

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	69
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj128ga108t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

This document contains device-specific information for the following devices:

- PIC24FJ64GA106 PIC24FJ64GA110
- PIC24FJ128GA106 PIC24F
 - PIC24FJ128GA110
 PIC24FJ192GA110
- PIC24FJ192GA106PIC24FJ256GA106
- PIC24FJ256GA110
- PIC24FJ64GA108
- PIC24FJ128GA108
- PIC24FJ192GA108
- PIC24FJ256GA108

This family expands on the existing line of Microchip's 16-bit general purpose microcontrollers, combining enhanced computational performance with an expanded and highly configurable peripheral feature set. The PIC24FJ256GA110 family provides a new platform for high-performance applications, which have outgrown their 8-bit platforms, but don't require the power of a digital signal processor.

1.1 Core Features

1.1.1 16-BIT ARCHITECTURE

Central to all PIC24F devices is the 16-bit modified Harvard architecture, first introduced with Microchip's dsPIC[®] digital signal controllers. The PIC24F CPU core offers a wide range of enhancements, such as:

- 16-bit data and 24-bit address paths with the ability to move information between data and memory spaces
- Linear addressing of up to 12 Mbytes (program space) and 64 Kbytes (data)
- A 16-element working register array with built-in software stack support
- A 17 x 17 hardware multiplier with support for integer math
- Hardware support for 32 by 16-bit division
- An instruction set that supports multiple addressing modes and is optimized for high-level languages, such as 'C'
- · Operational performance up to 16 MIPS

1.1.2 POWER-SAVING TECHNOLOGY

All of the devices in the PIC24FJ256GA110 family incorporate a range of features that can significantly reduce power consumption during operation. Key items include:

• **On-the-Fly Clock Switching:** The device clock can be changed under software control to the Timer1 source or the internal, low-power RC Oscillator during operation, allowing the user to incorporate power-saving ideas into their software designs.

- **Doze Mode Operation:** When timing-sensitive applications, such as serial communications, require the uninterrupted operation of peripherals, the CPU clock speed can be selectively reduced, allowing incremental power savings without missing a beat.
- Instruction-Based Power-Saving Modes: The microcontroller can suspend all operations, or selectively shut down its core while leaving its peripherals active, with a single instruction in software.

1.1.3 OSCILLATOR OPTIONS AND FEATURES

All of the devices in the PIC24FJ256GA110 family offer five different oscillator options, allowing users a range of choices in developing application hardware. These include:

- Two Crystal modes using crystals or ceramic resonators.
- Two External Clock modes offering the option of a divide-by-2 clock output.
- A Fast Internal Oscillator (FRC) with a nominal 8 MHz output, which can also be divided under software control to provide clock speeds as low as 31 kHz.
- A Phase Lock Loop (PLL) frequency multiplier available to the external oscillator modes and the FRC Oscillator, which allows clock speeds of up to 32 MHz.
- A separate internal RC Oscillator (LPRC) with a fixed 31 kHz output, which provides a low-power option for timing-insensitive applications.

The internal oscillator block also provides a stable reference source for the Fail-Safe Clock Monitor. This option constantly monitors the main clock source against a reference signal provided by the internal oscillator and enables the controller to switch to the internal oscillator, allowing for continued low-speed operation or a safe application shutdown.

1.1.4 EASY MIGRATION

Regardless of the memory size, all devices share the same rich set of peripherals, allowing for a smooth migration path as applications grow and evolve. The consistent pinout scheme used throughout the entire family also aids in migrating from one device to the next larger, or even in jumping from 64-pin to 100-pin devices.

The PIC24F family is pin-compatible with devices in the dsPIC33 and PIC32 families, and shares some compatibility with the pinout schema for PIC18 and dsPIC30 devices. This extends the ability of applications to grow from the relatively simple, to the powerful and complex, yet still selecting a Microchip device.

