

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

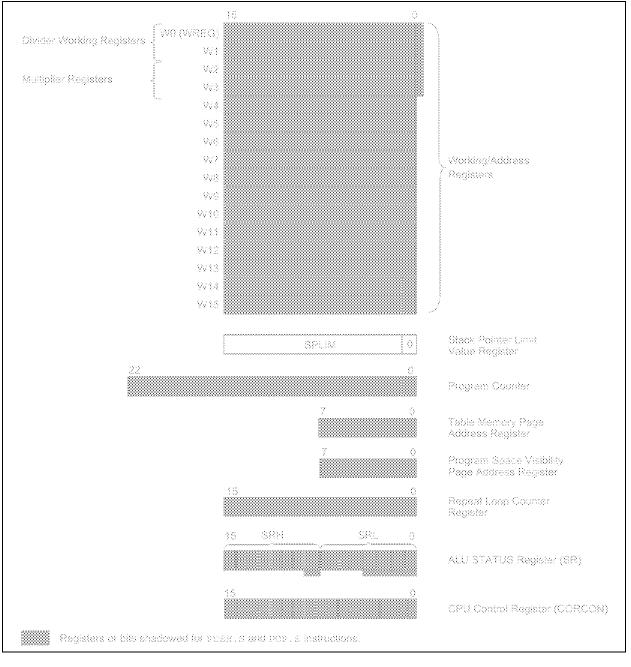
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

201010	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	85
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj128ga110-e-pt


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3-1: CPU CORE REGISTERS

Register(s) Name	Description
W0 through W15	Working Register Array
PC	23-Bit Program Counter
SR	ALU STATUS Register
SPLIM	Stack Pointer Limit Value Register
TBLPAG	Table Memory Page Address Register
PSVPAG	Program Space Visibility Page Address Register
RCOUNT	Repeat Loop Counter Register
CORCON	CPU Control Register

FIGURE 3-2: PROGRAMMER'S MODEL

TABLE 4-27: SYSTEM REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RCON	0740	TRAPR	IOPUWR	—	_		—	СМ	PMSLP	EXTR	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR	Note 1
OSCCON	0742	—	COSC2	COSC1	COSC0	—	NOSC2	NOSC1	NOSC0	CLKLOCK	IOLOCK	LOCK	—	CF	POSCEN	SOSCEN	OSWEN	Note 2
CLKDIV	0744	ROI	DOZE2	DOZE1	DOZE0	DOZEN	RCDIV2	RCDIV1	RCDIV0	—	—	—		—	_	_	—	0100
OSCTUN	0748	—	—	—	_	—	—	—	—	—	—	TUN5	TUN4	TUN3	TUN2	TUN1	TUN0	0000
REFOCON	074E	ROEN		ROSSLP	ROSEL	RODIV3	RODIV2	RODIV1	RODIV0		-	—	_	-	_	_	-	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: The Reset value of the RCON register is dependent on the type of Reset event. See Section 6.0 "Resets" for more information.

2: The Reset value of the OSCCON register is dependent on both the type of Reset event and the device configuration. See Section 8.0 "Oscillator Configuration" for more information.

TABLE 4-28: NVM REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
NVMCON	0760	WR	WREN	WRERR		_		_	_		ERASE			NVMOP3	NVMOP2	NVMOP1	NVMOP0	₀₀₀₀ (1)
NVMKEY	0766	-	—	_		_	_	_	_				NVMK	EY<7:0>				0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: Reset value shown is for POR only. Value on other Reset states is dependent on the state of memory write or erase operations at the time of Reset.

TABLE 4-29: PMD REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770	T5MD	T4MD	T3MD	T2MD	T1MD	-	—	—	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	_		ADC1MD	0000
PMD2	0772	IC8MD	IC7MD	IC6MD	IC5MD	IC4MD	IC3MD	IC2MD	IC1MD	OC8MD	OC7MD	OC6MD	OC5MD	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0774	_	—	_	—	—	CMPMD	RTCCMD	PMPMD	CRCMD	—	—	—	U3MD	I2C3MD	I2C2MD	—	0000
PMD4	0776	_	_	_	_	—	—	_	_	_	_	U4MD	_	REFOMD	CTMUMD	LVDMD	_	0000
PMD5	0778	_	—	—	—	—	—	—	IC9MD	—	—	—	—	—	—	_	OC9MD	0000
PMD6	077A	_	—	_	-	-	-	_	—	-		_	_	_	_	_	SPI3MD	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
NSTDIS	—			—	—	—	—			
bit 15							bit 8			
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0			
	—		MATHERR	ADDRERR	STKERR	OSCFAIL	—			
bit 7							bit 0			
Legend:										
R = Readab	ole bit	W = Writable	bit	U = Unimplem		d as '0'				
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ired	x = Bit is unkno	own			
bit 15		rrupt Nesting E								
		nesting is disat nesting is enab								
bit 14-5	Unimplement	ted: Read as '	0'							
bit 4	MATHERR: A	rithmetic Error	Trap Status bi	t						
		trap has occur trap has not oc								
bit 3		Address Error								
DIL D		error trap has c	•							
		error trap has c								
bit 2	STKERR: Stack Error Trap Status bit									
	1 = Stack erro	or trap has occ	urred							
	0 = Stack erro	or trap has not	occurred							
bit 1			Trap Status bit	t						
		 1 = Oscillator failure trap has occurred 0 = Oscillator failure trap has not occurred 								
1.1.0										
bit 0	Unimplement	ted: Read as '	0.							

