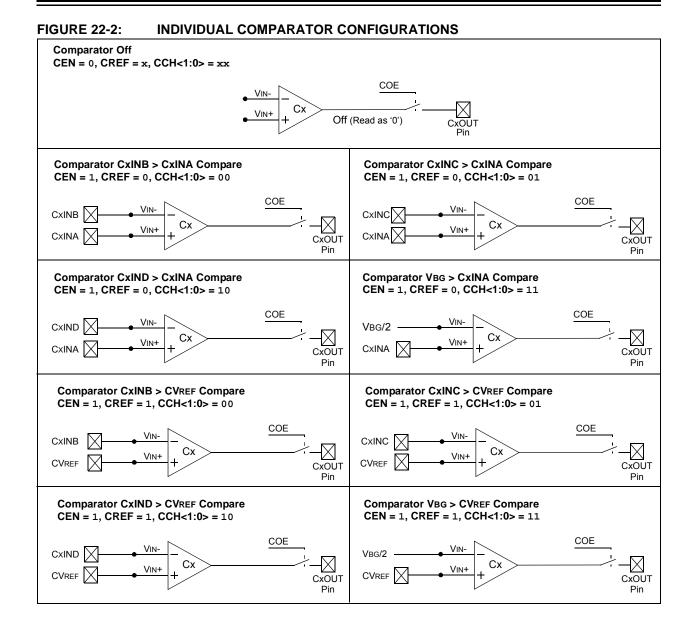
R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
NSTDIS	—			—	—	—	—					
bit 15							bit 8					
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0					
	—		MATHERR	ADDRERR	STKERR	OSCFAIL	—					
bit 7							bit 0					
Legend:												
R = Readab	ole bit	W = Writable	bit	U = Unimplem		d as '0'						
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ired	x = Bit is unkno	own					
bit 15		rrupt Nesting E										
		nesting is disat nesting is enab										
bit 14-5	Unimplement	ted: Read as '	0'									
bit 4	MATHERR: A	rithmetic Error	Trap Status bi	t								
		trap has occur trap has not oc										
bit 3		Address Error										
DIL D		error trap has c	•									
		error trap has c										
bit 2	STKERR: Sta	ick Error Trap	Status bit									
	1 = Stack erro											
	0 = Stack erro	or trap has not	occurred									
bit 1		DSCFAIL: Oscillator Failure Trap Status bit										
		failure trap ha										
1.1.0			s not occurred									
bit 0	Unimplement	ted: Read as '	0.									

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1

	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0		
—	CRCIP2	CRCIP1	CRCIP0	_	U2ERIP2	U2ERIP1	U2ERIP0		
bit 15							bit 8		
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0		
_	U1ERIP2	U1ERIP1	U1ERIP0	—	_	—	_		
bit 7							bit (
Legend:									
R = Readab	le bit	W = Writable I	oit	U = Unimpler	mented bit, read	l as '0'			
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 15	Unimplemen	ted: Read as 'o)'						
bit 14-12	CRCIP<2:0>:	CRC Generato	or Error Interru	pt Priority bits					
	111 = Interru	pt is priority 7 (ł	nighest priority	interrupt)					
	•								
	•								
	001 = Interru 000 = Interru	pt is priority 1 pt source is disa	abled						
bit 11		ted: Read as '0							
bit 10-8	U2ERIP<2:0>: UART2 Error Interrupt Priority bits								
	111 = Interrupt is priority 7 (highest priority interrupt)								
	•								
	•								
	•								
	001 = Interru	pt is priority 1							
	001 = Interru 000 = Interru	pt is priority 1 pt source is disa	abled						
oit 7	000 = Interru								
	000 = Interru Unimplemen	pt source is disa)'	rity bits					
	000 = Interru Unimplemen U1ERIP<2:0>	pt source is disa ted: Read as 'o) [,] Interrupt Prio	•					
	000 = Interru Unimplemen U1ERIP<2:0>	pt source is disa t ed: Read as '0 >: UART1 Error) [,] Interrupt Prio	•					
bit 7 bit 6-4	000 = Interru Unimplemen U1ERIP<2:0> 111 = Interru • •	pt source is disa ted: Read as 'co >: UART1 Error pt is priority 7 (h) [,] Interrupt Prio	•					
	000 = Interru Unimplemen U1ERIP<2:0> 111 = Interru • • • 001 = Interru	pt source is disa ted: Read as 'co >: UART1 Error pt is priority 7 (h) [,] Interrupt Prio highest priority	•					