		Pin Number			-	
Function	64-Pin TQFP, QFN	80-Pin TQFP	100-Pin TQFP	I/O	Input Buffer	Description
RG0	—	75	90	I/O	ST	PORTG Digital I/O.
RG1	—	74	89	I/O	ST	
RG2	37	47	57	I/O	ST	
RG3	36	46	56	I/O	ST	
RG6	4	6	10	I/O	ST	
RG7	5	7	11	I/O	ST	
RG8	6	8	12	I/O	ST	
RG9	8	10	14	I/O	ST	
RG12	_	_	96	I/O	ST	
RG13	_	_	97	I/O	ST	
RG14	—		95	I/O	ST	
RG15	_	_	1	I/O	ST	
RP0	16	20	25	I/O	ST	Remappable Peripheral (input or output).
RP1	15	19	24	I/O	ST	
RP2	42	54	68	I/O	ST	
RP3	44	56	70	I/O	ST	
RP4	43	55	69	I/O	ST	
RP5	_	38	48	I/O	ST	
RP6	17	21	26	I/O	ST	
RP7	18	22	27	I/O	ST	
RP8	21	27	32	I/O	ST	
RP9	22	28	33	I/O	ST	
RP10	31	39	49	I/O	ST	
RP11	46	58	72	I/O	ST	
RP12	45	57	71	I/O	ST	
RP13	14	18	23	I/O	ST	
RP14	29	35	43	I/O	ST	
RP15	_	43	53	I/O	ST	
RP16	33	41	51	I/O	ST	
RP17	32	40	50	I/O	ST	
RP18	11	15	20	I/O	ST	
RP19	6	8	12	I/O	ST	
RP20	53	67	82	I/O	ST	
RP21	4	6	10	I/O	ST	
RP22	51	63	78	I/O	ST	
RP23	50	62	77	I/O	ST	
RP24	49	61	76	I/O	ST	
RP25	52	66	81	I/O	ST	
RP26	5	7	11	I/O	ST	
RP27	8	10	14	I/O	ST	
RP28	12	16	21	I/O	ST	
RP29	30	36	44	I/O	ST	
RP30	34	42	52	I/O	ST	
RP31	—	_	39	I/O	ST	
Legend:	TTI = TTI in	put buffer			ST = 5	Schmitt Trigger input buffer

TABLE 1-4: PIC24FJ256GA110 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

ANA = Analog level input/output

ST = Schmitt Trigger input buffer $I^2C^{TM} = I^2C/SMBus$ input buffer

			11.0				
		0-0	U-U	0-0	0-0	K/W-0	K/W-U
hit 15	IUPUWR		_		—		L LINIOLL hit o
bit 15							Dit 0
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1
EXTR	SWR	SWDTEN ⁽²⁾	WDTO	SLEEP	IDLE	BOR	POR
bit 7							bit 0
Legend:	abla hit	M = Mritabla b	i+		ponted hit read	aa 'O'	
-n = Value	able bit	'1' = Rit is set	n.	0' = Bit is cle	ared	x = Rit is unkn	own
TT Value		1 Dit lo oct					own
bit 15	TRAPR: Trap	Reset Flag bit					
	$1 = A \operatorname{Trap} Co$	onflict Reset has	occurred	1			
bit 14		egal Opcode or U	not occurred Ininitialized V	v Access Reset	Flag bit		
Sit 11	1 = An illegal	l opcode detectio	on, an illegal a	address mode o	r uninitialized W	/ register used	as an Address
	Pointer c	aused a Reset					
hit 13_10	0 = An liega	topcode or unini		eset has not occ	curred		
hit 9	CM: Configur	ration Word Mism	natch Reset F	-lag hit			
bit o	1 = A Configu	uration Word Mis	match Reset	has occurred			
	0 = A Configu	uration Word Mis	match Reset	has not occurre	ed		
bit 8	PMSLP: Prog	gram Memory Po	wer During S	Sleep bit	n Sloop		
	1 = Program r	nemory bias volta	ge is powered	d down during Sl	eep and voltage	regulator enters	Standby mode
bit 7	EXTR: Extern	nal Reset (MCLR) Pin bit	C		•	-
	1 = A Master	Clear (pin) Rese	t has occurre	ed			
bit 6	0 = A Master	Clear (pin) Rese	et nas not occ	currea			
DILO	1 = A RESET	instruction has b	een execute	d			
	0 = A reset	instruction has n	ot been exec	cuted			
bit 5	SWDTEN: So	oftware Enable/D	isable of WD)T bit ⁽²⁾			
	1 = WDT is e 0 = WDT is d	nabled isabled					
bit 4	WDTO: Watc	hdog Timer Time	e-out Flag bit				
	1 = WDT time	e-out has occurre	ed .				
h # 0		e-out has not occ	urred				
DIL 3	1 = Device ha	e From Sleep Fia	ag bit mode				
	0 = Device ha	as not been in SI	eep mode				
bit 2	IDLE: Wake-	up From Idle Flag	g bit				
	1 = Device ha	as been in Idle m as not been in Idl	ode e mode				
bit 1	BOR: Brown-	-out Reset Flag b	pit				
	1 = A Brown-	out Reset has or	curred. Note	that BOR is als	o set after a Po	wer-on Reset.	
	0 = A Brown-	out Reset has no	ot occurred				
DIT U	POR: Power- $1 = \Delta$ Power-	on Reset Flag bi	t curred				
	0 = A Power-	on Reset has no	t occurred				
Note 1:	All of the Reset	status bits may b	e set or clear	ed in software.	Setting one of th	nese bits in soft	ware does not
ي.	cause a device f	Reset. Configuration bit	is '1' (unnro	arammed) the l	NDT is alwave	enabled record	lless of the
۷.	SWDTEN bit set	tting.	is ⊤ (mhi0(i is aiways (Shabica, icyala	

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾

6.2.1 POR AND LONG OSCILLATOR START-UP TIMES

The oscillator start-up circuitry and its associated delay timers are not linked to the device Reset delays that occur at power-up. Some crystal circuits (especially low-frequency crystals) will have a relatively long start-up time. Therefore, one or more of the following conditions is possible after SYSRST is released:

- The oscillator circuit has not begun to oscillate.
- The Oscillator Start-up Timer has not expired (if a crystal oscillator is used).
- The PLL has not achieved a lock (if PLL is used).