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1

REGISTER 7-19: IPC2: INTERRUPT PRIORITY CONTROL REGISTER

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0							
	U1RXIP2	U1RXIP1	U1RXIP0		SPI1IP2	SPI1IP1	SPI1IP0							
oit 15							bit							
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0							
—	SPF1IP2	SPF1IP1	SPF1IP0	—	T3IP2	T3IP1	T3IP0							
bit 7							bit							
Legend:														
R = Readab	ole bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'								
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown							
L:1 4 F	Unimalaman	tad: Daad as (o'											
bit 15	-	ted: Read as '		Driarity bita										
bit 14-12		: UART1 Rece pt is priority 7 (I	=	-										
	•		ingricor priority											
	•													
	•	ntio maiority 1												
	001 = Interru 000 = Interru		abled											
bit 11		000 = Interrupt source is disabled Unimplemented: Read as '0'												
bit 10-8	-	SPI1IP<2:0>: SPI1 Event Interrupt Priority bits												
	111 = Interrupt is priority 7 (highest priority interrupt)													
	•	p												
	•													
	• 001 = Interru	nt is priority 1												
		pt is priority i pt source is dis	abled											
bit 7		ted: Read as '												
bit 6-4	-	SPI1 Fault In		bits										
		pt is priority 7 (I												
	•		/	• /										
	•													
	• 001 = Interru	pt is priority 1												
		pt source is dis	abled											
bit 3	Unimplemen	ted: Read as '	o'											
bit 2-0	T3IP<2:0>: ⊺	imer3 Interrupt	Priority bits											
	111 = Interru	pt is priority 7 (I	highest priority	interrupt)										
	•													
	•													
	•													
	• 001 = Interru	pt is priority 1												

REGISTER 7-25: IPC8: INTERRUPT PRIORITY CONTROL REGISTER 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—	SPI2IP2	SPI2IP1	SPI2IP0	—	SPF2IP2	SPF2IP1	SPF2IP0
bit 7							bit 0

Legend:				
R = Readab	ole bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR		'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15-7	Unimplen	nented: Read as '0'		
bit 6-4 SPI2IP<2:0>: SPI2 Event Interrup			iority bits	
	111 = Inte	errupt is priority 7 (highest p	riority interrupt)	
	•			
	•			
	•			
	001 = Inte	errupt is priority 1		
000 = Interrupt sou		errupt source is disabled		
bit 3	Unimplen	nented: Read as '0'		

bit 2-0	SPF2IP<2:0>: SPI2 Fault Interrupt Priority bits
	111 – Interrupt is priority 7 (highest priority interru

111 = Interrupt is priority 7 (highest priority interrupt)

•

•

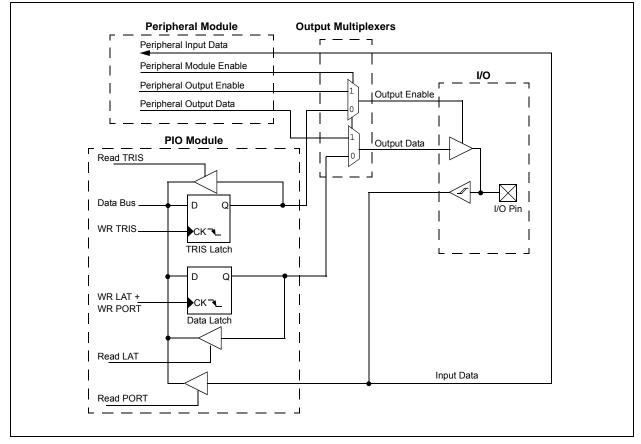
001 = Interrupt is priority 1

000 = Interrupt source is disabled

10.0 I/O PORTS

Note:	This data sheet summarizes the features of this group of PIC24F devices. It is not
	$\frac{1}{102}$
	intended to be a comprehensive reference
	source. For more information, refer to the
	"PIC24F Family Reference Manual",
	Section 12. "I/O Ports with Peripheral
	Pin Select (PPS)" (DS39711).

All of the device pins (except VDD, VSS, MCLR and OSCI/CLKI) are shared between the peripherals and the parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity.


10.1 Parallel I/O (PIO) Ports

A parallel I/O port that shares a pin with a peripheral is, in general, subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. The logic also prevents "loop through", in which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 10-1 shows how ports are shared with other peripherals and the associated I/O pin to which they are connected. When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin may be read, but the output driver for the parallel port bit will be disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin may be driven by a port.

All port pins have three registers directly associated with their operation as digital I/O. The Data Direction register (TRIS) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the Output Latch register (LAT), read the latch. Writes to the latch, write the latch. Reads from the port (PORT), read the port pins, while writes to the port pins, write the latch.