REGISTER 7-32: IPC16: INTERRUPT PRIORITY CONTROL REGISTER 16

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
TON		TSIDL	—	_	_	—	_
bit 15							bit
U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0
	TGATE	TCKPS1	TCKPS0	T32 ⁽¹⁾	_	TCS ⁽²⁾	
bit 7							bi
Lonondi							
Legend: R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
R = Readable bit -n = Value at POR		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkne	own
bit 15		<u>N<3> = 1:</u> 2-bit Timerx/y 2-bit Timerx/y <u>N<3> = 0:</u> 6-bit Timerx					
oit 14	-	nted: Read as '	0'				
pit 13	-	in Idle Mode bi					
	1 = Discontir	nue module ope module operat	ration when de		e mode		
bit 12-7	Unimpleme	nted: Read as '	0'				
oit 6	-	erx Gated Time	Accumulation I	Enable bit			
		nored.					
bit 5-4	TCKPS<1:0 : 11 = 1:256 10 = 1:64 01 = 1:8 00 = 1:1	>: Timerx Input	Clock Prescale	Select bits			
bit 3	T32: 32-Bit 1	imer Mode Sel	ect bit ⁽¹⁾				
	0 = Timerx a	and Timery form and Timery act a de, T3CON cont	as two 16-bit tim	ners	er operation.		
oit 2	Unimpleme	nted: Read as '	0'		·		
oit 1	1 = Externa	Clock Source S Il clock from pin clock (Fosc/2)		rising edge)			
bit 0	Unimpleme	nted: Read as '	0'				
Note 1: Ir	n 32-bit mode, t	he T3CON or T	5CON control b	its do not affec	t 32-bit timer (operation.	
2: If		IRx (TxCK) mus	st be configured			more informatic	on, see
		lue of TxCON w		s runnina (TON	= 1) causes t	he timer prescal	o countor t


3: Changing the value of TxCON while the timer is running (TON = 1) causes the timer prescale counter to reset and is not recommended.

R/W-0	U-0	R/W-0	U-0	U-0	R-0	R-0	R-0
SPIEN ⁽¹⁾		SPISIDL	_	_	SPIBEC2	SPIBEC1	SPIBEC0
bit 15	·						bit
R-0	R/C-0, HS	R-0	R/W-0	R/W-0	R/W-0	R-0	R-0
SRMPT	SPIROV	SRXMPT	SISEL2	SISEL1	SISEL0	SPITBF	SPIRBF
bit 7	1						bit
Legend:		C = Clearable	bit	HS = Hardwa	re Settable bit		
R = Readabl	le bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	SPIEN: SPIx 1 = Enables n 0 = Disables r	nodule and cor	figures SCKx,	SDOx, SDIx a	nd SSx as seria	al port pins	
bit 14	Unimplemen	ted: Read as ')'				
bit 13	SPISIDL: Sto	p in Idle Mode	bit				
		ue module oper module operati			e mode		
bit 12-11	Unimplemen	ted: Read as ')'				
bit 10-8	<u>Master mode:</u> Number of SF <u>Slave mode:</u>	>: SPIx Buffer E	ding.	bits (valid in E	nhanced Buffer	mode)	
bit 7	SRMPT: Shift	Register (SPIx	SR) Empty bit	(valid in Enhar	nced Buffer mo	de)	
		ft register is em ft register is not		to send or rece	eive		
bit 6	1 = A new by	eive Overflow te/word is comp e SPIxBUF reg	letely received	l and discarded	. The user softw	vare has not rea	ad the previou
	0 = No overfl	ow has occurre	ed				
bit 5		ceive FIFO Em	pty bit (valid in	Enhanced Buf	fer mode)		
		FIFO is empty FIFO is not em	ntv				
bit 4-2		SPIx Buffer Int		its (valid in Enh	anced Buffer m	node)	
	111 = Interru 110 = Interru 101 = Interru 100 = Interru 011 = Interru 010 = Interru 001 = Interru	pt when SPIx to pt when last bit pt when the las pt when one da pt when SPIx r pt when SPIx r pt when data is pt when the la	ansmit buffer i is shifted into t bit is shifted in ata is shifted in eceive buffer is eceive buffer is available in re	is full (SPITBF SPIxSR; as a rout of SPIxSR; to the SPIxSR; s full (SPIRBF I s 3/4 or more fue cecive buffer (S	bit is set) result, the TX F now the transr as a result, the bit set) ill RMPT bit is se	IFO is empty nit is complete e TX FIFO has t)	