The device will not begin to execute code until a valid clock source has been released to the system. Therefore, the oscillator and PLL start-up delays must be considered when the Reset delay time must be known.

6.2.2 FAIL-SAFE CLOCK MONITOR (FSCM) AND DEVICE RESETS

If the FSCM is enabled, it will begin to monitor the system clock source when SYSRST is released. If a valid clock source is not available at this time, the device will automatically switch to the FRC Oscillator and the user can switch to the desired crystal oscillator in the Trap Service Routine (TSR).

6.3 Special Function Register Reset States

Most of the Special Function Registers (SFRs) associated with the PIC24F CPU and peripherals are reset to a particular value at a device Reset. The SFRs are grouped by their peripheral or CPU function and their Reset values are specified in each section of this manual.

The Reset value for each SFR does not depend on the type of Reset with the exception of four registers. The Reset value for the Reset Control register, RCON, will depend on the type of device Reset. The Reset value for the Oscillator Control register, OSCCON, will depend on the type of Reset and the programmed values of the FNOSC bits in Flash Configuration Word 2 (CW2); see Table 6-2. The RCFGCAL and NVMCON registers are only affected by a POR.

	R/W-0									
- PMPIF OC8IF OC7IF OC6IF OC5IF	IC6IF									
bit 15	bit 8									
R/W-0 R/W-0 R/W-0 U-0 U-0 R/W-0	R/W-0									
IC5IF IC4IF IC3IF — — — SPI2IF	SPF2IF									
bit 7	bit 0									
Legend:										
R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'										
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknow	n									
bit 15-14 Unimplemented: Read as '0'										
bit 13 PMPIF: Parallel Master Port Interrupt Flag Status bit										
 1 = Interrupt request has occurred 0 = Interrupt request has not occurred 										
bit 12 OC8IF: Output Compare Channel 8 Interrupt Flag Status bit										
1 = Interrupt request has occurred										
0 = Interrupt request has not occurred										
bit 11 OC7IF: Output Compare Channel 7 Interrupt Flag Status bit										
1 = Interrupt request has occurred	1 = Interrupt request has occurred									
bit 10 OCCUP Output Compare Channel 6 Interrupt Eleg Status hit										
1 = Interrupt request has occurred										
0 = Interrupt request has not occurred										
bit 9 OC5IF: Output Compare Channel 5 Interrupt Flag Status bit										
1 = Interrupt request has occurred										
0 = Interrupt request has not occurred										
bit 8 IC6IF: Input Capture Channel 6 Interrupt Flag Status bit										
\perp = Interrupt request has occurred 0 = Interrupt request has not occurred										
bit 7 IC5IF: Input Capture Channel 5 Interrupt Flag Status bit										
1 = Interrupt request has occurred										
0 = Interrupt request has not occurred										
bit 6 IC4IF: Input Capture Channel 4 Interrupt Flag Status bit										
1 = Interrupt request has occurred										
0 = Interrupt request has not occurred										
bit 5 IC3F: Input Capture Channel 3 Interrupt Flag Status bit										
0 = Interrupt request has not occurred										
bit 4-2 Unimplemented: Read as '0'										
bit 1 SPI2 Event Interrupt Flag Status bit										
1 = Interrupt request has occurred										
0 = Interrupt request has not occurred										
bit 0 SPF2IF: SPI2 Fault Interrupt Flag Status bit										
1 = Interrupt request has occurred										

REGISTER 7-7: IFS2: INTERRUPT FLAG STATUS REGISTER 2

REGISTER 7-27: IPC10: INTERRUPT PRIORITY CONTROL REGISTER 10

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	OC7IP2	OC7IP1	OC7IP0	—	OC6IP2	OC6IP1	OC6IP0
bit 15	·						bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	OC5IP2	OC5IP1	OC5IP0	—	IC6IP2	IC6IP1	IC6IP0
bit 7							bit 0
Legena:	a hit	M = M/ritabla	hit	II – Unimplor	contod bit room	1 22 (0)	
		'1' = Rit is set	DIL	0° – Driimpien	nenieu bil, reat	v – Pitic unkr	
	FOR	I - DILIS SEL			aieu	X - DIL IS ULIKI	IOWIT
bit 15	Unimplemen	ted: Read as '	o'				
bit 14-12	OC7IP<2:0>:	Output Compa	are Channel 7 I	nterrupt Priority	v bits		
	111 = Interrup	ot is priority 7 (l	highest priority	interrupt)			
	•						
	•						
	001 = Interrup	ot is priority 1					
	000 = Interrup	ot source is dis	abled				
bit 11	Unimplemen	ted: Read as '	כ'				
bit 10-8	OC6IP<2:0>:	Output Compa	re Channel 6 I	nterrupt Priority	y bits		
	111 = Interrup	ot is priority 7 (I	highest priority	interrupt)			
	•						
	•						
	001 = Interrup	ot is priority 1 ot source is dis	abled				
bit 7		ted: Read as '	n'				
bit 6-4	OC5IP<2:0>:	Output Compa	re Channel 5 I	nterrupt Priority	v bits		
	111 = Interrup	ot is priority 7 (I	highest priority	interrupt)	,		
	•						
	•						
	001 = Interrup	ot is priority 1					
	000 = Interru	ot source is dis	abled				
bit 3	Unimplemen	ted: Read as '	כ'				
bit 2-0	IC6IP<2:0>:	nput Capture C	Channel 6 Inter	rupt Priority bits	6		
	111 = Interrup	ot is priority 7 (I	highest priority	interrupt)			
	•						
	•						
	001 = Interrup	ot is priority 1	ablod				
	ooo – menup		auleu				