Any bit and its associated data and control registers that are not valid for a particular device will be disabled. That means the corresponding LAT and TRIS registers and the port pin will read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is regarded as a dedicated port because there is no other competing source of outputs.

FIGURE 10-1: BLOCK DIAGRAM OF A TYPICAL SHARED PORT STRUCTURE

10.4.2 AVAILABLE PERIPHERALS

The peripherals managed by the Peripheral Pin Select are all digital only peripherals. These include general serial communications (UART and SPI), general purpose timer clock inputs, timer related peripherals (input capture and output compare) and external interrupt inputs. Also included are the outputs of the comparator module, since these are discrete digital signals.

Peripheral Pin Select is not available for I^2C^{TM} , change notification inputs, RTCC alarm outputs or peripherals with analog inputs.

A key difference between pin select and non pin select peripherals is that pin select peripherals are not associated with a default I/O pin. The peripheral must always be assigned to a specific I/O pin before it can be used. In contrast, non pin select peripherals are always available on a default pin, assuming that the peripheral is active and not conflicting with another peripheral.

10.4.2.1 Peripheral Pin Select Function Priority

Pin-selectable peripheral outputs (e.g. OC, UART Transmit) take priority over general purpose digital functions on a pin, such as PMP and port I/O. Specialized digital outputs, such as USB functionality, will take priority over PPS outputs on the same pin. The pin diagrams provided at the beginning of this data sheet list peripheral outputs in order of priority. Refer to them for priority concerns on a particular pin.

Unlike PIC24F devices with fixed peripherals, pin-selectable peripheral inputs never take ownership of a pin. The pin's output buffer is controlled by the TRISx setting or by a fixed peripheral on the pin. If the pin is configured in Digital mode, the PPS input will operate correctly. If an analog function is enabled on the pin, the PPS input will be disabled.

10.4.3 CONTROLLING PERIPHERAL PIN SELECT

Peripheral Pin Select features are controlled through two sets of Special Function Registers: one to map peripheral inputs and one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.

The association of a peripheral to a peripheral-selectable pin is handled in two different ways, depending on if an input or an output is being mapped.

10.4.3.1 Input Mapping

The inputs of the Peripheral Pin Select options are mapped on the basis of the peripheral; that is, a control register associated with a peripheral dictates the pin it will be mapped to. The RPINRx registers are used to configure peripheral input mapping (see Register 10-1 through Register 10-21). Each register contains two sets of 6-bit fields, with each set associated with one of the pin-selectable peripherals. Programming a given peripheral's bit field with an appropriate 6-bit value maps the RPn pin with that value to that peripheral. For any given device, the valid range of values for any of the bit fields corresponds to the maximum number of Peripheral Pin Select options supported by the device.

10.4.3.2 Output Mapping

In contrast to inputs, the outputs of the Peripheral Pin Select options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPORx registers are used to control output mapping. Each register contains two 6-bit fields, with each field being associated with one RPn pin (see Register 10-22 through Register 10-37). The value of the bit field corresponds to one of the peripherals and that peripheral's output is mapped to the pin (see Table 10-3).

Because of the mapping technique, the list of peripherals for output mapping also includes a null value of '000000'. This permits any given pin to remain disconnected from the output of any of the pin-selectable peripherals.

10.4.3.3 Alternate Fixed Pin Mapping

To provide a migration option from earlier high pin count PIC24F devices, PIC24FJ256GA110 family devices implement an additional option for mapping the clock output (SCK) of SPI1. This option permits users to map SCK10UT specifically to the fixed pin function, ASCK1. The SCK1CM bit (ALTRP<0>) controls this mapping; setting the bit maps SCK10UT to ASCK1.

The SCK1CM bit must be set (= 1) before enabling the SPI module. It must remain set while transactions using SPI1 are in progress, in order to prevent transmission errors; when the module is disabled, the bit must be cleared. Additionally, no other RPOUT register should be configured to output the SCK1OUT function while SCK1CM is set.

x = Bit is unknown

REGISTER 10-21: RPINR29: PERIPHERAL PIN SELECT INPUT REGISTER 29

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—		—		—	—	_	—
bit 15							bit 8
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	_	SS3R5	SS3R4	SS3R3	SS3R2	SS3R1	SS3R0
bit 7						bit 0	
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	

'0' = Bit is cleared

bit 15-6 Unimplemented: Read as '0'

'1' = Bit is set

-n = Value at POR

bit 5-0 SS3R<5:0>: Assign SPI3 Slave Select Input (SS31IN) to Corresponding RPn or RPIn Pin bits

REGISTER 10-36: RPOR14: PERIPHERAL PIN SELECT OUTPUT REGISTER 14

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
bit 15	RP29R0	RP29R1	RP29R2	RP29R3	RP29R4	RP29R5	—	—
	bit 8							bit 15

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP28R5	RP28R4	RP28R3	RP28R2	RP28R1	RP28R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP29R<5:0>: RP29 Output Pin Mapping bits
	Peripheral output number n is assigned to pin, RP29 (see Table 10-3 for peripheral function numbers).
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP28R<5:0>: RP28 Output Pin Mapping bits
	Peripheral output number n is assigned to pin, RP28 (see Table 10-3 for peripheral function numbers).