R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
ADON ⁽¹⁾	—	ADSIDL	—	—	—	FORM1	FORM0
bit 15							bit 8
R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0, HCS	R-0, HCS
SSRC2	SSRC1	SSRC0		<u> </u>	ASAM	SAMP	DONE
bit 7							bit 0
Legend:		HCS = Hardw	are Clearable/	Settable bit			
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15		perating Mode					
	1 = A/D Conv0 = A/D Conv	verter module is	soperating				
L:1 4 4			. ,				
bit 14	-	ted: Read as '(
bit 13	-	o in Idle Mode k		evice enters Idle	mada		
		module operat			emode		
bit 12-10		ted: Read as '					
bit 9-8	-	Data Output Fo					
		ractional (sddd		0000)			
	10 = Fraction	al (dddd dddd	dd00 0000))			
		nteger (ssss		ddd)			
		0000 00dd d	-				
bit 7-5		Conversion Tri					
		event ends sar		starts conversion	on (auto-conve	π)	
	101 = Reserv		inpling and old				
			sampling and	starts conversi	on		
	011 = Reserv		sampling and	starts conversi	00		
				ampling and sta			
				nd starts conver			
bit 4-3	Unimplemen	ted: Read as 'o)'				
bit 2	ASAM: A/D S	ample Auto-Sta	art bit				
					mpletes; SAMI	Dit is auto-set	
b :4 4		begins when t		Set			
bit 1		ample Enable le/hold amplifie		nout			
		le/hold amplifie		nput			
bit 0	-	onversion Stat	-				
	1 = A/D conve						
	0 = A/D conve	ersion is NOT d	one				
Note 1: Val	lues of ADC1B	UEx registers v	vill not retain th	eir values once	the ADON hit	is cleared. Rea	id out the

REGISTER 21-1: AD1CON1: A/D CONTROL REGISTER 1

Note 1: Values of ADC1BUFx registers will not retain their values once the ADON bit is cleared. Read out the conversion values from the buffer before disabling the module.

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
CTMUEN		CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN	CTTRIG		
bit 15							bit		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
EDG2POL	EDG2SEL1	EDG2SEL0	EDG1POL	EDG1SEL1	EDG1SEL0	EDG2STAT	EDG1STAT		
bit 7							bit		
Legend:	- L : L		- :4		e e unte el le it une e el				
R = Readable		W = Writable I	DIT	•	nented bit, read				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown		
bit 15	CTMUEN: CT	MU Enable bit							
	1 = Module is								
	0 = Module is								
bit 14	Unimplement	ted: Read as 'o)'						
bit 13	CTMUSIDL: S	Stop in Idle Mod	le bit						
		ue module ope			e mode				
		module operat		le					
bit 12		Generation Ena							
		edge delay gen edge delay ger							
bit 11	 Disables edge delay generation EDGEN: Edge Enable bit 								
	1 = Edges ar								
	0 = Edges ar	e blocked							
bit 10		Edge Sequence							
		vent must occu sequence is ne		2 event can oc	cur				
bit 9	IDISSEN: Analog Current Source Control bit								
		urrent source o urrent source o							
bit 8	CTTRIG: Trig	ger Control bit							
	00	utput is enabled utput is disable							
bit 7		dge 2 Polarity S							
	1 = Edge 2 p	rogrammed for rogrammed for	a positive edg						
bit 6-5		0>: Edge 2 So							
	11 = CTED1	•		-					
	10 = CTED2								
	01 = OC1 mo								
L:1 4	00 = Timer1 n		D = 1 = = + + '						
bit 4		dge 1 Polarity S							
		rogrammed for rogrammed for							
	3 P			J = = = = = = = = = = = = = = = = = = =					