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
_	U3TXIP2	U3TXIP1	U3TXIP0	_	U3RXIP2	U3RXIP1	U3RXIP0				
bit 15					·		bit 8				
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0				
—	U3ERIP2	U3ERIP1	U3ERIP0	—	—	—	—				
bit 7							bit 0				
Legend:											
R = Readab	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'					
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15	Unimplemer	nted: Read as '	0'								
bit 14-12	U3TXIP<2:0	>: UART3 Trans	smitter Interrup	ot Priority bits							
	111 = Interru	pt is priority 7 (highest priority	/ interrupt)							
	•										
	•										
	001 = Interru	pt is priority 1									
	000 = Interru	pt source is dis	abled								
bit 11	Unimplemer	nted: Read as '	0'								
bit 10-8	U3RXIP<2:0	>: UART3 Rece	eiver Interrupt	Priority bits							
	111 = Interru	pt is priority 7 (highest priority	/ interrupt)							
	•										
	•										
	001 = Interru	pt is priority 1									
	000 = Interru	pt source is dis	abled								
bit 7	Unimplemer	nted: Read as '	0'								
bit 6-4	U3ERIP<2:0	>: UART3 Erro	r Interrupt Prio	rity bits							
	111 = Interru	pt is priority 7 (highest priority	/ interrupt)							
	•										
	•										
	001 = Interru	pt is priority 1									
	000 = Interru	ipt source is dis	abled								
bit 3-0	Unimplemer	ted: Read as '	0'								

REGISTER 7-35: IPC20: INTERRUPT PRIORITY CONTROL REGISTER 20

REGISTER	7-37: IPC2	2: INTERRUP	T PRIORITY	CONTROL	REGISTER 22						
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
_	SPI3IP2	SPI3IP1	SPI3IP0		SPF3IP2	SPF3IP1	SPF3IP0				
bit 15						÷	bit 8				
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
bit 7	UTIXII 2	U TIXII T	UTIXII U		01104112	U II U II I	bit 0				
Legend:											
R = Readab	le bit	W = Writable	bit	U = Unimple	mented bit, read	1 as '0'					
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown				
bit 15	Unimplemen	ited: Read as ')'								
bit 14-12	SPI3IP<2:0>	: SPI3 Event Ini	terrupt Priority	bits							
	111 = Interru	pt is priority 7 (i	nighest priority	(interrupt)							
	•										
	•										
	001 = Interru	pt is priority 1									
	000 = Interru	pt source is dis	abled								
bit 11	Unimplemen	ited: Read as ')'								
bit 10-8	SPF3IP<2:0>	SPF3IP<2:0>: SPI3 Fault Interrupt Priority bits									
	111 = Interru •	pt is priority 7 (i	nighest priority	(interrupt)							
	•										
	•										
	001 = Interru	pt is priority 1									
	000 = Interru	pt source is dis	abled								
	Unimplemen	ited: Read as 10) [,]								
DIT 6-4		U4TXIP<2:0>: UART4 Transmitter Interrupt Priority bits									
	• III = Interru	pt is priority 7 (i	lignest phonty	(interrupt)							
	•										
	•										
	001 = Interru	pt is priority 1	ablad								
h :+ 0		pt source is dis									
) iven latennymt i	Drievity bite							
DIT 2-0		>: UAR14 Rece	nichoot priority	rionly bits							
	•		lighest phonty	(interrupt)							
	•										
	•										
	001 = Interru	pt is priority 1	ahlad								
	uuu – interiu										

9.2.2 IDLE MODE

Idle mode has these features:

- The CPU will stop executing instructions.
- The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 9.4 "Selective Peripheral Module Control").
- If the WDT or FSCM is enabled, the LPRC will also remain active.

The device will wake from Idle mode on any of these events:

- Any interrupt that is individually enabled
- Any device Reset
- A WDT time-out

On wake-up from Idle, the clock is reapplied to the CPU and instruction execution begins immediately, starting with the instruction following the PWRSAV instruction or the first instruction in the ISR.