REGISTER 10-37: RPOR15: PERIPHERAL PIN SELECT OUTPUT REGISTER 15

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP31R5 ⁽¹⁾	RP31R4 ⁽¹⁾	RP31R3 ⁽¹⁾	RP31R2 ⁽¹⁾	RP31R1 ⁽¹⁾	RP31R0 ⁽¹⁾
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP30R5	RP30R4	RP30R3	RP30R2	RP30R1	RP30R0
bit 7	•						bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8**RP31R<5:0>:** RP31 Output Pin Mapping bits⁽¹⁾
Peripheral output number n is assigned to pin, RP31 (see Table 10-3 for peripheral function numbers).bit 7-6**Unimplemented:** Read as '0'

bit 5-0 **RP30R<5:0>:** RP30 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP30 (see Table 10-3 for peripheral function numbers).

Note 1: Unimplemented in 64-pin and 80-pin devices; read as '0'.

REGISTER 14-1: OCxCON1: OUTPUT COMPARE x CONTROL 1 REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0				
	_	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	—	—				
bit 15							bit 8				
R/W-0	U-0	U-0	R/W-0, HCS	R/W-0	R/W-0	R/W-0	R/W-0				
ENFLT0			OCFLT0	TRIGMODE	OCM2 ⁽¹⁾	OCM1 ⁽¹⁾	OCM0 ⁽¹⁾				
bit 7	•	-	•	•	•	•	bit C				
Legend:		HCS = Hardw	vare Clearable/S	Settable bit							
R = Reada	able bit	W = Writable	bit	U = Unimplem	ented bit, read	as '0'					
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own				
bit 15-14	Unimplemen	ted: Read as '	כי								
bit 13	OCSIDL: Sto	p Output Comp	are x in Idle Mo	de Control bit							
	•	•	in CPU Idle mo								
	-		nues to operate		ode						
bit 12-10		•	pare x Timer Se	elect bits							
	111 = Periph 110 = Reserv	eral Clock (FCY)								
	101 = Reserv										
	100 = Timer1										
		011 = Timer5									
	010 = Timer4 001 = Timer3										
	000 = Timer3										
bit 9-8	Unimplemen	ted: Read as '	כי								
bit 7	ENFLT0: Fau	ult 0 Input Enab	le bit								
		nput is enabled									
		nput is disabled									
bit 6-5	-	ted: Read as '									
bit 4		/M Fault Condit									
			s occurred (clean has occurred (M<2:0> = 111)					
bit 3	TRIGMODE:	Trigger Status	Mode Select bit								
			<6>) is cleared v	vhen OCxRS =	OCxTMR or in	software					
		AT is only clear	-								
bit 2-0			e x Mode Select								
			mode on OCx ⁽² node on OCx ⁽²⁾	-,							
				mode: initialize	OCx pin low, t	oggle OCx stat	e continuously				
	101 = Double Compare Continuous Pulse mode: initialize OCx pin low, toggle OCx state continuously on alternate matches of OCxR and OCxRS										
			gle-Shot mode:	initialize OCx p	in low, toggle O	Cx state on ma	tches of OCxR				
		CxRS for one of	cycle tinuous Pulse m	odo: comparo	ovente continu	ously togglo OC	'v nin				
			le-Shot mode: i								
	001 = Single		le-Shot mode: i								
Note 1:	The OCx output	t must also be c		available RPn	pin. For more ii	nformation, see	Section 10.4				
о.	"Peripheral Pir			nin controla tha							
Z	UUTA DILI CONTO	いっ いしょうししみ C		ont controls me							

2: OCFA pin controls OC1-OC4 channels; OCFB pin controls the OC5-OC9 channels. OCxR and OCxRS are double-buffered only in PWM modes.

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_			DISSCK ⁽¹⁾	DISSDO ⁽²⁾	MODE16	SMP	CKE ⁽³⁾
oit 15							bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SSEN ⁽⁴			-		-		
bit 7) CKP	MSTEN	SPRE2	SPRE1	SPRE0	PPRE1	PPRE0 bit
							bit
Legend:							
R = Reada	able bit	W = Writable	bit	U = Unimplem	ented bit, read	as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15-13	Unimplemen	ted: Read as '	0'				
bit 12	=		bit (SPI Master	modes only)(1)			
511 12	1 = Internal S	-	abled; pin funct	• •			
bit 11		able SDOx pin					
	1 = SDOx pi		y module; pin fu	inctions as I/O			
bit 10	-		nunication Sele	ct bit			
		ication is word					
	0 = Commun	ication is byte-	wide (8 bits)				
bit 9	SMP: SPIx D	ata Input Sam	ole Phase bit				
		a sampled at e	nd of data outp niddle of data o				
	Slave mode:		SPIx is used in				
bit 8		lock Edge Sele					
	1 = Serial ou	tput data chan	ges on transitio		ock state to Idle k state to active		
bit 7			(Slave mode) b				
		used for Slave not used by mo	mode dule; pin contro	olled by port fur	nction		
bit 6	CKP: Clock F	Polarity Select I	oit				
			nigh level; activ ow level; active				
bit 5	MSTEN: Mas	ter Mode Enat	ole bit				
	1 = Master m 0 = Slave mo						
Note 1:	If DISSCK = 0, S Section 10.4 "Pe				pin (or to ASCk	(1 for SPI1). Se	ee
2:	If DISSDO = 0, S Select" for more	DOx must be o			pin. See Section	on 10.4 "Perip	oheral Pin
3:	The CKE bit is no SPI modes (FRM	ot used in the F	ramed SPI mod	les. The user s	hould program	this bit to '0' fo	r the Frame
4:	If SSEN = 1, \overline{SSx}		gured to an avai	ilable RPn pin.	See Section 10).4 "Periphera	I Pin Select

