

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	53
Program Memory Size	192КВ (65.5К х 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj192ga106-i-mr

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-2: DEVICE FEATURES FOR THE PIC24FJ256GA110 FAMILY: 80-PIN DEVICES

Features	PIC24FJ64GA108	PIC24FJ128GA108	PIC24FJ192GA108	PIC24FJ256GA108				
Operating Frequency		DC – 3	32 MHz					
Program Memory (bytes)	64K	128K	192K	256K				
Program Memory (instructions)	22,016	44,032	67,072	87,552				
Data Memory (bytes)		16,	384	•				
Interrupt Sources (soft vectors/NMI traps)		66 (62/4)					
I/O Ports		Ports A, B,	C, D, E, F, G					
Total I/O Pins	69							
Remappable Pins		42 (31 I/O, ²	11 input only)					
Timers:								
Total Number (16-bit)		5	(1)					
32-Bit (from paired 16-bit timers)			2					
Input Capture Channels		9	(1)					
Output Compare/PWM Channels		9	(1)					
Input Change Notification Interrupt		6	69					
Serial Communications:								
UART		4	(1)					
SPI (3-wire/4-wire)	3(1)							
l ² C™		:	3					
Parallel Communications (PMP/PSP)		Y	es					
JTAG Boundary Scan		Y	es					
10-Bit Analog-to-Digital Module (input channels)		1	6					
Analog Comparators			3					
CTMU Interface		Y	es					
Resets (and delays)	POR, BOR, BOR, BOR, BOR, BOR, BOR, BOR, B	OR, RESET Instruction truction, Hardware Tra (PWRT, OS)	n, MCLR, WDT; Illegal aps, Configuration Wo T, PLL Lock)	Opcode, ord Mismatch				
Instruction Set	76 Bas	e Instructions, Multiple	e Addressing Mode Va	ariations				
Packages		80-Pir	TQFP					

Note 1: Peripherals are accessible through remappable pins.

2.4 **Voltage Regulator Pins** (ENVREG/DISVREG and VCAP/VDDCORE)

Note:	This section applies only to PIC24F J
	devices with an on-chip voltage regulator.

The on-chip voltage regulator enable/disable pin (ENVREG or DISVREG, depending on the device family) must always be connected directly to either a supply voltage or to ground. The particular connection is determined by whether or not the regulator is to be used:

- For ENVREG, tie to VDD to enable the regulator, or to ground to disable the regulator
- · For DISVREG, tie to ground to enable the regulator or to VDD to disable the regulator

Refer to Section 25.2 "On-Chip Voltage Regulator" for details on connecting and using the on-chip regulator.

When the regulator is enabled, a low-ESR (< 5Ω) capacitor is required on the VCAP/VDDCORE pin to stabilize the voltage regulator output voltage. The VCAP/VDDCORE pin must not be connected to VDD and must use a capacitor of 10 µF connected to ground. The type can be ceramic or tantalum. Suitable examples of capacitors are shown in Table 2-1. Capacitors with equivalent specification can be used.

Designers may use Figure 2-3 to evaluate ESR equivalence of candidate devices.

The placement of this capacitor should be close to VCAP/VDDCORE. It is recommended that the trace length not exceed 0.25 inch (6 mm). Refer to Section 28.0 "Electrical Characteristics" for additional information.

When the regulator is disabled, the VCAP/VDDCORE pin must be tied to a voltage supply at the VDDCORE level. Refer to Section 28.0 "Electrical Characteristics" for information on VDD and VDDCORE.

TABLE 2-1:	SUITABLE CAPACITOR	EQUIVALENTS				
Make	Part #	Nominal Capacitance	Base Tolerance	Rated Voltage	Temp. Range	
TDK	C3216X7R1C106K	10 µF	±10%	16V	-55 to 125°C	
TDK	C3216X5R1C106K	10 µF	±10%	16V	-55 to 85°C	
Panasonic	ECJ-3YX1C106K	10 µF	±10%	16V	-55 to 125°C	
Panasonic	ECJ-4YB1C106K	10 µF	±10%	16V	-55 to 85°C	
Murata	GRM32DR71C106KA01L	10 µF	±10%	16V	-55 to 125°C	
Murata	GRM31CR61C106KC31L	10 µF	±10%	16V	-55 to 85°C	

2.7 Configuration of Analog and Digital Pins During ICSP Operations

If an ICSP compliant emulator is selected as a debugger, it automatically initializes all of the A/D input pins (ANx) as "digital" pins. Depending on the particular device, this is done by setting all bits in the ADnPCFG register(s), or clearing all bit in the ANSx registers.

All PIC24F devices will have either one or more ADnPCFG registers or several ANSx registers (one for each port); no device will have both. Refer to (**choose one xref:** or

) for more specific information.

The bits in these registers that correspond to the A/D pins that initialized the emulator must not be changed by the user application firmware; otherwise, communication errors will result between the debugger and the device.