9.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

Any interrupt that coincides with the execution of a PWRSAV instruction will be held off until entry into Sleep or Idle mode has completed. The device will then wake-up from Sleep or Idle mode.

9.3 Doze Mode

Generally, changing clock speed and invoking one of the power-saving modes are the preferred strategies for reducing power consumption. There may be circumstances, however, where this is not practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed may introduce communication errors, while using a power-saving mode may stop communications completely.

Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate.

Doze mode is enabled by setting the DOZEN bit (CLKDIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLKDIV<14:12>). There are eight possible configurations, from 1:1 to 1:128, with 1:1 being the default.

It is also possible to use Doze mode to selectively reduce power consumption in event driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU Idles, waiting for something to invoke an interrupt routine. Enabling the automatic return to full-speed CPU operation on interrupts is enabled by setting the ROI bit (CLKDIV<15>). By default, interrupt events have no effect on Doze mode operation.

9.4 Selective Peripheral Module Control

Idle and Doze modes allow users to substantially reduce power consumption by slowing or stopping the CPU clock. Even so, peripheral modules still remain clocked and thus consume power. There may be cases where the application needs what these modes do not provide: the allocation of power resources to CPU processing with minimal power consumption from the peripherals.

PIC24F devices address this requirement by allowing peripheral modules to be selectively disabled, reducing or eliminating their power consumption. This can be done with two control bits:

- The Peripheral Enable bit, generically named "XXXEN", located in the module's main control SFR.
- The Peripheral Module Disable (PMD) bit, generically named, "XXXMD", located in one of the PMD Control registers.

Both bits have similar functions in enabling or disabling its associated module. Setting the PMD bit for a module disables all clock sources to that module, reducing its power consumption to an absolute minimum. In this state, the control and status registers associated with the peripheral will also be disabled, so writes to those registers will have no effect and read values will be invalid. Many peripheral modules have a corresponding PMD bit.

In contrast, disabling a module by clearing its XXXEN bit disables its functionality, but leaves its registers available to be read and written to. This reduces power consumption, but not by as much as setting the PMD bit does. Most peripheral modules have an enable bit; exceptions include input capture, output compare and RTCC.

To achieve more selective power savings, peripheral modules can also be selectively disabled when the device enters Idle mode. This is done through the control bit of the generic name format, "XXXIDL". By default, all modules that can operate during Idle mode will do so. Using the disable on Idle feature allows further reduction of power consumption during Idle mode, enhancing power savings for extremely critical power applications.

REGISTER 10-17: RPINR22: PERIPHERAL PIN SELECT INPUT REGISTER 22

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	SCK2R5	SCK2R4	SCK2R3	SCK2R2	SCK2R1	SCK2R0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	—	SDI2R5	SDI2R4	SDI2R3	SDI2R2	SDI2R1	SDI2R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	SCK2R<5:0>: Assign SPI2 Clock Input (SCK2IN) to Corresponding RPn or RPIn Pin bits
bit 7-6	Unimplemented: Read as '0'
bit 5-0	SDI2R<5:0>: Assign SPI2 Data Input (SDI2) to Corresponding RPn or RPIn Pin bits

REGISTER 10-18: RPINR23: PERIPHERAL PIN SELECT INPUT REGISTER 23

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	SS2R5	SS2R4	SS2R3	SS2R2	SS2R1	SS2R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-6 Unimplemented: Read as '0'

bit 5-0 SS2R<5:0>: Assign SPI2 Slave Select Input (SS2IN) to Corresponding RPn or RPIn Pin bits

TyCON: TIMER3 AND TIMER5 CONTROL REGISTER⁽³⁾ **REGISTER 12-2:** R/W-0 U-0 R/W-0 U-0 U-0 U-0 U-0 U-0 TON⁽¹⁾ TSIDL⁽¹⁾ ___ ____ bit 15 bit 8 U-0 R/W-0 R/W-0 R/W-0 U-0 U-0 R/W-0 U-0 TGATE⁽¹⁾ TCKPS1⁽¹⁾ TCKPS0⁽¹⁾ TCS^(1,2) bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' '0' = Bit is cleared -n = Value at POR '1' = Bit is set x = Bit is unknown bit 15 TON: Timery On bit⁽¹⁾ 1 = Starts 16-bit Timery 0 = Stops 16-bit Timery Unimplemented: Read as '0' bit 14 TSIDL: Stop in Idle Mode bit⁽¹⁾ bit 13 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode bit 12-7 Unimplemented: Read as '0' TGATE: Timery Gated Time Accumulation Enable bit⁽¹⁾ bit 6 When TCS = 1: This bit is ignored. When TCS = 0: 1 = Gated time accumulation enabled 0 = Gated time accumulation disabled bit 5-4 TCKPS<1:0>: Timery Input Clock Prescale Select bits⁽¹⁾ 11 = 1:256 10 = 1:64 01 = 1:8 00 = 1:1 bit 3-2 Unimplemented: Read as '0' TCS: Timery Clock Source Select bit^(1,2) bit 1 1 = External clock from pin TyCK (on the rising edge) 0 = Internal clock (Fosc/2) bit 0 Unimplemented: Read as '0' **Note 1:** When 32-bit operation is enabled (T2CON<3> or T4CON<3> = 1), these bits have no effect on Timery operation; all timer functions are set through T2CON and T4CON.