17.2 Transmitting in 8-Bit Data Mode

- 1. Set up the UART:
 - a) Write appropriate values for data, parity and Stop bits.
 - b) Write appropriate baud rate value to the UxBRG register.
 - c) Set up transmit and receive interrupt enable and priority bits.
- 2. Enable the UART.
- 3. Set the UTXEN bit (causes a transmit interrupt two cycles after being set).
- 4. Write data byte to lower byte of UxTXREG word. The value will be immediately transferred to the Transmit Shift Register (TSR) and the serial bit stream will start shifting out with the next rising edge of the baud clock.
- Alternately, the data byte may be transferred while UTXEN = 0, and then the user may set UTXEN. This will cause the serial bit stream to begin immediately because the baud clock will start from a cleared state.
- 6. A transmit interrupt will be generated as per interrupt control bit, UTXISELx.

17.3 Transmitting in 9-Bit Data Mode

- 1. Set up the UART (as described in **Section 17.2** "**Transmitting in 8-Bit Data Mode**").
- 2. Enable the UART.
- 3. Set the UTXEN bit (causes a transmit interrupt).
- 4. Write UxTXREG as a 16-bit value only.
- 5. A word write to UxTXREG triggers the transfer of the 9-bit data to the TSR. The serial bit stream will start shifting out with the first rising edge of the baud clock.
- 6. A transmit interrupt will be generated as per the setting of control bit, UTXISELx.

17.4 Break and Sync Transmit Sequence

The following sequence will send a message frame header made up of a Break, followed by an Auto-Baud Sync byte.

- 1. Configure the UART for the desired mode.
- 2. Set UTXEN and UTXBRK to set up the Break character.
- 3. Load the UxTXREG with a dummy character to initiate transmission (value is ignored).
- 4. Write '55h' to UxTXREG; this loads the Sync character into the transmit FIFO.
- 5. After the Break has been sent, the UTXBRK bit is reset by hardware. The Sync character now transmits.

17.5 Receiving in 8-Bit or 9-Bit Data Mode

- 1. Set up the UART (as described in Section 17.2 "Transmitting in 8-Bit Data Mode").
- 2. Enable the UART.
- 3. A receive interrupt will be generated when one or more data characters have been received as per interrupt control bit, URXISELx.
- 4. Read the OERR bit to determine if an overrun error has occurred. The OERR bit must be reset in software.
- 5. Read UxRXREG.

The act of reading the UxRXREG character will move the next character to the top of the receive FIFO, including a new set of PERR and FERR values.

17.6 Operation of UxCTS and UxRTS Control Pins

UARTx Clear to Send (UxCTS) and Request to Send (UxRTS) are the two hardware controlled pins that are associated with the UART module. These two pins allow the UART to operate in Simplex and Flow Control mode. They are implemented to control the transmission and reception between the Data Terminal Equipment (DTE). The UEN<1:0> bits in the UxMODE register configure these pins.

17.7 Infrared Support

The UART module provides two types of infrared UART support: one is the IrDA clock output to support external IrDA encoder and decoder device (legacy module support), and the other is the full implementation of the IrDA encoder and decoder. Note that because the IrDA modes require a 16x baud clock, they will only work when the BRGH bit (UxMODE<3>) is '0'.

17.7.1 IrDA CLOCK OUTPUT FOR EXTERNAL IrDA SUPPORT

To support external IrDA encoder and decoder devices, the BCLKx pin (same as the UxRTS pin) can be configured to generate the 16x baud clock. When UEN<1:0> = 11, the BCLKx pin will output the 16x baud clock if the UART module is enabled. It can be used to support the IrDA codec chip.

17.7.2 BUILT-IN IrDA ENCODER AND DECODER

The UART has full implementation of the IrDA encoder and decoder as part of the UART module. The built-in IrDA encoder and decoder functionality is enabled using the IREN bit (UxMODE<12>). When enabled (IREN = 1), the receive pin (UxRX) acts as the input from the infrared receiver. The transmit pin (UxTX) acts as the output to the infrared transmitter.