If your application needs to use certain A/D pins as analog input pins during the debug session, the user application must modify the appropriate bits during initialization of the ADC module, as follows:

- For devices with an ADnPCFG register, clear the bits corresponding to the pin(s) to be configured as analog. Do not change any other bits, particularly those corresponding to the PGECx/PGEDx pair, at any time.
- For devices with ANSx registers, set the bits corresponding to the pin(s) to be configured as analog. Do not change any other bits, particularly those corresponding to the PGECx/PGEDx pair, at any time.

When a Microchip debugger/emulator is used as a programmer, the user application firmware must correctly configure the ADnPCFG or ANSx registers. Automatic initialization of this register is only done during debugger operation. Failure to correctly configure the register(s) will result in all A/D pins being recognized as analog input pins, resulting in the port value being read as a logic '0', which may affect user application functionality.

2.8 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic low state. Alternatively, connect a 1 k Ω to 10 k Ω resistor to Vss on unused pins and drive the output to logic low.

REGISTER 7-1: SR: ALU STATUS REGISTER (IN CPU)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R-0
—	—	—	—	—	—	—	DC ⁽¹⁾
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
IPL2 ^(2,3)	IPL1 ^(2,3)	IPL0 ^(2,3)	RA ⁽¹⁾	N ⁽¹⁾	OV ⁽¹⁾	Z ⁽¹⁾	C ⁽¹⁾
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7-5	IPL<2:0>: CPU Interrupt Priority Level Status bits ^(2,3)
	111 = CPU interrupt priority level is 7 (15). User interrupts disabled.
	110 = CPU interrupt priority level is 6 (14)
	101 = CPU interrupt priority level is 5 (13)
	100 = CPU interrupt priority level is 4 (12)
	011 = CPU interrupt priority level is 3 (11)
	010 = CPU interrupt priority level is 2 (10)
	001 = CPU interrupt priority level is 1 (9)
	000 = CPU interrupt priority level is 0 (8)

- **Note 1:** See Register 3-1 for the description of the remaining bit(s) that are not dedicated to interrupt control functions.
 - **2:** The IPL bits are concatenated with the IPL3 bit (CORCON<3>) to form the CPU interrupt priority level. The value in parentheses indicates the interrupt priority level if IPL3 = 1.
 - 3: The IPL Status bits are read-only when NSTDIS (INTCON1<15>) = 1.

REGISTER 7-2:	CORCON: CPU CON	TROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	-	—	—	—	—	
bit 15							bit 8	
U-0	U-0	U-0	U-0	R/C-0	R/W-0	U-0	U-0	
—	—	—	—	IPL3 ⁽²⁾	PSV ⁽¹⁾	—	—	
bit 7	•						bit 0	
Legend:		C = Clearable	bit					
R = Readable b	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown				

bit 3 IPL3: CPU Interrupt Priority Level Status bit⁽²⁾ 1 = CPU interrupt priority level is greater than 7 0 = CPU interrupt priority level is 7 or less

- **Note 1:** See Register 3-2 for the description of the remaining bit(s) that are not dedicated to interrupt control functions.
 - 2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU interrupt priority level.

REGISTER	7-5: IFS0:	INTERRUPT	FLAG STAT	US REGIS	ΓER	0				
U-0	U-0	R/W-0	R/W-0	R/W-0		R/W-0		R/W-0		R/W-0
—	—	AD1IF	U1TXIF	U1RXIF		SPI1IF		SPF1IF		T3IF
bit 15										bit 8
R/W-0	R/W-0	R/W-0	U-0	R/W-0		R/W-0		R/W-0		R/W-0
T2IF	OC2IF	IC2IF		T1IF		OC1IF		IC1IF		INT0IF
bit 7										bit 0
Legend:										
R = Readab	le bit	W = Writable	bit	U = Unimple	emen	ted bit, re	ad a	is '0'		
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is c	leare	d	х	: = Bit is un	knov	wn
bit 15-14	Unimplemen	ted: Read as '	0'							
bit 13	AD1IF: A/D (Conversion Cor	nplete Interrupt	t Flag Status	bit					
	1 = Interrupt	request has oc request has no	curred t occurred							
bit 12	U1TXIF: UAF	RT1 Transmitte	r Interrupt Flag	Status bit						
	1 = Interrupt	request has oc	curred							
1.11.4.4	0 = Interrupt	request has no	t occurred							
DIT 11	U1RXIF: UAP	RI1 Receiver li	nterrupt Flag St	atus dit						
	0 = Interrupt	request has no	t occurred							
bit 10	SPI1IF: SPI1	Event Interrup	t Flag Status bi	it						
	1 = Interrupt	, request has oc	curred							
	0 = Interrupt	request has no	t occurred							
bit 9	SPF1IF: SPI	1 Fault Interrup	t Flag Status bi	it						
	1 = Interrupt	request has oc request has no	curred t occurred							
bit 8	T3IF: Timer3	Interrupt Flag	Status bit							
	1 = Interrupt	request has oc	curred							
	0 = Interrupt	request has no	toccurred							
bit 7	T2IF: Timer2	Interrupt Flag	Status bit							
	$\perp = Interrupt$	request has oc request has no	t occurred							
bit 6	OC2IF: Outp	ut Compare Ch	annel 2 Interru	pt Flag Statu	s bit					
	1 = Interrupt	request has oc	curred							
	0 = Interrupt	request has no	t occurred							
bit 5	IC2IF: Input (Capture Chann	el 2 Interrupt F	lag Status bit						
	1 = Interrupt	request has oc	curred							
hit 1		request has no	o,							
DIL 4 bit 3		Interrunt Flag	∪ Status bit							
DIL D	1 = Interrupt	request has oc	curred							
	0 = Interrupt	request has no	toccurred							
bit 2	OC1IF: Outp	ut Compare Ch	annel 1 Interru	pt Flag Statu	s bit					
	1 = Interrupt	request has oc	curred							
	0 = Interrupt	request has no	t occurred							
bit 1	IC1IF: Input (Capture Chann	el 1 Interrupt Fl	lag Status bit						
	$\perp = interrupt$	request has oc	t occurred							
bit 0	INTOIF: Exter	mal Interrupt 0	Flag Status bit							
	1 = Interrupt	request has oc	curred							
	0 = Interrupt	request has no	t occurred							