- 2: If TCS = 1, RPINRx (TyCK) must be configured to an available RPn pin. See Section 10.4 "Peripheral **Pin Select**" for more information.
- **3:** Changing the value of TyCON while the timer is running (TON = 1) causes the timer prescale counter to reset and is not recommended.

14.0 OUTPUT COMPARE WITH DEDICATED TIMER

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"PIC24F Family Reference Manual"*, Section 35. "Output Compare with Dedicated Timer" (DS39723)

Devices in the PIC24FJ256GA110 family all feature 9 independent enhanced output compare modules. Each of these modules offers a wide range of configuration and operating options for generating pulse trains on internal device events, and can produce Pulse-Width Modulated (PWM) waveforms for driving power applications.

Key features of the enhanced output compare module include:

- Hardware-configurable for 32-bit operation in all modes by cascading two adjacent modules
- Synchronous and Trigger modes of output compare operation, with up to 30 user-selectable trigger/sync sources available
- Two separate Period registers (a main register, OCxR, and a secondary register, OCxRS) for greater flexibility in generating pulses of varying widths
- Configurable for single pulse or continuous pulse generation on an output event, or continuous PWM waveform generation
- Up to 6 clock sources available for each module, driving a separate internal 16-bit counter

14.1 General Operating Modes

14.1.1 SYNCHRONOUS AND TRIGGER MODES

By default, the enhanced output compare module operates in a free-running mode. The internal, 16-bit counter, OCxTMR, counts up continuously, wrapping around from FFFFh to 0000h on each overflow, with its period synchronized to the selected external clock source. Compare or PWM events are generated each time a match between the internal counter and one of the Period registers occurs. In Synchronous mode, the module begins performing its compare or PWM operation as soon as its selected clock source is enabled. Whenever an event occurs on the selected sync source, the module's internal counter is reset. In Trigger mode, the module waits for a sync event from another internal module to occur before allowing the counter to run.

Free-running mode is selected by default, or any time that the SYNCSEL bits (OCxCON2<4:0>) are set to '00000'. Synchronous or Trigger modes are selected any time the SYNCSEL bits are set to any value except '00000'. The OCTRIG bit (OCxCON2<7>) selects either Synchronous or Trigger mode; setting the bit selects Trigger mode operation. In both modes, the SYNCSEL bits determine the sync/trigger source.

14.1.2 CASCADED (32-BIT) MODE

By default, each module operates independently with its own set of 16-Bit Timer and Duty Cycle registers. To increase resolution, adjacent even and odd modules can be configured to function as a single 32-bit module. (For example, modules 1 and 2 are paired, as are modules 3 and 4, and so on.) The odd-numbered module (OCx) provides the Least Significant 16 bits of the 32-bit register pairs, and the even module (OCy) provides the Most Significant 16 bits. Wraparounds of the OCx registers cause an increment of their corresponding OCy registers.

Cascaded operation is configured in hardware by setting the OC32 bits (OCxCON2<8>) for both modules.

REGISTER 16-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

bit 4	P: Stop bit
	1 = Indicates that a Stop bit has been detected last
	0 = Stop bit was not detected last
	Hardware set or clear when Start, Repeated Start or Stop detected.
bit 3	S: Start bit
	 1 = Indicates that a Start (or Repeated Start) bit has been detected last 0 = Start bit was not detected last
	Hardware set or clear when Start, Repeated Start or Stop detected.
bit 2	R/W : Read/Write Information bit (when operating as I^2C slave)
	 1 = Read – indicates data transfer is output from slave 0 = Write – indicates data transfer is input to slave Hardware set or clear after reception of I²C device address byte.
bit 1	RBF: Receive Buffer Full Status bit
	 1 = Receive complete, I2CxRCV is full 0 = Receive not complete, I2CxRCV is empty Hardware set when I2CxRCV is written with received byte. Hardware clear when software reads I2CxRCV.
bit 0	TBF: Transmit Buffer Full Status bit
	1 = Transmit in progress, I2CxTRN is full 0 = Transmit complete, I2CxTRN is empty Hardware set when software writes I2CxTRN. Hardware clear at completion of data transmission

REGISTER 18-3: PMADDR: PARALLEL MASTER PORT ADDRESS REGISTER	REGISTER 18-3:	PMADDR: PARALLEL MASTER PORT ADDRESS REGISTER
--	----------------	---