REGISTER 18-5: PMSTAT: PARALLEL MASTER PORT STATUS REGISTER

	BMMMM							
R-0	R/W-0, HS	U-0	U-0	R-0	R-0	R-0	R-0	
IBF	IBOV	—	—	IB3F	IB2F	IB1F	IB0F	
bit 15							bit 8	
R-1	R/W-0, HS	U-0	U-0	R-1	R-1	R-1	R-1	
OBE	OBUF			OB3E	OB2E	OB1E	OB0E	
bit 7							bit 0	
Logondy		HS = Hardwa	o Cottoblo bit					
Legend: R = Readabl	a hit				anted bit read			
		W = Writable	אנ	U = Unimplem				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own	
64.4 F			. :.					
bit 15	IBF: Input Buffer Full Status bit							
	 All writable input buffer registers are full Some or all of the writable input buffer registers are empty 							
bit 14	IBOV: Input Buffer Overflow Status bit							
	1 = A write attempt to a full input byte register occurred (must be cleared in software)							
	 a write attempt to a full input byte register occurred (must be cleared in software) 0 = No overflow occurred 							
bit 13-12	Unimplemen	ted: Read as 'd)'					
bit 11-8	IB3F:IB0F Inp	out Buffer x Sta	tus Full bits					
				been read (read	ding buffer will	clear this bit)		
		er does not co		ad data				
bit 7		Buffer Empty S						
	 1 = All readable output buffer registers are empty 0 = Some or all of the readable output buffer registers are full 							
bit 6			-					
	OBUF: Output Buffer Underflow Status bit							
	 1 = A read occurred from an empty output byte register (must be cleared in software) 0 = No underflow occurred 							
bit 5-4	Unimplemen	ted: Read as 'd)'					
bit 3-0	OB3E:OB0E	Output Buffer x	Status Empty	bits				
	1 = Output bu	uffer is empty (\	vriting data to	the buffer will cl	ear this bit)			
	0 = Output bu	uffer contains d	ata that has no	ot been transmit	ted			

19.1.5 ALRMVAL REGISTER MAPPINGS

REGISTER 19-8: ALMTHDY: ALARM MONTH AND DAY VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
		_	MTHTEN0	MTHONE3	MTHONE2	MTHONE1	MTHONE0		
bit 15	•	-	-	-	-	-	bit 8		
U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
—		DAYTEN1	DAYTEN0	DAYONE3	DAYONE2	DAYONE1	DAYONE0		
bit 7							bit 0		
Legend:									
R = Readab	ole bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown			
h# 45 40		(ad. Daad as (o.'						
bit 15-13	-	ted: Read as '							
bit 12	MTHTEN0: B	inary Coded D	ecimal Value o	f Month's Tens	Digit bit				
	Contains a va	lue of 0 or 1.							
bit 11-8	MTHONE<3:0>: Binary Coded Decimal Value of Month's Ones Digit bits								
	Contains a value from 0 to 9.								
bit 7-6	Unimplemented: Read as '0'								
bit 5-4	DAYTEN<1:0>: Binary Coded Decimal Value of Day's Tens Digit bits								
	Contains a value from 0 to 3.								
bit 3-0	DAYONE<3:0	>: Binary Code	ed Decimal Val	ue of Day's On	es Digit bits				
	Contains a value from 0 to 9.								

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 19-9: ALWDHR: ALARM WEEKDAY AND HOURS VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x
—	—	—	—	—	WDAY2	WDAY1	WDAY0
bit 15							bit 8
U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	HRTEN1	HRTEN0	HRONE3	HRONE2	HRONE1	HRONE0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-11	Unimplemented: Read as '0'
bit 10-8	WDAY<2:0>: Binary Coded Decimal Value of Weekday Digit bits
	Contains a value from 0 to 6.
bit 7-6	Unimplemented: Read as '0'
bit 5-4	HRTEN<1:0>: Binary Coded Decimal Value of Hour's Tens Digit bits
	Contains a value from 0 to 2.
bit 3-0	HRONE<3:0>: Binary Coded Decimal Value of Hour's Ones Digit bits
	Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 19-10: ALMINSEC: ALARM MINUTES AND SECONDS VALUE REGISTER

U-0	R/W-x						
—	MINTEN2	MINTEN1	MINTEN0	MINONE3	MINONE2	MINONE1	MINONE0
bit 15	•						bit 8

U-0	R/W-x						
—	SECTEN2	SECTEN1	SECTEN0	SECONE3	SECONE2	SECONE1	SECONE0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	Unimplemented: Read as '0'
bit 14-12	MINTEN<2:0>: Binary Coded Decimal Value of Minute's Tens Digit bits Contains a value from 0 to 5.
bit 11-8	MINONE<3:0>: Binary Coded Decimal Value of Minute's Ones Digit bits
	Contains a value from 0 to 9.
bit 7	Unimplemented: Read as '0'
bit 6-4	SECTEN<2:0>: Binary Coded Decimal Value of Second's Tens Digit bits
	Contains a value from 0 to 5.
bit 3-0	SECONE<3:0>: Binary Coded Decimal Value of Second's Ones Digit bits
	Contains a value from 0 to 9.