REGISTER 7-12: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1

R/W-0R/W-0R/W-0R/W-0R/W-0R/W-0U2TXIEU2RXIEINT2IE ⁽¹⁾ T5IET4IEOC4IEOC3IEbit 15R/W-0R/W-0U-0R/W-0R/W-0R/W-0FIC8IEIC7IE—INT1IE ⁽¹⁾ CNIECMIEMI2C1IESIbit 7Legend: R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'	U-U bit 8					
U2TXIE U2RXIE INT2IE ⁽¹⁾ I5IE I4IE OC4IE OC3IE bit 15	— bit 8 2/W-0 2C1IE bit 0					
Dit 15 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 F IC8IE IC7IE — INT1IE ⁽¹⁾ CNIE CMIE MI2C1IE Si bit 7	2/W-0 12C1IE bit 0					
R/W-0 R/W-0 U-0 R/W-0 R/W-0 R/W-0 F IC8IE IC7IE — INT1IE ⁽¹⁾ CNIE CMIE MI2C1IE SI bit 7	R/W-0 I2C1IE bit 0					
ICRIE ICRIE ICRIE ICRIE ICRIE ICRIE ICBIE ICRIE — INT1IE ⁽¹⁾ CNIE CMIE MI2C1IE Si bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'	li2C1IE bit 0					
Legend: U U U R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'	bit 0					
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'						
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'						
R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'						
- Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown						
bit 15 U2TXIE: UART2 Transmitter Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled						
bit 14 U2RXIE: UART2 Receiver Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled						
bit 13 INT2IE: External Interrupt 2 Enable bit ⁽¹⁾ 1 = Interrupt request enabled 0 = Interrupt request not enabled						
bit 12 T5IE: Timer5 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled						
bit 11 T4IE: Timer4 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled						
bit 10 OC4IE: Output Compare Channel 4 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled						
bit 9 OC3IE: Output Compare Channel 3 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled						
bit 8 Unimplemented: Read as '0'						
bit 7 IC8IE: Input Capture Channel 8 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled						
bit 6 IC7IE: Input Capture Channel 7 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled						
bit 5 Unimplemented: Read as '0'						
bit 4 INT1IE: External Interrupt 1 Enable bit ⁽¹⁾ 1 = Interrupt request enabled 0 = Interrupt request not enabled						
bit 3 CNIE: Input Change Notification Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled						
bit 2 CMIE: Comparator Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled						

Note 1: If an external interrupt is enabled, the interrupt input must also be configured to an available RPn or RPIn pin. See **Section 10.4 "Peripheral Pin Select**" for more information.

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
_	IC5IP2	IC5IP1	IC5IP0	—	IC4IP2	IC4IP1	IC4IP0				
bit 15							bit 8				
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0				
—	IC3IP2	IC3IP1	IC3IP0								
bit 7							bit 0				
Legend:											
R = Readab	ole bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'					
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown				
bit 15	Unimplemen	ted: Read as '	0'								
bit 14-12	IC5IP<2:0>:	Input Capture 0	Channel 5 Inte	rrupt Priority bi	ts						
	111 = Interrupt is priority 7 (highest priority interrupt)										
	•										
	001 = Interru 000 = Interru	pt is priority 1 pt source is dis	abled								
bit 11	Unimplemen	ted: Read as '	0'								
bit 10-8	IC4IP<2:0>:	Input Capture (Channel 4 Inte	rrupt Priority bi	ts						
	111 = Interru	pt is priority 7 (highest priorit	y interrupt)							
	•										
	•										
	001 = Interru	pt is priority 1									
	000 = Interru	pt source is dis	abled								
bit 7	Unimplemen	ted: Read as '	0'								
bit 6-4	IC3IP<2:0>:	Input Capture (Channel 3 Inte	rrupt Priority bi	ts						
	111 = Interru	pt is priority 7 (highest priorit	y interrupt)							
	•										
	•										
	001 = Interru 000 = Interru	pt is priority 1 pt source is dis	abled								
bit 3-0	Unimplemen	ted: Read as '	0'								