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CS2	CS1	ADDR13	ADDR12	ADDR11	ADDR10	ADDR9	ADDR8
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| ADDR7 | ADDR6 | ADDR5 | ADDR4 | ADDR3 | ADDR2 | ADDR1 | ADDR0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	CS2: Chip Select 2 bit
	1 = Chip Select 2 is active
	0 = Chip Select 2 is inactive
bit 14	CS1: Chip Select 1 bit
	1 = Chip Select 1 is active
	0 = Chip Select 1 is inactive
bit 13-0	ADDR<13:0>: Parallel Port Destination Address bits

REGISTER 18-4: PMAEN: PARALLEL MASTER PORT ENABLE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PTEN15	PTEN14	PTEN13	PTEN12	PTEN11	PTEN10	PTEN9	PTEN8
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| PTEN7 | PTEN6 | PTEN5 | PTEN4 | PTEN3 | PTEN2 | PTEN1 | PTEN0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	PTEN<15:14>: PMCSx Strobe Enable bits
	 1 = PMA15 and PMA14 function as either PMA<15:14> or PMCS2 and PMCS1 0 = PMA15 and PMA14 function as port I/O
bit 13-2	PTEN<13:2>: PMP Address Port Enable bits
	1 = PMA<13:2> function as PMP address lines0 = PMA<13:2> function as port I/O
bit 1-0	PTEN<1:0>: PMALH/PMALL Strobe Enable bits
	 1 = PMA1 and PMA0 function as either PMA<1:0> or PMALH and PMALL 0 = PMA1 and PMA0 pads functions as port I/O

FIGURE 18-8: EXAMPLE OF A PARTIALLY MULTIPLEXED ADDRESSING APPLICATION

FIGURE 18-9: EXAMPLE OF AN 8-BIT MULTIPLEXED ADDRESS AND DATA APPLICATION

FIGURE 18-10: PARALLEL EEPROM EXAMPLE (UP TO 15-BIT ADDRESS, 8-BIT DATA)

PIC24F		Parallel EEPROM		
PMA <n:0></n:0>		A <n:0></n:0>		
PMD<7:0>	\longleftrightarrow	D<7:0>		
PMCS1 PMRD PMWR		CE OE WR	Address Bus Data Bus Control Lines	

FIGURE 18-11: PARALLEL EEPROM EXAMPLE (UP TO 15-BIT ADDRESS, 16-BIT DATA)

FIGURE 18-12: LCD CONTROL EXAMPLE (BYTE MODE OPERATION)

22.0 TRIPLE COMPARATOR MODULE

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"PIC24F Family Reference Manual"*, Section 19. "Comparator Module" (DS39710).

The triple comparator module provides three dual-input comparators. The inputs to the comparator can be configured to use any one of four external analog inputs, as well as a voltage reference input from either the internal band gap reference divided by two (VBG/2) or the comparator voltage reference generator.

The comparator outputs may be directly connected to the CxOUT pins. When the respective COE equals '1', the I/O pad logic makes the unsynchronized output of the comparator available on the pin.

A simplified block diagram of the module in shown in Figure 22-1. Diagrams of the possible individual comparator configurations are shown in Figure 22-2.

Each comparator has its own control register, CMxCON (Register 22-1), for enabling and configuring its operation. The output and event status of all three comparators are provided in the CMSTAT register (Register 22-2).

TADLE 20-7:	DC CHARACTERISTIC	5: I/O PIN INPUT SPE	CIFICATIONS (CONTINUED)
		Standard Operating Cor	nditions: 2.0V to 3.6V (unless otherwise stated)
DC CHARACTI	ERISTICS	Operating temperature	-40°C < TA < +85°C for Industrial

CUADACTEDICTICS, 1/0 DIN INDUT ODECIFICATIONS (CONTINUED)

DC CHARACTERISTICS		Operating temperature		$\label{eq:constraint} \begin{array}{l} -40^\circ C \leq T_A \leq +85^\circ C \text{ for Industrial} \\ -40^\circ C \leq T_A \leq +125^\circ C \text{ for Extended} \end{array}$			
Param No. Sym Characteristic			Min	Typ ⁽¹⁾	Мах	Units	Conditions
	lı∟	Input Leakage Current ^(2,3)					
DI50		I/O Ports	—	—	<u>+</u> 1	μA	$\label{eq:VSS} \begin{split} &VSS \leq VPIN \leq VDD, \\ &Pin \ at \ high-impedance \end{split}$
DI51		Analog Input Pins	—	_	<u>+</u> 1	μA	$\label{eq:VSS} \begin{split} &V{\sf SS} \leq V{\sf PIN} \leq V{\sf DD}, \\ &P{\rm in \ at \ high-impedance} \end{split}$
DI55		MCLR	—	—	<u>+</u> 1	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$
DI56		OSC1	_	-	<u>+</u> 1	μA	VSS \leq VPIN \leq VDD, XT and HS modes

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

- 2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
- **3:** Negative current is defined as current sourced by the pin.
- 4: Refer to Table 1-4 for I/O pins buffer types.

5: VIH requirements are met when internal pull-ups are enabled.

TABLE 28-8: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

DC CHARACTERISTICS		$ \begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Sym	Characteristic	Min	Conditions			
	Vol	Output Low Voltage					
DO10		I/O Ports	—	_	0.4	V	IOL = 8.5 mA, VDD = 3.6V
			—	—	0.4	V	IOL = 6.0 mA, VDD = 2.0V
DO16		OSC2/CLKO	—	—	0.4	V	IOL = 8.5 mA, VDD = 3.6V
					0.4	V	IOL = 6.0 mA, VDD = 2.0V
	Vон	Output High Voltage					
DO20		I/O Ports	3.0	_	—	V	Юн = -3.0 mA, VDD = 3.6V
			2.4	_	—	V	Юн = -6.0 mA, VDD = 3.6V
			1.65	_	—	V	Юн = -1.0 mA, VDD = 2.0V
			1.4	—	—	V	Юн = -3.0 mA, VDD = 2.0V
DO26		OSC2/CLKO	2.4	—	—	V	Юн = -6.0 mA, VDD = 3.6V
			1.4		—	V	ЮН = -3.0 mA, VDD = 2.0V

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

- 3: Negative current is defined as current sourced by the pin.
- 4: Refer to Table 1-4 for I/O pins buffer types.
- **5:** VIH requirements are met when internal pull-ups are enabled.

TABLE 28-13: EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{ll} \mbox{Standard Operating Conditions: 2.50 to 3.6V (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions	
OS10	Fosc	External CLKI Frequency (external clocks allowed only in EC mode)	DC 4		32 8	MHz MHz	EC ECPLL	
		Oscillator Frequency	3 4 10 31	 	10 8 32 33	MHz MHz MHz kHz	XT XTPLL HS SOSC	
OS20	Tosc	Tosc = 1/Fosc	—			—	See Parameter OS10 for Fosc value	
OS25	Тсү	Instruction Cycle Time ⁽²⁾	62.5		DC	ns		
OS30	TosL, TosH	External Clock in (OSCI) High or Low Time	0.45 x Tosc	—	—	ns	EC	
OS31	TosR, TosF	External Clock in (OSCI) Rise or Fall Time	—	—	20	ns	EC	
OS40	TckR	CLKO Rise Time ⁽³⁾		6	10	ns		
OS41	TckF	CLKO Fall Time ⁽³⁾		6	10	ns		

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

- 2: Instruction cycle period (Tcr) equals two times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "Min." values with an external clock applied to the OSCI/CLKI pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.
- **3:** Measurements are taken in EC mode. The CLKO signal is measured on the OSCO pin. CLKO is low for the Q1-Q2 period (1/2 TCY) and high for the Q3-Q4 period (1/2 TCY).

FIGURE 28-10: INPUT CAPTURE TIMINGS

TABLE 28-23: INPUT CAPTURE

Param. No.	Symbol	Characteristic		Min	Max	Units	Conditions
IC10	TccL	ICx Input Low Time –	No Prescaler	Tcy + 20	_	ns	Must also meet
		Synchronous Timer	With Prescaler	20	-	ns	parameter IC15
IC11	TccH	H ICx Input Low Time – N Synchronous Timer	No Prescaler	Tcy + 20	-	ns	Must also meet
			With Prescaler	20	_	ns	parameter IC15
IC15	TccP	ICx Input Period – Synd	nput Period – Synchronous Timer		—	ns	N = prescale value (1, 4, 16)

TABLE 28-30: I²C[™] BUS START/STOP BIT TIMING REQUIREMENTS (MASTER MODE)

AC CHA	RACTER	ISTICS		Standard Operating Conditions: 2.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ (Industrial)				
Param No.	Symbol	Characteristic		Min ⁽¹⁾	Мах	Units	Conditions	
IM30	TSU:STA Start Condition		100 kHz mode	Tcy/2 (BRG + 1)		μs	Only relevant for	
		Setup Time	400 kHz mode	Tcy/2 (BRG + 1)	—	μS	Repeated Start	
			1 MHz mode ⁽²⁾	TCY/2 (BRG + 1)	—	μS	condition	
IM31	Thd:sta	Start Condition	100 kHz mode	Tcy/2 (BRG + 1)	_	μs	After this period, the	
		Hold Time	400 kHz mode	Tcy/2 (BRG + 1)	—	μS	first clock pulse is generated	
			1 MHz mode ⁽²⁾	TCY/2 (BRG + 1)	—	μS		
IM33	Tsu:sto	O Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)	—	μS	—	
			Setup Time	400 kHz mode	Tcy/2 (BRG + 1)	—	μS	
			1 MHz mode ⁽²⁾	TCY/2 (BRG + 1)	—	μS		
IM34	THD:STO	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)	_	ns	—	
		Hold Time	400 kHz mode	Tcy/2 (BRG + 1)	_	ns		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	ns		

Note 1: BRG is the value of the I²C[™] Baud Rate Generator. Refer to Section 16.3 "Setting Baud Rate When Operating as a Bus Master" for details

2: Maximum pin capacitance = 10 pF for all I²C pins (for 1 MHz mode only).