See Section 10.4 "Peripheral Pin Select" for more information.

REGISTER 24-1: CTMUCON: CTMU CONTROL REGISTER

© 2010 Microchip Technology Inc.

25.0 SPECIAL FEATURES

- Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the following sections of the "PIC24F Family Reference Manual":
 Section 9. "Watchdog Timer (WDT)" (DS39697)
 Section 32. "High-Level Device Integration" (DS39719)
 - Section 33. "Programming and Diagnostics" (DS39716)

PIC24FJ256GA110 family devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are:

- Flexible Configuration
- Watchdog Timer (WDT)
- Code Protection
- · JTAG Boundary Scan Interface
- In-Circuit Serial Programming
- In-Circuit Emulation

25.1 Configuration Bits

The Configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. These bits are mapped starting at program memory location F80000h. A detailed explanation of the various bit functions is provided in Register 25-1 through Register 25-5.

Note that address F80000h is beyond the user program memory space. In fact, it belongs to the configuration memory space (800000h-FFFFFh) which can only be accessed using table reads and table writes.

25.1.1 CONSIDERATIONS FOR CONFIGURING PIC24FJ256GA110 FAMILY DEVICES

In PIC24FJ256GA110 family devices, the configuration bytes are implemented as volatile memory. This means that configuration data must be programmed each time the device is powered up. Configuration data is stored in the three words at the top of the on-chip program memory space, known as the Flash Configuration Words. Their specific locations are shown in Table 25-1. These are packed representations of the actual device Configuration bits, whose actual locations are distributed among several locations in configuration space. The configuration data is automatically loaded from the Flash Configuration Words to the proper Configuration registers during device Resets.

Note: Configuration data is reloaded on all types of device Resets.

When creating applications for these devices, users should always specifically allocate the location of the Flash Configuration Word for configuration data. This is to make certain that program code is not stored in this address when the code is compiled.

The upper byte of all Flash Configuration Words in program memory should always be '1111 1111'. This makes them appear to be NOP instructions in the remote event that their locations are ever executed by accident. Since Configuration bits are not implemented in the corresponding locations, writing '1's to these locations has no effect on device operation.

Note: Performing a page erase operation on the last page of program memory clears the Flash Configuration Words, enabling code protection as a result. Therefore, users should avoid performing page erase operations on the last page of program memory.

TABLE 25-1: FLASH CONFIGURATION WORD LOCATIONS FOR PIC24FJ256GA110 FAMILY DEVICES

Device	Configuration Word Addresses					
Device	1	2	3			
PIC24FJ64GA1	ABFEh	ABFCh	ABFAh			
PIC24FJ128GA1	157FEh	157FC	157FA			
PIC24FJ192GA1	20BFEh	20BFC	20BFA			
PIC24FJ256GA1	2ABFEh	2ABFC	2ABFA			