REGISTER 7-26: IPC9: INTERRUPT PRIORITY CONTROL REGISTER 9

REGISTER 7-33: IPC18: INTERRUPT PRIORITY CONTROL REGISTER 18

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
_				_	LVDIP2	LVDIP1	LVDIP0

-				

bit 2-0

bit 7

bit 7

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-3 Unimplemented: Read as '0'

- LVDIP<2:0>: Low-Voltage Detect Interrupt Priority bits
 - 111 = Interrupt is priority 7 (highest priority interrupt)
 - •
 - .
 - 001 = Interrupt is priority 1
 - 000 = Interrupt source is disabled

REGISTER 7-34: IPC19: INTERRUPT PRIORITY CONTROL REGISTER 19

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	—	—	—	—	—
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
_	CTMUIP2	CTMUIP1	CTMUIP0	_	_	_	_

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15-7 Unimplemented: Read as '0' bit 6-4 CTMUIP<2:0>: CTMU Interrupt

bit 0

bit 0

10.1.1 OPEN-DRAIN CONFIGURATION

In addition to the PORT, LAT and TRIS registers for data control, each port pin can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs higher than VDD (e.g., 5V) on any desired digital only pins by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.

10.2 Configuring Analog Port Pins

The AD1PCFGL and TRIS registers control the operation of the A/D port pins. Setting a port pin as an analog input also requires that the corresponding TRIS bit be set. If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

When reading the PORT register, all pins configured as analog input channels will read as cleared (a low level).

Pins configured as digital inputs will not convert an analog input. Analog levels on any pin that is defined as a digital input (including the ANx pins) may cause the input buffer to consume current that exceeds the device specifications.

10.2.1 I/O PORT WRITE/READ TIMING

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically, this instruction would be a NOP.

10.2.2 ANALOG INPUT PINS AND VOLTAGE CONSIDERATIONS

The voltage tolerance of pins used as device inputs is dependent on the pin's input function. Pins that are used as digital only inputs are able to handle DC voltages up to 5.5V, a level typical for digital logic circuits. In contrast, pins that also have analog input functions of any kind can only tolerate voltages up to VDD. Voltage excursions beyond VDD on these pins are always to be avoided. Table 10-1 summarizes the input capabilities. Refer to **Section 28.1 "DC Characteristics"** for more details.

Note: For easy identification, the pin diagrams at the beginning of this data sheet also indicate 5.5V tolerant pins with dark grey shading.

TABLE 10-1:

INPUT VOLTAGE LEVELS⁽¹⁾

Port or Pin	Tolerated Input	Description
PORTA<10:9>	Vdd	Only VDD input
PORTB<15:0>		levels tolerated.
PORTC<15:12>		
PORTD<7:6>		
PORTF<0>		
PORTG<9:6>		
PORTA<15:14>,	5.5V	Tolerates input
PORTA<7:0>		levels above
PORTC<4:1>		VDD, useful for
PORTD<15:8>,		most standard
PORTD<5:0>		logic.
PORTE<9:0>		
PORTF<13:12>,		
PORTF<8:1>		
PORTG<15:12>,		
PORIG<3:0>		

Note 1: Not all port pins shown here are implemented on 64-pin and 80-pin devices. Refer to Section 1.0 "Device Overview" to confirm which ports are available in specific devices.

EXAMPLE 10-1: PORT WRITE/READ EXAMPLE

MOV 0xFF00, W0 MOV W0, TRISB NOP BTSS PORTB, #13 ; Configure PORTB<15:8> as inputs
; and PORTB<7:0> as outputs

- ; Delay 1 cycle
- ; Next Instruction

10.4.3.4 Mapping Limitations

The control schema of the Peripheral Pin Select is extremely flexible. Other than systematic blocks that prevent signal contention caused by two physical pins being configured as the same functional input or two functional outputs configured as the same pin, there are no hardware enforced lock outs. The flexibility extends to the point of allowing a single input to drive multiple peripherals or a single functional output to drive multiple output pins.

10.4.3.5 Mapping Exceptions for PIC24FJ256GA110 Family Devices

Although the PPS registers theoretically allow for up to 64 remappable I/O pins, not all of these are implemented in all devices. For PIC24FJ256GA110 family devices, the maximum number of remappable pins available are 46, which includes 14 input only pins. In addition, some pins in the RPn and RPIn sequences are unimplemented in lower pin count devices. The differences in available remappable pins are summarized in Table 10-4.

When developing applications that use remappable pins, users should also keep these things in mind:

- For the RPINRx registers, bit combinations corresponding to an unimplemented pin for a particular device are treated as invalid; the corresponding module will not have an input mapped to it. For all PIC24FJ256GA110 family devices, this includes all values greater than 45 ('101101').
- For RPORx registers, the bit fields corresponding to an unimplemented pin will also be unimplemented. Writing to these fields will have no effect.

10.4.4 CONTROLLING CONFIGURATION CHANGES

Because peripheral remapping can be changed during run time, some restrictions on peripheral remapping are needed to prevent accidental configuration changes. PIC24F devices include three features to prevent alterations to the peripheral map:

- Control register lock sequence
- Continuous state monitoring
- Configuration bit remapping lock

10.4.4.1 Control Register Lock

Under normal operation, writes to the RPINRx and RPORx registers are not allowed. Attempted writes will appear to execute normally, but the contents of the registers will remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the IOLOCK bit (OSCCON<6>). Setting IOLOCK prevents writes to the control registers; clearing IOLOCK allows writes.

To set or clear IOLOCK, a specific command sequence must be executed:

- 1. Write 46h to OSCCON<7:0>.
- 2. Write 57h to OSCCON<7:0>.
- 3. Clear (or set) IOLOCK as a single operation.

Unlike the similar sequence with the oscillator's LOCK bit, IOLOCK remains in one state until changed. This allows all of the Peripheral Pin Selects to be configured with a single unlock sequence, followed by an update to all control registers, then locked with a second lock sequence.

10.4.4.2 Continuous State Monitoring

In addition to being protected from direct writes, the contents of the RPINRx and RPORx registers are constantly monitored in hardware by shadow registers. If an unexpected change in any of the registers occurs (such as cell disturbances caused by ESD or other external events), a Configuration Mismatch Reset will be triggered.

10.4.4.3 Configuration Bit Pin Select Lock

As an additional level of safety, the device can be configured to prevent more than one write session to the RPINRx and RPORx registers. The IOL1WAY (CW2<4>) Configuration bit blocks the IOLOCK bit from being cleared after it has been set once. If IOLOCK remains set, the register unlock procedure will not execute and the Peripheral Pin Select Control registers cannot be written to. The only way to clear the bit and re-enable peripheral remapping is to perform a device Reset.

In the default (unprogrammed) state, IOL1WAY is set, restricting users to one write session. Programming IOL1WAY allows users unlimited access (with the proper use of the unlock sequence) to the Peripheral Pin Select registers.

TABLE 10-4: REMAPPABLE PIN EXCEPTIONS FOR PIC24FJ256GA110 FAMILY DEVICES

Dovice Pin Count		RP Pins (I/O)	RPI Pins		
Device Fill Coulit	Total	Unimplemented	Total	Unimplemented	
64-pin	29	RP5, RP15, RP31	2	RPI32-36, RPI38-44	
80-pin	31	RP31	11	RPI32, RPI39, RPI41	
100-pin	32	_	14	—	

NOTES:

REGISTER	15-1: SPIx	STAT: SPIx ST	TATUS AND	CONTROL R	EGISTER				
R/W-0	U-0	R/W-0	U-0	U-0	R-0	R-0	R-0		
SPIEN ⁽¹⁾	_	SPISIDL	—	_	SPIBEC2	SPIBEC1	SPIBEC0		
bit 15		•					bit 8		
R-0	R/C-0, HS	R-0	R/W-0	R/W-0	R/W-0	R-0	R-0		
SRMPT	SPIROV	SRXMPT	SISEL2	SISEL1	SISEL0	SPITBF	SPIRBF		
bit 7							bit 0		
Legend:		C = Clearable	bit	HS = Hardwa	re Settable bit				
R = Readab	le bit	W = Writable	oit	U = Unimplem	nented bit. read	l as '0'			
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown		
bit 15	SPIEN: SPIx 1 = Enables r 0 = Disables r	Enable bit ⁽¹⁾ nodule and con module	figures SCKx,	SDOx, SDIx ar	nd SSx as seria	al port pins			
bit 14	Unimplemen	ted: Read as '0)'						
bit 13	SPISIDL: Sto 1 = Discontine 0 = Continue	p in Idle Mode I ue module oper module operati	oit ation when de on in Idle mod	vice enters Idle	emode				
bit 12-11	Unimplemen	Unimplemented: Read as '0'							
bit 10-8	SPIBEC<2:0	SPIx Buffer E	Element Count	bits (valid in Er	nhanced Buffer	mode)			
	Number of SF	l transfers pen	ding.						
	Number of SF	PI transfers unre	ead.						
bit 7	SRMPT: Shift	Register (SPIx	SR) Empty bit	(valid in Enhar	iced Buffer mod	de)			
	1 = SPIx Shi 0 = SPIx Shi	ft register is em ft register is not	pty and ready empty	to send or rece	ive				
bit 6	SPIROV: Rec	eive Overflow I	⁻ lag bit						
	1 = A new by data in th 0 = No overfl	te/word is comp e SPIxBUF regi ow has occurre	letely received ster. d	and discarded.	The user softw	vare has not rea	d the previous		
bit 5	SRXMPT: Re	ceive FIFO Em	pty bit (valid in	Enhanced Buf	fer mode)				
	1 = Receive 0 = Receive	FIFO is empty FIFO is not emj	oty						
bit 4-2	SISEL<2:0>:	SPIx Buffer Inte	errupt Mode bi	ts (valid in Enh	anced Buffer m	node)			
	111 = Interru 110 = Interru 101 = Interru 100 = Interru 011 = Interru 010 = Interru 001 = Interru 000 = Interru (SRXM	pt when SPIx tr pt when last bit pt when the las pt when one da pt when SPIx ro pt when SPIx ro pt when data is pt when the la IPT bit set)	ansmit buffer i is shifted into t bit is shifted in ta is shifted in eceive buffer is eceive buffer is available in re st data in the	is full (SPITBF I SPIxSR; as a r out of SPIxSR; to the SPIxSR; s full (SPIRBF k s 3/4 or more fu eceive buffer (S e receive buffe	bit is set) esult, the TX F now the transn as a result, the bit set) II RMPT bit is se r is read; as a	IFO is empty nit is complete TX FIFO has t) a result, the bi	one open spot uffer is empty		
Note 1: If	f SPIEN = 1, the	se functions mu	st be assigned	d to available R	Pn pins (or to A	ASCK1 for the	SCK1 output)		