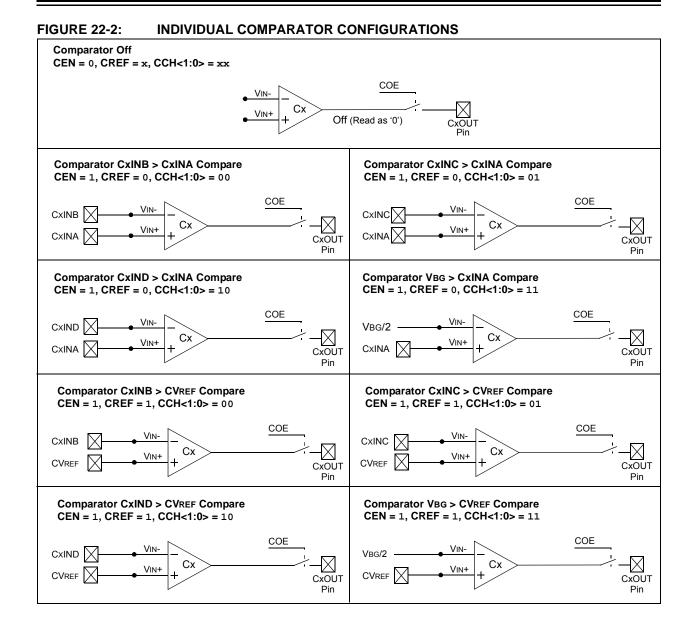
19.2 Calibration

The real-time crystal input can be calibrated using the periodic auto-adjust feature. When properly calibrated, the RTCC can provide an error of less than 3 seconds per month. This is accomplished by finding the number of error clock pulses for one minute and storing the value into the lower half of the RCFGCAL register. The 8-bit signed value loaded into the lower half of RCFGCAL is multiplied by four and will be either added or subtracted from the RTCC timer, once every minute. Refer to the steps below for RTCC calibration:

- 1. Using another timer resource on the device, the user must find the error of the 32.768 kHz crystal.
- 2. Once the error is known, it must be converted to the number of error clock pulses per minute and loaded into the RCFGCAL register.

EQUATION 19-1: RTCC CALIBRATION

Error (Clocks per Minute) = (Ideal Frequency[†] – Measured Frequency) * 60 = Clocks per Minute † Ideal frequency = 32,768 Hz 3. a) If the oscillator is faster then ideal (negative result form Step 2), the RCFGCAL register value needs to be negative. This causes the specified number of clock pulses to be subtracted from the timer counter once every minute.


b) If the oscillator is slower then ideal (positive result from Step 2) the RCFGCAL register value needs to be positive. This causes the specified number of clock pulses to be added from the timer counter once every minute.

 Divide the number of error clocks per minute by 4 to get the correct CAL value and load the RCFGCAL register with the correct value.

(Each 1-bit increment in CAL adds or subtracts 4 pulses.)

Writes to the lower half of the RCFGCAL register should only occur when the timer is turned off, or immediately after the rising edge of the seconds pulse.

Note: It is up to the user to include in the error value the initial error of the crystal, drift due to temperature and drift due to crystal aging.

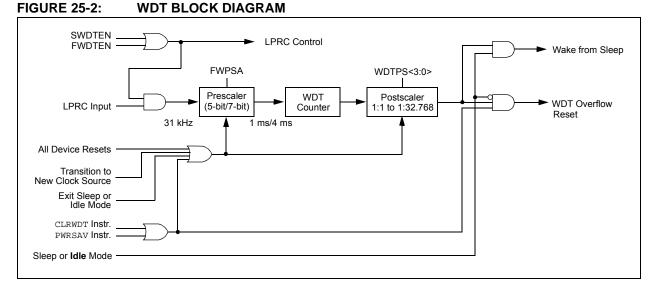
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
CTMUEN		CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN	CTTRIG	
bit 15							bit	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
EDG2POL	EDG2SEL1	EDG2SEL0	EDG1POL	EDG1SEL1	EDG1SEL0	EDG2STAT	EDG1STAT	
bit 7							bit	
Legend:	- L : L		- :4					
R = Readable		W = Writable I	DIT		nented bit, read			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown	
bit 15	CTMUEN: CT	MU Enable bit						
	1 = Module is							
	0 = Module is							
bit 14	Unimplement	ted: Read as 'o)'					
bit 13	CTMUSIDL: S	Stop in Idle Mod	le bit					
		ue module ope			e mode			
		module operat		le				
bit 12		Generation Ena						
		edge delay gen edge delay ger						
bit 11	EDGEN: Edge							
	1 = Edges ar	e not blocked						
	0 = Edges ar	e blocked						
bit 10		Edge Sequence						
		vent must occu sequence is ne		2 event can oc	cur			
bit 9	IDISSEN: Ana	alog Current So	urce Control b	oit				
	 1 = Analog current source output is grounded 0 = Analog current source output is not grounded 							
bit 8	CTTRIG: Trig	ger Control bit						
	00	utput is enabled utput is disable						
bit 7		•						
	 EDG2POL: Edge 2 Polarity Select bit 1 = Edge 2 programmed for a positive edge response 0 = Edge 2 programmed for a negative edge response 							
bit 6-5								
	EDG2SEL<1:0>: Edge 2 Source Select bits 11 = CTED1 pin							
	10 = CTED2							
	01 = OC1 mo							
L:1 4	00 = Timer1 n		D = 1 = = + + ''					
bit 4		dge 1 Polarity S						
Note 1: If]	0 = Edge 1 p	rogrammed for rogrammed for	a negative ed	ge response	assigned to av			

See Section 10.4 "Peripheral Pin Select" for more information.