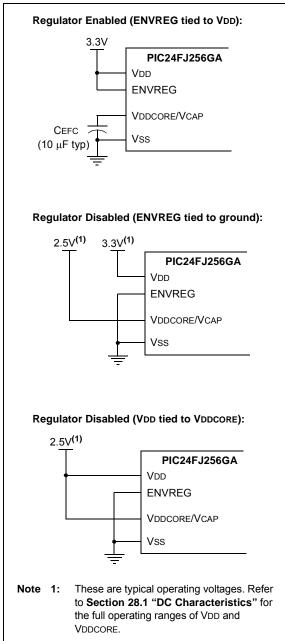
25.2 On-Chip Voltage Regulator

All PIC24FJ256GA110 family devices power their core digital logic at a nominal 2.5V. This may create an issue for designs that are required to operate at a higher typical voltage, such as 3.3V. To simplify system design, all devices in the PIC24FJ256GA110 family incorporate an on-chip regulator that allows the device to run its core logic from VDD.

The regulator is controlled by the ENVREG pin. Tying VDD to the pin enables the regulator, which in turn, provides power to the core from the other VDD pins. When the regulator is enabled, a low-ESR capacitor (such as ceramic) must be connected to the VDDCORE/VCAP pin (Figure 25-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor (CEFC) is provided in **Section 28.1 "DC Characteristics"**.

If ENVREG is tied to Vss, the regulator is disabled. In this case, separate power for the core logic at a nominal 2.5V must be supplied to the device on the VDDCORE/VCAP pin to run the I/O pins at higher voltage levels, typically 3.3V. Alternatively, the VDDCORE/VCAP and VDD pins can be tied together to operate at a lower nominal voltage. Refer to Figure 25-1 for possible configurations.

25.2.1 VOLTAGE REGULATOR TRACKING MODE AND LOW-VOLTAGE DETECTION


When it is enabled, the on-chip regulator provides a constant voltage of 2.5V nominal to the digital core logic.

The regulator can provide this level from a VDD of about 2.5V, all the way up to the device's VDDMAX. It does not have the capability to boost VDD levels below 2.5V. In order to prevent "brown-out" conditions when the voltage drops too low for the regulator, the regulator enters Tracking mode. In Tracking mode, the regulator output follows VDD with a typical voltage drop of 100 mV.

When the device enters Tracking mode, it is no longer possible to operate at full speed. To provide information about when the device enters Tracking mode, the on-chip regulator includes a simple, Low-Voltage Detect circuit. When VDD drops below full-speed operating voltage, the circuit sets the Low-Voltage Detect Interrupt Flag, LVDIF (IFS4<8>). This can be used to generate an interrupt and put the application into a Low-Power Operational mode or trigger an orderly shutdown.

Low-Voltage Detection is only available when the regulator is enabled.

FIGURE 25-1: CONNECTIONS FOR THE ON-CHIP REGULATOR

NOTES:

TABLE 28-3:	DC CHARACTERISTICS: TEMPERATURE AND VOLTAGE SPECIFICATIONS
	Standard Operating Conditional 2 01/ to 2 61/ (uplace athemuice state

_			Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
DC CH	ARACTER	ISTICS	Operating te	emperature			35°C for Industrial 125°C for Extended	
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions	
Operat	ing Voltage	9						
DC10	Supply Vo	oltage						
	Vdd		VBOR		3.6	V	Regulator enabled	
	Vdd		VDDCORE		3.6	V	Regulator disabled	
	VDDCORE		2.0		2.75	V	Regulator disabled	
DC12	Vdr	RAM Data Retention Voltage ⁽²⁾	1.5		—	V		
DC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal	Vss	—	—	V		
DC17	Svdd	VDD Rise Rate to Ensure Internal Power-on Reset Signal	0.05	—	—	V/ms	0-3.3V in 0.1s 0-2.5V in 60 ms	
BO10	VBOR	Brown-Out Reset Voltage	1.96	2.10	2.25	V		
BO15	VBHYS	BOR Hysteresis	_	5	_	mV		

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: This is the limit to which VDD can be lowered without losing RAM data.

INDEX

Α	
A/D Converter	
Analog Input Model	233
Transfer Function	234
AC Characteristics	
A/D Specifications	286
Capacitive Loading Requirements on	
Output Pins	282
CLKO and I/O Requirements	285
Conversion Timing Requirements	287
External Clock Requirements	283
Internal RC Oscillator Accuracy	284
Internal RC Oscillator Specifications	284
Load Conditions and Requirements for	
Specifications	282
PLL Clock Specifications	284
Reset Specifications	285
Reset, Watchdog Timer, Oscillator Start-up	
Timer, Power-up Timer, Brown-out Reset	
Requirements	288
AC Specifications	289
Alternate Interrupt Vector Table (AIVT)	71
Assembler	
MPASM Assembler	266

В

226
210
55
208
57
53
239
31
221
222
281
186
236
163
210
208
208
209
209
209
251
168
170
210
210
210
14
30
201
54
56

Reset System	65
RTCC	211
Shared I/O Port Structure	127
SPI Master, Frame Master Connection	183
SPI Master, Frame Slave Connection	. 183
SPI Master/Slave Connection	
(Enhanced Buffer Modes)	182
SPI Master/Slave Connection (Standard Mode)	182
SPI Slave, Frame Master Connection	. 183
SPI Slave, Frame Slave Connection	. 183
SPIx Module (Enhanced Mode)	177
SPIx Module (Standard Mode)	176
System Clock	115
Timer1	155
Timer2 and Timer4 (16-Bit Synchronous)	159
Timer2/3 and Timer4/5 (32-Bit)	158
Timer3 and Timer5 (16-Bit Asynchronous)	159
Triple Comparator Module	235
Typical CTMU Connections and Internal	
Configuration for Capacitance Measurement	241
Typical CTMU Connections and Internal	
Configuration for Pulse Delay Generation	242
Typical CTMU Connections and Internal	
Configuration for Time Measurement	242
UART (Simplified)	
Watchdog Timer (WDT)	253

С

C Compilers	
MPLAB C18	266
Charge Time Measurement Unit. See CTMU.	
Clock Frequency	125
Clock Switching	125
Code Examples	
Basic Sequence for Clock Switching	121
Configuring UART1 Input and Output Functions	134
Erasing a Program Memory Block, Assembly	
Erasing a Program Memory Block, C Language	61
I/O Port Read/Write	128
Initiating a Programming Sequence, Assembly	62
Initiating a Programming Sequence, C Language .	62
Loading the Write Buffers, Assembly	61
Loading the Write Buffers, C Language	62
Setting the RTCWREN Bit	212
Single-Word Flash Programming, Assembly	63
Single-Word Flash Programming, C Language	63
Code Protection	
Code Segment	254
Configuration Options	254
Configuration Registers	254
General Segment	253
Comparator Voltage Reference Module	239
Configuring	239
Configuration Bits	245
CPU	
ALU	34
Control Registers	32
Core Registers	31
CRC	
Operation in Power Save Modes	222
Setup Example	221
User Interface	222

Timing Requirements

Comparator	
DC	
I ² C Bus Data (Master Mode)	
I ² C Bus Data (Slave Mode)	
I ² C Bus Start/Stop Bit (Slave Mode)	
Input Capture	
Output Compare	
Parallel Master Port Read	
Parallel Master Port Write	
Parallel Slave Port	
SPIx Master Mode (CKE = 0)	
SPIx Master Mode (CKE = 1)	
SPIx Slave Mode (CKE = 0)	
SPIx Slave Mode (CKE = 1)	
Triple Comparator Module	

U

UART	94 95 95
Transmitting 8-Bit Data Mode1 9-Bit Data Mode1 Break and Sync Sequence1	95
Universal Asynchronous Receiver Transmitter. See UART.	

V

VDDCORE/VCAP Pin	251
Voltage Regulator (On-Chip)	251
and BOR	252
and POR	252
Standby Mode	252
Tracking Mode	251
W	
Watchdog Timer (WDT)	252
Control Register	253
Windowed Operation	253
WWW Address	326
WWW, On-Line Support	8