17.2 Transmitting in 8-Bit Data Mode

- 1. Set up the UART:
 - a) Write appropriate values for data, parity and Stop bits.
 - b) Write appropriate baud rate value to the UxBRG register.
 - c) Set up transmit and receive interrupt enable and priority bits.
- 2. Enable the UART.
- 3. Set the UTXEN bit (causes a transmit interrupt two cycles after being set).
- 4. Write data byte to lower byte of UxTXREG word. The value will be immediately transferred to the Transmit Shift Register (TSR) and the serial bit stream will start shifting out with the next rising edge of the baud clock.
- Alternately, the data byte may be transferred while UTXEN = 0, and then the user may set UTXEN. This will cause the serial bit stream to begin immediately because the baud clock will start from a cleared state.
- 6. A transmit interrupt will be generated as per interrupt control bit, UTXISELx.

17.3 Transmitting in 9-Bit Data Mode

- 1. Set up the UART (as described in **Section 17.2** "**Transmitting in 8-Bit Data Mode**").
- 2. Enable the UART.
- 3. Set the UTXEN bit (causes a transmit interrupt).
- 4. Write UxTXREG as a 16-bit value only.
- 5. A word write to UxTXREG triggers the transfer of the 9-bit data to the TSR. The serial bit stream will start shifting out with the first rising edge of the baud clock.
- 6. A transmit interrupt will be generated as per the setting of control bit, UTXISELx.

17.4 Break and Sync Transmit Sequence

The following sequence will send a message frame header made up of a Break, followed by an Auto-Baud Sync byte.

- 1. Configure the UART for the desired mode.
- 2. Set UTXEN and UTXBRK to set up the Break character.
- 3. Load the UxTXREG with a dummy character to initiate transmission (value is ignored).
- 4. Write '55h' to UxTXREG; this loads the Sync character into the transmit FIFO.
- 5. After the Break has been sent, the UTXBRK bit is reset by hardware. The Sync character now transmits.

17.5 Receiving in 8-Bit or 9-Bit Data Mode

- 1. Set up the UART (as described in Section 17.2 "Transmitting in 8-Bit Data Mode").
- 2. Enable the UART.
- 3. A receive interrupt will be generated when one or more data characters have been received as per interrupt control bit, URXISELx.
- 4. Read the OERR bit to determine if an overrun error has occurred. The OERR bit must be reset in software.
- 5. Read UxRXREG.

The act of reading the UxRXREG character will move the next character to the top of the receive FIFO, including a new set of PERR and FERR values.

17.6 Operation of UxCTS and UxRTS Control Pins

UARTx Clear to Send (UxCTS) and Request to Send (UxRTS) are the two hardware controlled pins that are associated with the UART module. These two pins allow the UART to operate in Simplex and Flow Control mode. They are implemented to control the transmission and reception between the Data Terminal Equipment (DTE). The UEN<1:0> bits in the UxMODE register configure these pins.

17.7 Infrared Support

The UART module provides two types of infrared UART support: one is the IrDA clock output to support external IrDA encoder and decoder device (legacy module support), and the other is the full implementation of the IrDA encoder and decoder. Note that because the IrDA modes require a 16x baud clock, they will only work when the BRGH bit (UxMODE<3>) is '0'.

17.7.1 IrDA CLOCK OUTPUT FOR EXTERNAL IrDA SUPPORT

To support external IrDA encoder and decoder devices, the BCLKx pin (same as the UxRTS pin) can be configured to generate the 16x baud clock. When UEN<1:0> = 11, the BCLKx pin will output the 16x baud clock if the UART module is enabled. It can be used to support the IrDA codec chip.

17.7.2 BUILT-IN IrDA ENCODER AND DECODER

The UART has full implementation of the IrDA encoder and decoder as part of the UART module. The built-in IrDA encoder and decoder functionality is enabled using the IREN bit (UxMODE<12>). When enabled (IREN = 1), the receive pin (UxRX) acts as the input from the infrared receiver. The transmit pin (UxTX) acts as the output to the infrared transmitter.

REGISTER 18-1: PMCON: PARALLEL MASTER PORT CONTROL REGISTER (CONTINUED)

bit 2	BEP: Byte Enable Polarity bit 1 = Byte enable active-high (PMBE) 0 = Byte enable active-low (PMBE)
bit 1	WRSP: Write Strobe Polarity bit
	For Slave Modes and Master Mode 2 (PMMODE<9:8> = 00, 01, 10): 1 = Write strobe active-high (PMWR) 0 = Write strobe active-low (PMWR)
	For Master Mode 1 (PMMODE<9:8> = 11): 1 = Enable strobe active-high (PMENB) 0 = Enable strobe active-low (PMENB)
bit 0	RDSP: Read Strobe Polarity bit
	For Slave Modes and Master Mode 2 (PMMODE<9:8> = 00, 01, 10): 1 = Read strobe active-high (PMRD) 0 = Read strobe active-low (PMRD)
	For Master Mode 1 (PMMODE<9:8> = 11): 1 = Read/write strobe active-high (PMRD/PMWR) 0 = Read/write strobe active-low (PMRD/PMWR)

Note 1: These bits have no effect when their corresponding pins are used as address lines.

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CTMUEN	—	CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN	CTTRIG
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
EDG2POL	EDG2SEL1	EDG2SEL0	EDG1POL	EDG1SEL1	EDG1SEL0	EDG2STAT	EDG1STAT
bit 7		-		•			bit 0
Legend:							
R = Readabl	le bit	W = Writable	oit	U = Unimplen	nented bit, read	as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	CTMUEN: CT	MU Enable bit					
	1 = Module is	s enabled					
	0 = Module is	s disabled					
bit 14	Unimplemen	ted: Read as 'o)'				
bit 13	CTMUSIDL: S	Stop in Idle Moo	de bit				
	1 = Discontin	ue module ope	ration when de	evice enters Idi	e mode		
hit 12		Generation Ena	ible hit(1)				
SICIE	1 = Enables	edge delav gen	eration				
	0 = Disables	edge delay ger	neration				
bit 11	EDGEN: Edg	e Enable bit					
	1 = Edges ar	e not blocked					
	0 = Edges ar	e blocked					
bit 10	EDGSEQEN:	Edge Sequence	e Enable bit	_			
	1 = Edge 1 e	vent must occu	r before Edge	2 event can oc	cur		
hit Q		alog Current Sc	urce Control h	sit			
bit 5	1 = Analog ci	urrent source o	utput is around	ded			
	0 = Analog c	urrent source o	utput is not gro	ounded			
bit 8	CTTRIG: Trig	ger Control bit					
	1 = Trigger o	utput is enabled	t				
	0 = Trigger o	utput is disable	d				
bit 7	EDG2POL: E	dge 2 Polarity	Select bit				
	1 = Edge 2 p	rogrammed for	a positive edg	le response			
bit 6 5			a negative eu	geresponse			
DIL 0-5	11 = CTED1	. 0>. Euge 2 30 nin		5			
	10 = CTED1	pin					
	01 = OC1 mo	dule					
	00 = Timer1 r	nodule					
bit 4	EDG1POL: E	dge 1 Polarity	Select bit				
	1 = Edge 1 p 0 = Edge 1 p	rogrammed for	a positive edg	le response			
			a negative eu	ge response			
Note 1: If	TGEN = 1, the	CTEDGx inputs	and CTPLS of	utputs must be	assigned to available	ailable RPn pir	ns before use.

See Section 10.4 "Peripheral Pin Select" for more information.

REGISTER 24-1: CTMUCON: CTMU CONTROL REGISTER

© 2010 Microchip Technology Inc.

TARI F 28-3.	DC CHARACTERISTIC	S TEMPERATURE AND VOLTAGE SPECIFICATIONS

DC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions
Operat	ing Voltage	e					
DC10	Supply V	oltage					
	Vdd		VBOR	—	3.6	V	Regulator enabled
	Vdd		VDDCORE	—	3.6	V	Regulator disabled
	VDDCORE		2.0	_	2.75	V	Regulator disabled
DC12	Vdr	RAM Data Retention Voltage ⁽²⁾	1.5	—	—	V	
DC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal	Vss	—	—	V	
DC17	Svdd	VDD Rise Rate to Ensure Internal Power-on Reset Signal	0.05	_	—	V/ms	0-3.3V in 0.1s 0-2.5V in 60 ms
BO10	VBOR	Brown-Out Reset Voltage	1.96	2.10	2.25	V	
BO15	VBHYS	BOR Hysteresis	_	5	_	mV	

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: This is the limit to which VDD can be lowered without losing RAM data.

TABLE 28-31: I²C[™] BUS DATA TIMING REQUIREMENTS (MASTER MODE)

AC CHARACTERISTICS				Standard Operating Conditions: 2.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ (Industrial)			
Param No.	Symbol	Charac	teristic	Min ⁽¹⁾	Max	Units	Conditions
IM10	TLO:SCL	Clock Low Time	100 kHz mode	Tcy/2 (BRG + 1)	—	μs	—
			400 kHz mode	Tcy/2 (BRG + 1)	_	μs	—
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μs	—
IM11	THI:SCL	Clock High Time	100 kHz mode	Tcy/2 (BRG + 1)	_	μs	—
			400 kHz mode	Tcy/2 (BRG + 1)	_	μs	—
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μs	—
IM20	TF:SCL	SDAx and SCLx Fall Time	100 kHz mode	—	300	ns	CB is specified to be from 10 to 400 pF
			400 kHz mode	20 + 0.1 Св	300	ns	
			1 MHz mode ⁽²⁾	—	100	ns	
IM21	TR:SCL	SDAx and SCLx Rise Time	100 kHz mode	—	1000	ns	CB is specified to be from 10 to 400 pF
			400 kHz mode	20 + 0.1 Св	300	ns	
			1 MHz mode ⁽²⁾	—	300	ns	
IM25	Tsu:dat	Data Input Setup Time	100 kHz mode	250	—	ns	
			400 kHz mode	100	—	ns	
			1 MHz mode ⁽²⁾	TBD	_	ns	
IM26	Thd:dat	Data Input Hold Time	100 kHz mode	0	—	ns	
			400 kHz mode	0	0.9	μs	
			1 MHz mode ⁽²⁾	TBD	_	ns	
IM40	TAA:SCL	Output Valid From Clock	100 kHz mode	—	3500	ns	—
			400 kHz mode	—	1000	ns	—
			1 MHz mode ⁽²⁾	—	_	ns	—
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	—	μS	Time the bus must be free before a new transmission can start
			400 kHz mode	1.3	_	μs	
			1 MHz mode ⁽²⁾	TBD	_	μs	
IM50	Св	Bus Capacitive L	oading		400	pF	

Legend: TBD = To Be Determined

Note 1: BRG is the value of the I²C Baud Rate Generator. Refer to **Section 16.3 "Setting Baud Rate When Operating as a Bus Master"** for details.

2: Maximum pin capacitance = 10 pF for all I²C pins (for 1 MHz mode only).

Revision E (November 2010)

Added 64-Kbyte device variants – PIC24FJ64GA106, PIC24FJ64GA108 and PIC24FJ64GA110.

Changed the CON bit to CEN to match other existing PIC24F, PIC24H and dsPIC® products.

Changed the VREFS bit to PMSLP to match other existing PIC24F, PIC24H and dsPIC® products.

Corrected the OCxCON2 and ICxCON2 Reset values in the register descriptions.

Defined SOSC and RTCC behavior during $\overline{\text{MCLR}}$ events.

Corrected the RCFGCAL Reset values in the register descriptions.

Updated Configuration Word unprogrammed information to more accurately reflect the devices' behavior.

Added electrical specifications from the "PIC24F Family Reference Manual".

Corrected errors in the ENVREG pin operation descriptions.

Other minor typographic corrections throughout the document.

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Microchip Trader Architecture — Flash Memory Fa Program Memory Product Group Pin Count — Tape and Reel Fl Temperature Rar Package — Pattern —	PIC 24 FJ 256 GA1 10 T - 1 / PT - XXX markamily y Size (KB) ag (if applicable)	 Examples: a) PIC24FJ128GA106-I/PT: General purpose PIC24F, 128-Kbyte program memory, 64-pin, Industrial temp.,TQFP package. b) PIC24FJ256GA110-I/PT: General purpose PIC24F, 256-Kbyte program memory, 100-pin, Industrial temp.,TQFP package.
Architecture	24 = 16-bit modified Harvard without DSP	
Flash Memory Family	FJ = Flash program memory	
Product Group	GA1 = General purpose microcontrollers	
Pin Count	06 = 64-pin 08 = 80-pin 10 = 100-pin	
Temperature Range	I = -40° C to $+85^{\circ}$ C (Industrial)	
Package	PF = 100-lead (14x14x1mm) TQFP (Thin Quad Flatpack) PT = 64-lead, 80-lead, 100-lead (12x12x1 mm) TQFP (Thin Quad Flatpack) MR = 64-lead (9x9x0.9 mm) QFN (Quad Flatpack No Leads)	
Pattern	Three-digit QTP, SQTP, Code or Special Requirements (blank otherwise) ES = Engineering Sample	