REGISTER 24-1: CTMUCON: CTMU CONTROL REGISTER

© 2010 Microchip Technology Inc.

25.3.1 WINDOWED OPERATION


The Watchdog Timer has an optional Fixed Window mode of operation. In this Windowed mode, CLRWDT instructions can only reset the WDT during the last 1/4 of the programmed WDT period. A CLRWDT instruction executed before that window causes a WDT Reset, similar to a WDT time-out.

Windowed WDT mode is enabled by programming the WINDIS Configuration bit (CW1<6>) to '0'.

25.3.2 CONTROL REGISTER

The WDT is enabled or disabled by the FWDTEN Configuration bit. When the FWDTEN Configuration bit is set, the WDT is always enabled.

The WDT can be optionally controlled in software when the FWDTEN Configuration bit has been programmed to '0'. The WDT is enabled in software by setting the SWDTEN control bit (RCON<5>). The SWDTEN control bit is cleared on any device Reset. The software WDT option allows the user to enable the WDT for critical code segments and disable the WDT during non-critical segments for maximum power savings.

25.4 Program Verification and Code Protection

PIC24FJ256GA110 family devices provide two complimentary methods to protect application code from overwrites and erasures. These also help to protect the device from inadvertent configuration changes during run time.

25.4.1 GENERAL SEGMENT PROTECTION

For all devices in the PIC24FJ256GA110 family, the on-chip program memory space is treated as a single block, known as the General Segment (GS). Code

protection for this block is controlled by one Configuration bit, GCP. This bit inhibits external reads and writes to the program memory space. It has no direct effect in normal execution mode.

Write protection is controlled by the GWRP bit in the Configuration Word. When GWRP is programmed to '0', internal write and erase operations to program memory are blocked.

25.5 JTAG Interface

PIC24FJ256GA110 family devices implement a JTAG interface, which supports boundary scan device testing.

25.6 In-Circuit Serial Programming

PIC24FJ256GA110 family microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock (PGECx) and data (PGEDx), and three other lines for power, ground and the programming voltage. This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

25.7 In-Circuit Debugger

When MPLAB[®] ICD 2 is selected as a debugger, the in-circuit debugging functionality is enabled. This function allows simple debugging functions when used with MPLAB IDE. Debugging functionality is controlled through the PGECx (Emulation/Debug Clock) and PGEDx (Emulation/Debug Data) pins.

To use the in-circuit debugger function of the device, the design must implement ICSP connections to \overline{MCLR} , VDD, VSS and the PGECx/PGEDx pin pair designated by the ICS Configuration bits. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins.

TABLE 26-1: SYMBOLS USED IN OPCODE DESCRIPTIONS

Field	Description
#text	Means literal defined by "text"
(text)	Means "content of text"
[text]	Means "the location addressed by text"
{ }	Optional field or operation
<n:m></n:m>	Register bit field
.b	Byte mode selection
.d	Double-Word mode selection
.S	Shadow register select
.W	Word mode selection (default)
bit4	4-bit bit selection field (used in word addressed instructions) $\in \{015\}$
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero
Expr	Absolute address, label or expression (resolved by the linker)
f	File register address ∈ {0000h1FFFh}
lit1	1-bit unsigned literal $\in \{0,1\}$
lit4	4-bit unsigned literal ∈ {015}
lit5	5-bit unsigned literal ∈ {031}
lit8	8-bit unsigned literal ∈ {0255}
lit10	10-bit unsigned literal \in {0255} for Byte mode, {0:1023} for Word mode
lit14	14-bit unsigned literal ∈ {016384}
lit16	16-bit unsigned literal \in {065535}
lit23	23-bit unsigned literal ∈ {08388608}; LSB must be '0'
None	Field does not require an entry, may be blank
PC	Program Counter
Slit10	10-bit signed literal \in {-512511}
Slit16	16-bit signed literal ∈ {-3276832767}
Slit6	6-bit signed literal ∈ {-1616}
Wb	Base W register ∈ {W0W15}
Wd	Destination W register ∈ { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }
Wdo	Destination W register ∈ { Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] }
Wm,Wn	Dividend, Divisor working register pair (direct addressing)
Wn	One of 16 working registers ∈ {W0W15}
Wnd	One of 16 destination working registers \in {W0W15}
Wns	One of 16 source working registers ∈ {W0W15}
WREG	W0 (working register used in file register instructions)
Ws	Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }
Wso	Source W register ∈ { Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }