

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	53
Program Memory Size	192KB (65.5K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj192ga106t-i-pt

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

This document contains device-specific information for the following devices:

- PIC24FJ64GA106 PIC24FJ64GA110
- PIC24FJ128GA106 PIC24F
 - PIC24FJ128GA110
 PIC24FJ192GA110
- PIC24FJ192GA106PIC24FJ256GA106
- PIC24FJ256GA110
- PIC24FJ64GA108
- PIC24FJ128GA108
- PIC24FJ192GA108
- PIC24FJ256GA108

This family expands on the existing line of Microchip's 16-bit general purpose microcontrollers, combining enhanced computational performance with an expanded and highly configurable peripheral feature set. The PIC24FJ256GA110 family provides a new platform for high-performance applications, which have outgrown their 8-bit platforms, but don't require the power of a digital signal processor.

1.1 Core Features

1.1.1 16-BIT ARCHITECTURE

Central to all PIC24F devices is the 16-bit modified Harvard architecture, first introduced with Microchip's dsPIC[®] digital signal controllers. The PIC24F CPU core offers a wide range of enhancements, such as:

- 16-bit data and 24-bit address paths with the ability to move information between data and memory spaces
- Linear addressing of up to 12 Mbytes (program space) and 64 Kbytes (data)
- A 16-element working register array with built-in software stack support
- A 17 x 17 hardware multiplier with support for integer math
- Hardware support for 32 by 16-bit division
- An instruction set that supports multiple addressing modes and is optimized for high-level languages, such as 'C'
- · Operational performance up to 16 MIPS

1.1.2 POWER-SAVING TECHNOLOGY

All of the devices in the PIC24FJ256GA110 family incorporate a range of features that can significantly reduce power consumption during operation. Key items include:

• **On-the-Fly Clock Switching:** The device clock can be changed under software control to the Timer1 source or the internal, low-power RC Oscillator during operation, allowing the user to incorporate power-saving ideas into their software designs.

- **Doze Mode Operation:** When timing-sensitive applications, such as serial communications, require the uninterrupted operation of peripherals, the CPU clock speed can be selectively reduced, allowing incremental power savings without missing a beat.
- Instruction-Based Power-Saving Modes: The microcontroller can suspend all operations, or selectively shut down its core while leaving its peripherals active, with a single instruction in software.

1.1.3 OSCILLATOR OPTIONS AND FEATURES

All of the devices in the PIC24FJ256GA110 family offer five different oscillator options, allowing users a range of choices in developing application hardware. These include:

- Two Crystal modes using crystals or ceramic resonators.
- Two External Clock modes offering the option of a divide-by-2 clock output.
- A Fast Internal Oscillator (FRC) with a nominal 8 MHz output, which can also be divided under software control to provide clock speeds as low as 31 kHz.
- A Phase Lock Loop (PLL) frequency multiplier available to the external oscillator modes and the FRC Oscillator, which allows clock speeds of up to 32 MHz.
- A separate internal RC Oscillator (LPRC) with a fixed 31 kHz output, which provides a low-power option for timing-insensitive applications.

The internal oscillator block also provides a stable reference source for the Fail-Safe Clock Monitor. This option constantly monitors the main clock source against a reference signal provided by the internal oscillator and enables the controller to switch to the internal oscillator, allowing for continued low-speed operation or a safe application shutdown.

1.1.4 EASY MIGRATION

Regardless of the memory size, all devices share the same rich set of peripherals, allowing for a smooth migration path as applications grow and evolve. The consistent pinout scheme used throughout the entire family also aids in migrating from one device to the next larger, or even in jumping from 64-pin to 100-pin devices.

The PIC24F family is pin-compatible with devices in the dsPIC33 and PIC32 families, and shares some compatibility with the pinout schema for PIC18 and dsPIC30 devices. This extends the ability of applications to grow from the relatively simple, to the powerful and complex, yet still selecting a Microchip device.

	Pin Number				_	
Function	64-Pin TQFP, QFN	80-Pin TQFP	100-Pin TQFP	I/O	Input Buffer	Description
AN0	16	20	25	Ι	ANA	A/D Analog Inputs.
AN1	15	19	24	I	ANA	
AN2	14	18	23	I	ANA	
AN3	13	17	22	I	ANA	
AN4	12	16	21	I	ANA	
AN5	11	15	20	I	ANA	
AN6	17	21	26	I	ANA	
AN7	18	22	27	I	ANA	
AN8	21	27	32	I	ANA	
AN9	22	28	33	I	ANA	
AN10	23	29	34	I	ANA	
AN11	24	30	35	I	ANA	
AN12	27	33	41	I	ANA	
AN13	28	34	42	I	ANA	
AN14	29	35	43	I	ANA	
AN15	30	36	44	I	ANA	
ASCL2	—	_	66	I/O	l ² C	Alternate I2C2 Synchronous Serial Clock Input/Output.
ASDA2	—	_	67	I/O	l ² C	Alternate I2C2 Data Input/Output.
AVDD	19	25	30	Р	—	Positive Supply for Analog modules.
AVss	20	26	31	Р	—	Ground Reference for Analog modules.
C1INA	11	15	20	I	ANA	Comparator 1 Input A.
C1INB	12	16	21	I	ANA	Comparator 1 Input B.
C1INC	5	7	11	I	ANA	Comparator 1 Input C.
C1IND	4	6	10	I	ANA	Comparator 1 Input D.
C2INA	13	17	22	I	ANA	Comparator 2 Input A.
C2INB	14	18	23	I	ANA	Comparator 2 Input B.
C2INC	8	10	14	I	ANA	Comparator 2 Input C.
C2IND	6	8	12	I	ANA	Comparator 2 Input D.
C3INA	55	69	84	I	ANA	Comparator 3 Input A.
C3INB	54	68	83	Ι	ANA	Comparator 3 Input B.
C3INC	48	60	74	Ι	ANA	Comparator 3 Input C.
C3IND	47	59	73	Ι	ANA	Comparator 3 Input D.
CLKI	39	49	63	Ι	ANA	Main Clock Input Connection.
CLKO	40	50	64	0	_	System Clock Output.
l egend:	TTI = TTI in				OT (Schmitt Trigger input buffer

TABLE 1-4:	PIC24FJ256GA110 FAMILY PINOUT DESCRIPTIONS

Legend:

TTL = TTL input buffer ANA = Analog level input/output ST = Schmitt Trigger input buffer $I^2C^{TM} = I^2C/SMBus$ input buffer

2.7 Configuration of Analog and Digital Pins During ICSP Operations

If an ICSP compliant emulator is selected as a debugger, it automatically initializes all of the A/D input pins (ANx) as "digital" pins. Depending on the particular device, this is done by setting all bits in the ADnPCFG register(s), or clearing all bit in the ANSx registers.

All PIC24F devices will have either one or more ADnPCFG registers or several ANSx registers (one for each port); no device will have both. Refer to (**choose one xref:** or

) for more specific information.

The bits in these registers that correspond to the A/D pins that initialized the emulator must not be changed by the user application firmware; otherwise, communication errors will result between the debugger and the device.

If your application needs to use certain A/D pins as analog input pins during the debug session, the user application must modify the appropriate bits during initialization of the ADC module, as follows:

- For devices with an ADnPCFG register, clear the bits corresponding to the pin(s) to be configured as analog. Do not change any other bits, particularly those corresponding to the PGECx/PGEDx pair, at any time.
- For devices with ANSx registers, set the bits corresponding to the pin(s) to be configured as analog. Do not change any other bits, particularly those corresponding to the PGECx/PGEDx pair, at any time.

When a Microchip debugger/emulator is used as a programmer, the user application firmware must correctly configure the ADnPCFG or ANSx registers. Automatic initialization of this register is only done during debugger operation. Failure to correctly configure the register(s) will result in all A/D pins being recognized as analog input pins, resulting in the port value being read as a logic '0', which may affect user application functionality.

2.8 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic low state. Alternatively, connect a 1 k Ω to 10 k Ω resistor to Vss on unused pins and drive the output to logic low.

TABLE 4-3: CPU CORE REGISTERS MAP

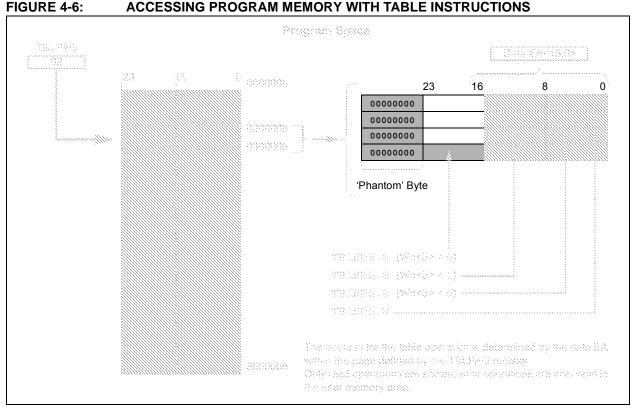
IABLE	4-3.	CFUC			K2 MAP													
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
WREG0	0000		Working Register 0								0000							
WREG1	0002								Working I	Register 1								0000
WREG2	0004								Working I	Register 2								0000
WREG3	0006								Working I	Register 3								0000
WREG4	0008								Working I	Register 4								0000
WREG5	000A								Working I	Register 5								0000
WREG6	000C								Working I	Register 6								0000
WREG7	000E								Working I	Register 7								0000
WREG8	0010								Working I	Register 8								0000
WREG9	0012								Working I	Register 9								0000
WREG10	0014								Working F	Register 10								0000
WREG11	0016								Working F	Register 11								0000
WREG12	0018								Working F	Register 12								0000
WREG13	001A								Working F	Register 13								0000
WREG14	001C								Working F	Register 14								0000
WREG15	001E								Working F	Register 15								0800
SPLIM	0020							Stack	Pointer Lin	nit Value Re	egister							xxxx
PCL	002E							Progra	m Counter I	Low Word F	Register							0000
PCH	0030	_	—	—	—	—	—	—	—			Progra	m Counter	Register Hig	gh Byte			0000
TBLPAG	0032	_	—	—	—	—	_	—	—			Table N	lemory Pag	e Address I	Register			0000
PSVPAG	0034	_	—	—	—	—	_	—	—		P	rogram Spa	ace Visibility	Page Add	ress Registe	er		0000
RCOUNT	0036							Rep	eat Loop C	ounter Reg	ister							xxxx
SR	0042	_		-	—	_		—	DC	IPL2	IPL1	IPL0	RA	N	OV	Z	С	0000
CORCON	0044	_		_	_	_	-	-	_	_	_	-	_	IPL3	PSV	—	_	0000
DISICNT	0052	_							Disabl	e Interrupts	Counter R	egister						xxxx

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.3.2 DATA ACCESS FROM PROGRAM MEMORY USING TABLE INSTRUCTIONS

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the program space without going through data space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a program space word as data.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to data space addresses. Program memory can thus be regarded as two, 16-bit word-wide address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space which contains the least significant data word, and TBLRDH and TBLWTH access the space which contains the upper data byte.


Two table instructions are provided to move byte or word-sized (16-bit) data to and from program space. Both function as either byte or word operations.

 TBLRDL (Table Read Low): In Word mode, it maps the lower word of the program space location (P<15:0>) to a data address (D<15:0>). In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when the byte select is '1'; the lower byte is selected when it is '0'. TBLRDH (Table Read High): In Word mode, it maps the entire upper word of a program address (P<23:16>) to a data address. Note that D<15:8>, the 'phantom' byte, will always be '0'. In Byte mode, it maps the upper or lower byte of the program word to D<7:0> of the data address, as above. Note that the data will always be '0' when the upper 'phantom' byte is selected (byte select = 1).

In a similar fashion, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a program space address. The details of their operation are explained in **Section 5.0 "Flash Program Memory"**.

For all table operations, the area of program memory space to be accessed is determined by the Table Memory Page Address (TBLPAG) register. TBLPAG covers the entire program memory space of the device, including user and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.

Note: Only table read operations will execute in the configuration memory space, and only then, in implemented areas, such as the Device ID. Table write operations are not allowed.

© 2010 Microchip Technology Inc.

REGISTER 7-31: IPC15: INTERRUPT PRIORITY CONTROL REGISTER 15

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0	
—	—	—		—	RTCIP2	RTCIP1	RTCIP0	
bit 15	·	·					bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	_	—	—	—	—	
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable b	bit	U = Unimplem	nented bit, read	l as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	x = Bit is unkr	<pre>c = Bit is unknown</pre>		
bit 15-11	Unimplemen	ted: Read as '0	3					
bit 10-8	RTCIP<2:0>:	Real-Time Cloc	k/Calendar In	terrupt Priority I	bits			
	111 = Interru	pt is priority 7 (h	ighest priority	interrupt)				
	•							
	•							
	001 = Interru	pt is priority 1						
		pt source is disa	bled					
bit 7-0	Unimplemen	ted: Read as '0	3					

	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
	U3TXIP2	U3TXIP1	U3TXIP0		U3RXIP2	U3RXIP1	U3RXIP0				
bit 15		•					bit 8				
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0				
_	U3ERIP2	U3ERIP1	U3ERIP0		_	—	_				
bit 7							bit (
Legend:											
R = Readab	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'					
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown				
bit 15	Unimplemen	ted: Read as '	י'								
bit 14-12	U3TXIP<2:0>	: UART3 Trans	smitter Interrup	ot Priority bits							
	111 = Interru	pt is priority 7 (l	nighest priority	interrupt)							
	•										
	001 = Interru		abled								
	000 = Interrupt source is disabled										
bit 11	Unimplemen	ted: Read as '	כ'								
bit 11 bit 10-8	-	ted: Read as ' : UART3 Rece		Prioritv bits							
	U3RXIP<2:0>	ted: Read as ' >: UART3 Rece pt is priority 7 (l	eiver Interrupt	•							
	U3RXIP<2:0>	: UART3 Rece	eiver Interrupt	•							
	U3RXIP<2:0> 111 = Interru •	▶: UART3 Rece pt is priority 7 (I	eiver Interrupt	•							
	U3RXIP<2:0> 111 = Interru	▶: UART3 Rece pt is priority 7 (I	iver Interrupt	•							
bit 10-8	U3RXIP<2:0> 111 = Interru	UART3 Rece pt is priority 7 (I pt is priority 1 pt source is dis	iver Interrupt nighest priority abled	•							
	U3RXIP<2:0> 111 = Interru	>: UART3 Rece pt is priority 7 (l pt is priority 1 pt source is dis ted: Read as 'u	iver Interrupt highest priority abled	vinterrupt)							
bit 10-8 bit 7	U3RXIP<2:0> 111 = Interru	UART3 Rece pt is priority 7 (I pt is priority 1 pt source is dis	iver Interrupt nighest priority abled o ² Interrupt Prio	v interrupt)							
bit 10-8 bit 7	U3RXIP<2:0> 111 = Interru	UART3 Rece pt is priority 7 (I pt is priority 1 pt source is dis ted: Read as 'i >: UART3 Error	iver Interrupt nighest priority abled o ² Interrupt Prio	v interrupt)							
bit 10-8	U3RXIP<2:0> 111 = Interru	UART3 Rece pt is priority 7 (I pt is priority 1 pt source is dis ted: Read as 'i >: UART3 Error	iver Interrupt nighest priority abled o ² Interrupt Prio	v interrupt)							
bit 10-8 bit 7	U3RXIP<2:0> 111 = Interru 001 = Interru 000 = Interru Unimplemen U3ERIP<2:0> 111 = Interru .	 UART3 Recept is priority 7 (1) pt is priority 1 pt source is dis ted: Read as '0 UART3 Error pt is priority 7 (1) 	iver Interrupt nighest priority abled o ² Interrupt Prio	v interrupt)							
bit 10-8	U3RXIP<2:0> 111 = Interru	 UART3 Recept is priority 7 (1) pt is priority 1 pt source is dis ted: Read as '0 UART3 Error pt is priority 7 (1) 	iver Interrupt highest priority abled o' Interrupt Prio highest priority	v interrupt)							

REGISTER 7-35: IPC20: INTERRUPT PRIORITY CONTROL REGISTER 20

8.3 Control Registers

The operation of the oscillator is controlled by three Special Function Registers (SFRs):

- OSCCON
- CLKDIV
- OSCTUN

The OSCCON register (Register 8-1) is the main control register for the oscillator. It controls clock source switching and allows the monitoring of clock sources. The CLKDIV register (Register 8-2) controls the features associated with Doze mode, as well as the postscaler for the FRC Oscillator.

The OSCTUN register (Register 8-3) allows the user to fine tune the FRC Oscillator over a range of approximately $\pm 12\%$.

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER

U-0	R-0	R-0	R-0	U-0	R/W-x ⁽¹⁾	R/W-x ⁽¹⁾	R/W-x ⁽¹⁾
—	COSC2	COSC1	COSC0	—	NOSC2	NOSC1	NOSC0
bit 15							bit 8

R/SO-0	R/W-0	R-0 ⁽³⁾	U-0	R/CO-0	R/W-0	R/W-0	R/W-0
CLKLOCK	IOLOCK ⁽²⁾	LOCK	—	CF	POSCEN	SOSCEN	OSWEN
bit 7							bit 0

Legend:	CO = Clearable Only bit	SO = Settable Only bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 Unimplemented: Read as '0'

- bit 14-12 **COSC<2:0>:** Current Oscillator Selection bits
 - 111 = Fast RC Oscillator with Postscaler (FRCDIV)
 - 110 = Reserved
 - 101 = Low-Power RC Oscillator (LPRC)
 - 100 = Secondary Oscillator (SOSC)
 - 011 = Primary Oscillator with PLL module (XTPLL, HSPLL, ECPLL)
 - 010 = Primary Oscillator (XT, HS, EC)
 - 001 = Fast RC Oscillator with Postscaler and PLL module (FRCPLL)
 - 000 = Fast RC Oscillator (FRC)

bit 11 Unimplemented: Read as '0'

bit 10-8 **NOSC<2:0>:** New Oscillator Selection bits⁽¹⁾

- 111 = Fast RC Oscillator with Postscaler (FRCDIV)
- 110 = Reserved
- 101 = Low-Power RC Oscillator (LPRC)
- 100 = Secondary Oscillator (SOSC)
- 011 = Primary Oscillator with PLL module (XTPLL, HSPLL, ECPLL)
- 010 = Primary Oscillator (XT, HS, EC)
- 001 = Fast RC Oscillator with Postscaler and PLL module (FRCPLL)
- 000 = Fast RC Oscillator (FRC)
- Note 1: Reset values for these bits are determined by the FNOSC Configuration bits.
 - 2: The state of the IOLOCK bit can only be changed once an unlocking sequence has been executed. In addition, if the IOL1WAY Configuration bit is '1' once the IOLOCK bit is set, it cannot be cleared.
 - 3: Also, resets to '0' during any valid clock switch or whenever a non-PLL Clock mode is selected.

10.4.5 CONSIDERATIONS FOR PERIPHERAL PIN SELECTION

The ability to control Peripheral Pin Select options introduces several considerations into application design that could be overlooked. This is particularly true for several common peripherals that are available only as remappable peripherals.

The main consideration is that the Peripheral Pin Selects are not available on default pins in the device's default (Reset) state. Since all RPINRx registers reset to '111111' and all RPORx registers reset to '000000', all Peripheral Pin Select inputs are tied to Vss and all Peripheral Pin Select outputs are disconnected.

Note:	In tying Peripheral Pin Select inputs to
	RP63, RP63 does not have to exist on a
	device for the registers to be reset to it.

This situation requires the user to initialize the device with the proper peripheral configuration before any other application code is executed. Since the IOLOCK bit resets in the unlocked state, it is not necessary to execute the unlock sequence after the device has come out of Reset. For application safety, however, it is best to set IOLOCK and lock the configuration after writing to the control registers.

Because the unlock sequence is timing critical, it must be executed as an assembly language routine in the same manner as changes to the oscillator configuration. If the bulk of the application is written in C or another high-level language, the unlock sequence should be performed by writing in-line assembly.

Choosing the configuration requires the review of all Peripheral Pin Selects and their pin assignments, especially those that will not be used in the application. In all cases, unused pin-selectable peripherals should be disabled completely. Unused peripherals should have their inputs assigned to an unused RPn pin function. I/O pins with unused RPn functions should be configured with the null peripheral output.

The assignment of a peripheral to a particular pin does not automatically perform any other configuration of the pin's I/O circuitry. In theory, this means adding a pin-selectable output to a pin may mean inadvertently driving an existing peripheral input when the output is driven. Users must be familiar with the behavior of other fixed peripherals that share a remappable pin and know when to enable or disable them. To be safe, fixed digital peripherals that share the same pin should be disabled when not in use. Along these lines, configuring a remappable pin for a specific peripheral does not automatically turn that feature on. The peripheral must be specifically configured for operation and enabled, as if it were tied to a fixed pin. Where this happens in the application code (immediately following device Reset and peripheral configuration or inside the main application routine) depends on the peripheral and its use in the application.

A final consideration is that Peripheral Pin Select functions neither override analog inputs, nor reconfigure pins with analog functions for digital I/O. If a pin is configured as an analog input on device Reset, it must be explicitly reconfigured as digital I/O when used with a Peripheral Pin Select.

Example 10-2 shows a configuration for bidirectional communication with flow control using UART1. The following input and output functions are used:

- Input Functions: U1RX, U1CTS
- Output Functions: U1TX, U1RTS

EXAMPLE 10-2: CONFIGURING UART1 INPUT AND OUTPUT FUNCTIONS

// Unlock Registers __builtin_write_OSCCONL(OSCCON & 0xBF); // Configure Input Functions (Table 9-1)) // Assign UIRX To Pin RP0 RPINR18bits.U1RXR = 0; // Assign U1CTS To Pin RP1 RPINR18bits.U1CTSR = 1; // Configure Output Functions (Table 9-2) // Assign U1TX To Pin RP2 RPOR1bits.RP2R = 3; // Assign U1RTS To Pin RP3 RPOR1bits.RP3R = 4; // Lock Registers

```
__builtin_write_OSCCONL(OSCCON | 0x40);
```

REGISTER 10-9: RPINR10: PERIPHERAL PIN SELECT INPUT REGISTER 10

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
—	—	IC8R5	IC8R4	IC8R3	IC8R2	IC8R1	IC8R0	
bit 15						•	bit 8	
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
	—	IC7R5	IC7R4	IC7R3	IC7R2	IC7R1	IC7R0	
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			nown		

bit 15-14	Unimplemented: Read as '0'
bit 13-8	IC8R<5:0>: Assign Input Capture 8 (IC8) to Corresponding RPn or RPIn Pin bits
bit 7-6	Unimplemented: Read as '0'
bit 5-0	IC7R<5:0>: Assign Input Capture 7 (IC7) to Corresponding RPn or RPIn Pin bits

REGISTER 10-10: RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	OCFBR5	OCFBR4	OCFBR3	OCFBR2	OCFBR1	OCFBR0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	OCFAR5	OCFAR4	OCFAR3	OCFAR2	OCFAR1	OCFAR0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **OCFBR<5:0>:** Assign Output Compare Fault B (OCFB) to Corresponding RPn or RPIn Pin bits

bit 7-6 Unimplemented: Read as '0'

bit 5-0 OCFAR<5:0>: Assign Output Compare Fault A (OCFA) to Corresponding RPn or RPIn Pin bits

REGISTER 10-15: RPINR20: PERIPHERAL PIN SELECT INPUT REGISTER 20

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—		SCK1R5	SCK1R4	SCK1R3	SCK1R2	SCK1R1	SCK1R0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	SDI1R5	SDI1R4	SDI1R3	SDI1R2	SDI1R1	SDI1R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	SCK1R<5:0>: Assign SPI1 Clock Input (SCK1IN) to Corresponding RPn or RPIn Pin bits
bit 7-6	Unimplemented: Read as '0'
bit 5-0	SDI1R<5:0>: Assign SPI1 Data Input (SDI1) to Corresponding RPn or RPIn Pin bits

REGISTER 10-16: RPINR21: PERIPHERAL PIN SELECT INPUT REGISTER 21

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	U3CTSR5	U3CTSR4	U3CTSR3	U3CTSR2	U3CTSR1	U3CTSR0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	SS1R5	SS1R4	SS1R3	SS1R2	SS1R1	SS1R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 U3CTSR<5:0>: Assign UART3 Clear to Send (U3CTS) to Corresponding RPn or RPIn Pin bits

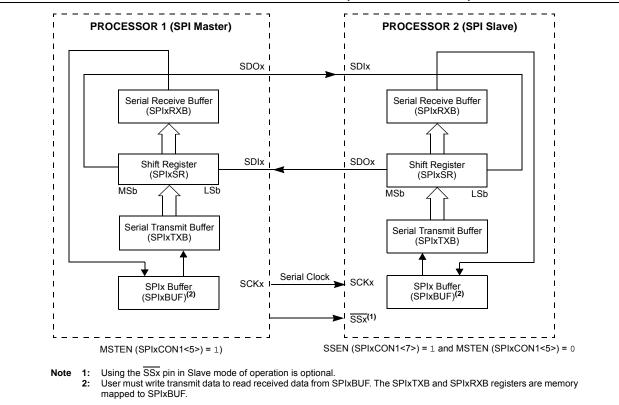
bit 7-6 Unimplemented: Read as '0'

bit 5-0 SS1R<5:0>: Assign SPI1 Slave Select Input (SS1IN) to Corresponding RPn or RPIn Pin bits

REGISTER 10-38: ALTRP: ALTERNATE PERIPHERAL PIN MAPPING REGISTER

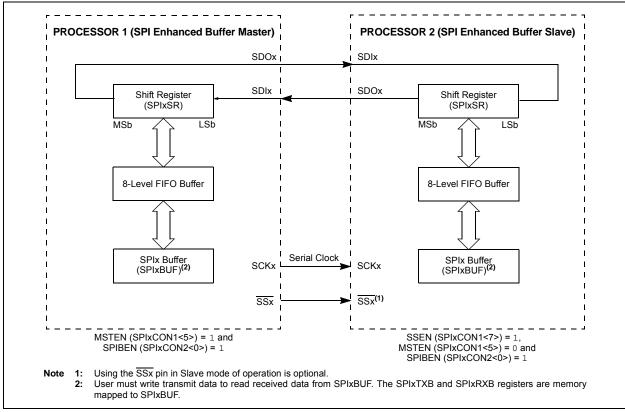
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	—	—	—	—	SCK1CM
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown


bit 15-1 Unimplemented: Read as '0'

bit 0

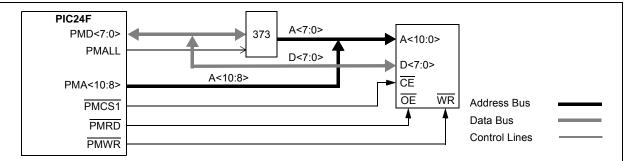
SCK1CM: SCK1 Output Mapping Select bit


1 = SCK1 output function is mapped to ASCK1 pin only

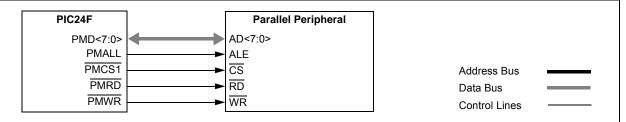
0 = SCK1 output function is mapped according to RPORn registers

FIGURE 15-3: SPI MASTER/SLAVE CONNECTION (STANDARD MODE)

FIGURE 15-4: SPI MASTER/SLAVE CONNECTION (ENHANCED BUFFER MODES)

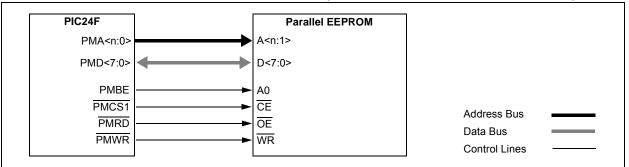


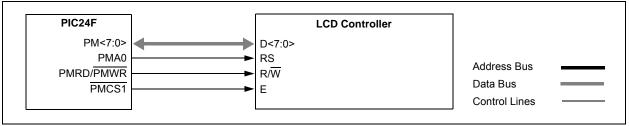
REGISTER 17-1: UXMODE: UARTX MODE REGISTER (CONTINUED)


bit 4	RXINV: Receive Polarity Inversion bit 1 = UxRX Idle state is '0' 0 = UxRX Idle state is '1'
bit 3	BRGH: High Baud Rate Enable bit
	1 = High-Speed mode (baud clock generated from FcY/4)0 = Standard mode (baud clock generated from FcY/16)
bit 2-1	PDSEL<1:0>: Parity and Data Selection bits
	 11 = 9-bit data, no parity 10 = 8-bit data, odd parity 01 = 8-bit data, even parity 00 = 8-bit data, no parity
bit 0	STSEL: Stop Bit Selection bit
	1 = Two Stop bits0 = One Stop bit

- **Note 1:** If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn pin. See **Section 10.4 "Peripheral Pin Select"** for more information.
 - 2: This feature is only available for the 16x BRG mode (BRGH = 0).

FIGURE 18-8: EXAMPLE OF A PARTIALLY MULTIPLEXED ADDRESSING APPLICATION


FIGURE 18-9: EXAMPLE OF AN 8-BIT MULTIPLEXED ADDRESS AND DATA APPLICATION


FIGURE 18-10: PARALLEL EEPROM EXAMPLE (UP TO 15-BIT ADDRESS, 8-BIT DATA)

PIC24F		Parallel EEPROM		
PMA <n:0></n:0>		A <n:0></n:0>		
PMD<7:0>	\longleftrightarrow	D<7:0>		
PMCS1 PMRD PMWR		CE OE WR	Address Bus Data Bus Control Lines	

FIGURE 18-11: PARALLEL EEPROM EXAMPLE (UP TO 15-BIT ADDRESS, 16-BIT DATA)

FIGURE 18-12: LCD CONTROL EXAMPLE (BYTE MODE OPERATION)

19.3 Alarm

- · Configurable from half second to one year
- Enabled using the ALRMEN bit (ALCFGRPT<15>, Register 19-3)
- One-time alarm and repeat alarm options available

19.3.1 CONFIGURING THE ALARM

The alarm feature is enabled using the ALRMEN bit. This bit is cleared when an alarm is issued. Writes to ALRMVAL should only take place when ALRMEN = 0.

As shown in Figure 19-2, the interval selection of the alarm is configured through the AMASK bits (ALCFGRPT<13:10>). These bits determine which and how many digits of the alarm must match the clock value for the alarm to occur.

The alarm can also be configured to repeat based on a preconfigured interval. The amount of times this occurs once the alarm is enabled is stored in the ARPT bits, ARPT<7:0> (ALCFGRPT<7:0>). When the value of the ARPT bits equals 00h and the CHIME bit (ALCFGRPT<14>) is cleared, the repeat function is disabled and only a single alarm will occur. The alarm can be repeated up to 255 times by loading ARPT<7:0> with FFh.

FIGURE 19-2: ALARM MASK SETTINGS

After each alarm is issued, the value of the ARPT bits is decremented by one. Once the value has reached 00h, the alarm will be issued one last time, after which the ALRMEN bit will be cleared automatically and the alarm will turn off.

Indefinite repetition of the alarm can occur if the CHIME bit = 1. Instead of the alarm being disabled when the value of the ARPT bits reaches 00h, it rolls over to FFh and continues counting indefinitely while CHIME is set.

19.3.2 ALARM INTERRUPT

At every alarm event, an interrupt is generated. In addition, an alarm pulse output is provided that operates at half the frequency of the alarm. This output is completely synchronous to the RTCC clock and can be used as a trigger clock to other peripherals.

Note:	Changing any of the registers, other then
	the RCFGCAL and ALCFGRPT registers,
	and the CHIME bit while the alarm is
	enabled (ALRMEN = 1), can result in a
	false alarm event leading to a false alarm
	interrupt. To avoid a false alarm event, the
	timer and alarm values should only be
	changed while the alarm is disabled
	(ALRMEN = 0). It is recommended that
	the ALCFGRPT register and CHIME bit be
	changed when RTCSYNC = 0.

Alarm Mask Setting (AMASK<3:0>)	Day of the Week	Month Day	Hours Minutes Seconds
0000 – Every half second 0001 – Every second			
0010 – Every 10 seconds			
0011 – Every minute			
0100 – Every 10 minutes			m : s s
0101 – Every hour			
0110 – Every day			h h : m m : s s
0111 – Every week	d		h h ; m m ; s s
1000 – Every month		/ d_ d	h h : m m : s s
1001 – Every year ⁽¹⁾		m m / d d	h h : m m : s s
Note 1: Annually, except when co	onfigured fo	or February 29.	

21.0 10-BIT HIGH-SPEED A/D CONVERTER

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "PIC24F Family Reference Manual", Section 17. "10-Bit A/D Converter" (DS39705).

The 10-bit A/D Converter has the following key features:

- Successive Approximation (SAR) Conversion
- Conversion Speeds of up to 500 ksps
- 16 Analog Input pins
- External Voltage Reference Input pins
- Internal Band Gap Reference Inputs
- · Automatic Channel Scan mode
- Selectable Conversion Trigger Source
- 16-Word Conversion Result Buffer
- Selectable Buffer Fill modes
- Four Result Alignment Options
- Operation during CPU Sleep and Idle modes

On all PIC24FJ256GA110 family devices, the 10-bit A/D Converter has 16 analog input pins, designated AN0 through AN15. In addition, there are two analog input pins for external voltage reference connections (VREF+ and VREF-). These voltage reference inputs may be shared with other analog input pins.

A block diagram of the A/D Converter is shown in Figure 21-1.

To perform an A/D conversion:

- 1. Configure the A/D module:
 - Configure port pins as analog inputs and/or select band gap reference input (AD1PCFGL<15:0> and AD1PCFGH<1:0>).
 - b) Select voltage reference source to match expected range on analog inputs (AD1CON2<15:13>).
 - c) Select the analog conversion clock to match the desired data rate with the processor clock (AD1CON3<7:0>).
 - d) Select the appropriate sample/conversion sequence (AD1CON1<7:5> and AD1CON3<12:8>).
 - e) Select how conversion results are presented in the buffer (AD1CON1<9:8>).
 - f) Select interrupt rate (AD1CON2<5:2>).
 - g) Turn on A/D module (AD1CON1<15>).
- 2. Configure the A/D interrupt (if required):
 - a) Clear the AD1IF bit.
 - b) Select A/D interrupt priority.

27.2 MPLAB C Compilers for Various Device Families

The MPLAB C Compiler code development systems are complete ANSI C compilers for Microchip's PIC18, PIC24 and PIC32 families of microcontrollers and the dsPIC30 and dsPIC33 families of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

27.3 HI-TECH C for Various Device Families

The HI-TECH C Compiler code development systems are complete ANSI C compilers for Microchip's PIC family of microcontrollers and the dsPIC family of digital signal controllers. These compilers provide powerful integration capabilities, omniscient code generation and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

The compilers include a macro assembler, linker, preprocessor, and one-step driver, and can run on multiple platforms.

27.4 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

The MPASM Assembler features include:

- · Integration into MPLAB IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

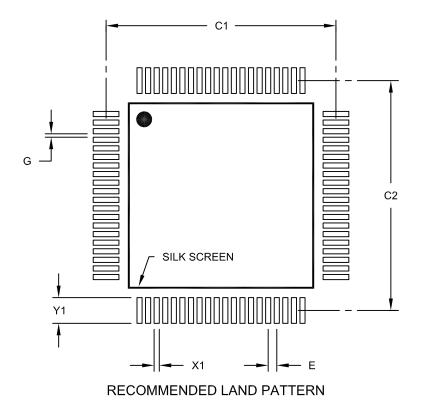
27.5 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction


27.6 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC devices. MPLAB C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command line interface
- · Rich directive set
- Flexible macro language
- · MPLAB IDE compatibility

80-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIM	ETERS	
Dimension	Limits	MIN	NOM	MAX
Contact Pitch	E		0.50 BSC	
Contact Pad Spacing	C1		13.40	
Contact Pad Spacing	C2		13.40	
Contact Pad Width (X80)	X1			0.30
Contact Pad Length (X80)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2092A

Output Compare	
Cascaded (32-Bit) Mode	167
Operations	168
Synchronous and Trigger Modes	167
Output Compare with Dedicated Timer	167

Ρ	
Packaging	305
Details	307
Marking	305
Parallel Master Port. See PMP.	201
Peripheral Enable Bits	126
Peripheral Module Disable Bits	126
Peripheral Pin Select (PPS)	129
Alternate Fixed Pin Mapping	
Available Peripherals and Pins	
Configuration Control	
Considerations for Use	
Input Mapping	
Mapping Exceptions	
Output Mapping	
Peripheral Priority	
Pinout Descriptions	
PMSLP Bit	
and Wake-up Time	125
PMSLP bit	
and Wake-up Time	
Power-Saving Features	125
Modes	
Doze	
Idle	
Sleep	
Power-up Requirements	
Product Identification System	328
Program Memory	
Access Using Table Instructions	
Address Space	
Addressing	
Flash Configuration Words	
Memory Maps	
Organization	
Program Space Visibility	
Program Space Visibility (PSV)	
Program Verification	
Programmer's Model Pulse-Width Modulation (PWM) Mode	
Pulse-Width Modulation (PWM) Mode	169
Pulse-width Modulation. See PWM. PWM	
Duty Cycle and Period	170
	170
R	

Reader Response Register Maps	327
ADC	
Comparators	
CPU Core	
CRC	
CTMU	
I ² C	
ICN	
Input Capture	
Interrupt Controller	41
NVM	
Output Compare	
Pad Configuration	
Parallel Master/Slave Port	50

Peripheral Pin Select	51
PMD	52
PORTA	47
PORTB	47
PORTC	47
PORTD	47
PORTE	48
PORTF	48
Real-Time Clock and Calendar	50
SPI	
System	
Timers	
UART	
Registers	40
AD1CHS (A/D Input Select)	230
AD1CON1 (A/D Control 1)	
AD1CON2 (A/D Control 2)	
AD1CON3 (A/D Control 3)	
AD1CSSL (A/D Input Scan Select Low)	
AD1PCFGH (A/D Port Configuration High)	
AD1PCFGL (A/D Port Configuration Low)	231
ALCFGRPT (Alarm Configuration)	
ALMINSEC (Alarm Minutes and Seconds Value) .	
ALMTHDY (Alarm Month and Day Value)	218
ALTRP (Alternate Peripheral Pin Mapping)	154
ALWDHR (Alarm Weekday and Hours Value)	218
CLKDIV (Clock Divider)	119
CMSTAT (Comparator Status)	
CMxCON (Comparator x Control)	
CORCON (CPU Control)	
CRCCON (CRC Control)	
CRCXOR (CRC XOR Polynomial)	224
CIMUCON (CIMU Control)	
CTMUCON (CTMU Control)	
CTMUICON (CTMU Current Control)	
CTMUICON (CTMU Current Control) CVRCON (Comparator Voltage Reference	244
CTMUICON (CTMU Current Control) CVRCON (Comparator Voltage Reference Control)	244 240
CTMUICON (CTMU Current Control) CVRCON (Comparator Voltage Reference Control) CW1 (Flash Configuration Word 1)	244 240 246
CTMUICON (CTMU Current Control) CVRCON (Comparator Voltage Reference Control) CW1 (Flash Configuration Word 1) CW2 (Flash Configuration Word 2)	244 240 246 248
CTMUICON (CTMU Current Control) CVRCON (Comparator Voltage Reference Control) CW1 (Flash Configuration Word 1) CW2 (Flash Configuration Word 2) CW3 (Flash Configuration Word 3)	244 240 246 248 249
CTMUICON (CTMU Current Control) CVRCON (Comparator Voltage Reference Control) CW1 (Flash Configuration Word 1) CW2 (Flash Configuration Word 2) CW3 (Flash Configuration Word 3) DEVID (Device ID)	244 240 246 248 249 250
CTMUICON (CTMU Current Control) CVRCON (Comparator Voltage Reference Control) CW1 (Flash Configuration Word 1) CW2 (Flash Configuration Word 2) CW3 (Flash Configuration Word 3) DEVID (Device ID) DEVREV (Device Revision)	244 240 246 248 249 250 250
CTMUICON (CTMU Current Control) CVRCON (Comparator Voltage Reference Control) CW1 (Flash Configuration Word 1) CW2 (Flash Configuration Word 2) CW3 (Flash Configuration Word 3) DEVID (Device ID) DEVREV (Device Revision) I2CxCON (I2Cx Control)	244 240 246 248 249 250 250 188
CTMUICON (CTMU Current Control) CVRCON (Comparator Voltage Reference Control) CW1 (Flash Configuration Word 1) CW2 (Flash Configuration Word 2) CW3 (Flash Configuration Word 3) DEVID (Device ID) DEVREV (Device Revision) I2CxCON (I2Cx Control) I2CxMSK (I2Cx Slave Mode Address Mask)	244 240 246 248 249 250 250 188 192
CTMUICON (CTMU Current Control) CVRCON (Comparator Voltage Reference Control) CW1 (Flash Configuration Word 1) CW2 (Flash Configuration Word 2) CW3 (Flash Configuration Word 3) DEVID (Device ID) DEVREV (Device Revision) I2CxCON (I2Cx Control) I2CxMSK (I2Cx Slave Mode Address Mask) I2CxSTAT (I2Cx Status)	244 240 246 248 249 250 250 188 192 190
CTMUICON (CTMU Current Control) CVRCON (Comparator Voltage Reference Control) CW1 (Flash Configuration Word 1) CW2 (Flash Configuration Word 2) CW3 (Flash Configuration Word 3) DEVID (Device ID) DEVREV (Device Revision) I2CxCON (I2Cx Control) I2CxMSK (I2Cx Slave Mode Address Mask) I2CxSTAT (I2Cx Status) ICxCON1 (Input Capture x Control 1)	244 240 246 248 249 250 250 188 192 190 165
CTMUICON (CTMU Current Control) CVRCON (Comparator Voltage Reference Control) CW1 (Flash Configuration Word 1) CW2 (Flash Configuration Word 2) CW3 (Flash Configuration Word 3) DEVID (Device ID) DEVREV (Device Revision) I2CxCON (I2Cx Control) I2CxMSK (I2Cx Slave Mode Address Mask) I2CxSTAT (I2Cx Status) ICxCON1 (Input Capture x Control 1) ICxCON2 (Input Capture x Control 2)	244 240 246 248 249 250 250 188 192 190 165 166
CTMUICON (CTMU Current Control) CVRCON (Comparator Voltage Reference Control) CW1 (Flash Configuration Word 1) CW2 (Flash Configuration Word 2) CW3 (Flash Configuration Word 3) DEVID (Device ID) DEVREV (Device Revision) I2CxCON (I2Cx Control) I2CxMSK (I2Cx Slave Mode Address Mask) I2CxSTAT (I2Cx Status) ICxCON1 (Input Capture x Control 1)	244 240 246 248 249 250 250 188 192 190 165 166
CTMUICON (CTMU Current Control) CVRCON (Comparator Voltage Reference Control) CW1 (Flash Configuration Word 1) CW2 (Flash Configuration Word 2) CW3 (Flash Configuration Word 3) DEVID (Device ID) DEVREV (Device Revision) I2CxCON (I2Cx Control) I2CxMSK (I2Cx Slave Mode Address Mask) I2CxSTAT (I2Cx Status) ICxCON1 (Input Capture x Control 1) ICxCON2 (Input Capture x Control 2)	244 240 246 248 249 250 250 188 192 190 165 166 84
CTMUICON (CTMU Current Control) CVRCON (Comparator Voltage Reference Control) CW1 (Flash Configuration Word 1) CW2 (Flash Configuration Word 2) CW3 (Flash Configuration Word 3) DEVID (Device ID) DEVREV (Device Revision) I2CxCON (I2Cx Control) I2CxMSK (I2Cx Slave Mode Address Mask) I2CxSTAT (I2Cx Status) ICxCON1 (Input Capture x Control 1) ICxCON2 (Input Capture x Control 2) IEC0 (Interrupt Enable Control 0)	244 240 246 248 249 250 250 188 192 190 165 166 84 85
CTMUICON (CTMU Current Control) CVRCON (Comparator Voltage Reference Control) CW1 (Flash Configuration Word 1) CW2 (Flash Configuration Word 2) CW3 (Flash Configuration Word 3) DEVID (Device ID) DEVREV (Device Revision) I2CxCON (I2Cx Control) I2CxCON (I2Cx Control) I2CxMSK (I2Cx Slave Mode Address Mask) I2CxSTAT (I2Cx Status) ICxCON1 (Input Capture x Control 1) ICxCON2 (Input Capture x Control 2) IEC0 (Interrupt Enable Control 0) IEC1 (Interrupt Enable Control 1)	244 240 246 248 249 250 250 188 192 190 165 166 84 85 87
CTMUICON (CTMU Current Control) CVRCON (Comparator Voltage Reference Control) CW1 (Flash Configuration Word 1) CW2 (Flash Configuration Word 2) CW3 (Flash Configuration Word 3) DEVID (Device ID) DEVREV (Device Revision) I2CxCON (I2Cx Control) I2CxCON (I2Cx Control) I2CxMSK (I2Cx Slave Mode Address Mask) I2CxSTAT (I2Cx Status) ICxCON1 (Input Capture x Control 1) ICxCON2 (Input Capture x Control 2) IEC0 (Interrupt Enable Control 0) IEC1 (Interrupt Enable Control 2) IEC3 (Interrupt Enable Control 3)	244 240 246 248 249 250 250 188 192 190 165 166 84 85 87 88
CTMUICON (CTMU Current Control) CVRCON (Comparator Voltage Reference Control) CW1 (Flash Configuration Word 1) CW2 (Flash Configuration Word 2) CW3 (Flash Configuration Word 3) DEVID (Device ID) DEVREV (Device Revision) I2CxCON (I2Cx Control) I2CxCON (I2Cx Control) I2CxMSK (I2Cx Slave Mode Address Mask) I2CxSTAT (I2Cx Status) ICxCON1 (Input Capture x Control 1) ICxCON2 (Input Capture x Control 2) IEC0 (Interrupt Enable Control 0) IEC1 (Interrupt Enable Control 2) IEC3 (Interrupt Enable Control 3)	244 240 246 248 249 250 250 188 192 190 165 166 84 85 87 88 89
CTMUICON (CTMU Current Control) CVRCON (Comparator Voltage Reference Control) CW1 (Flash Configuration Word 1) CW2 (Flash Configuration Word 2) CW3 (Flash Configuration Word 3) DEVID (Device ID) DEVREV (Device Revision) I2CxCON (I2Cx Control) I2CxCON (I2Cx Control) I2CxMSK (I2Cx Slave Mode Address Mask) I2CxSTAT (I2Cx Status) ICxCON1 (Input Capture x Control 1) ICxCON2 (Input Capture x Control 2) IEC0 (Interrupt Enable Control 0) IEC1 (Interrupt Enable Control 2) IEC3 (Interrupt Enable Control 3) IEC4 (Interrupt Enable Control 4)	244 240 246 248 249 250 250 188 192 190 165 166 84 85 87 88 89 90
CTMUICON (CTMU Current Control) CVRCON (Comparator Voltage Reference Control) CW1 (Flash Configuration Word 1) CW2 (Flash Configuration Word 2) CW3 (Flash Configuration Word 3) DEVID (Device ID) DEVREV (Device Revision) I2CxCON (I2Cx Control) I2CxCON (I2Cx Control) I2CxMSK (I2Cx Slave Mode Address Mask) I2CxSTAT (I2Cx Status) ICxCON1 (Input Capture x Control 1) ICxCON2 (Input Capture x Control 2) IEC0 (Interrupt Enable Control 0) IEC1 (Interrupt Enable Control 1) IEC3 (Interrupt Enable Control 3) IEC4 (Interrupt Enable Control 4) IEC5 (Interrupt Flag Status 0)	244 240 246 248 249 250 250 188 192 190 165 166 84 85 87 88 89 90 78
CTMUICON (CTMU Current Control) CVRCON (Comparator Voltage Reference Control) CW1 (Flash Configuration Word 1) CW2 (Flash Configuration Word 2) CW3 (Flash Configuration Word 3) DEVID (Device ID) DEVREV (Device Revision) I2CxCON (I2Cx Control) I2CxCON (I2Cx Control) I2CxMSK (I2Cx Slave Mode Address Mask) I2CxSTAT (I2Cx Status) ICxCON1 (Input Capture x Control 1) ICxCON2 (Input Capture x Control 2) IEC0 (Interrupt Enable Control 0) IEC1 (Interrupt Enable Control 2) IEC3 (Interrupt Enable Control 3) IEC4 (Interrupt Enable Control 4) IEC5 (Interrupt Flag Status 0) IFS0 (Interrupt Flag Status 1)	244 240 246 248 249 250 250 188 192 190 165 166 84 85 87 88 89 90 78
CTMUICON (CTMU Current Control) CVRCON (Comparator Voltage Reference Control) CW1 (Flash Configuration Word 1) CW2 (Flash Configuration Word 2) CW3 (Flash Configuration Word 3) DEVID (Device ID) DEVREV (Device Revision) I2CxCON (I2Cx Control) I2CxMSK (I2Cx Slave Mode Address Mask) I2CxSTAT (I2Cx Status) ICxCON1 (Input Capture x Control 1) ICxCON2 (Input Capture x Control 2) IEC0 (Interrupt Enable Control 0) IEC1 (Interrupt Enable Control 1) IEC3 (Interrupt Enable Control 3) IEC4 (Interrupt Enable Control 4) IEC5 (Interrupt Flag Status 0) IFS1 (Interrupt Flag Status 1) IFS2 (Interrupt Flag Status 2)	244 240 246 248 249 250 250 188 192 190 165 166 84 85 87 88 89 90 78 79 80
CTMUICON (CTMU Current Control) CVRCON (Comparator Voltage Reference Control) CW1 (Flash Configuration Word 1) CW2 (Flash Configuration Word 2) CW3 (Flash Configuration Word 3) DEVID (Device ID) DEVREV (Device Revision) I2CxCON (I2Cx Control) I2CxCON (I2Cx Control) I2CxMSK (I2Cx Slave Mode Address Mask) I2CxSTAT (I2Cx Status) ICxCON1 (Input Capture x Control 1) ICxCON2 (Input Capture x Control 2) IEC0 (Interrupt Enable Control 0) IEC1 (Interrupt Enable Control 2) IEC3 (Interrupt Enable Control 3) IEC4 (Interrupt Enable Control 4) IEC5 (Interrupt Flag Status 0) IFS0 (Interrupt Flag Status 1) IFS2 (Interrupt Flag Status 2)	244 240 246 248 249 250 250 188 192 190 165 166 84 85 87 88 89 90 78 79 80 81
CTMUICON (CTMU Current Control) CVRCON (Comparator Voltage Reference Control) CW1 (Flash Configuration Word 1) CW2 (Flash Configuration Word 2) CW3 (Flash Configuration Word 3) DEVID (Device ID) DEVREV (Device Revision) I2CxCON (I2Cx Control) I2CxCON (I2Cx Control) I2CxMSK (I2Cx Slave Mode Address Mask) I2CxSTAT (I2Cx Status) ICxCON1 (Input Capture x Control 1) ICxCON2 (Input Capture x Control 2) IEC0 (Interrupt Enable Control 0) IEC1 (Interrupt Enable Control 2) IEC3 (Interrupt Enable Control 3) IEC4 (Interrupt Enable Control 4) IEC5 (Interrupt Flag Status 0) IFS0 (Interrupt Flag Status 1) IFS2 (Interrupt Flag Status 3) IFS4 (Interrupt Flag Status 4)	244 240 246 248 249 250 250 188 192 190 165 166 84 85 87 88 89 90 78 79 80 81 82
CTMUICON (CTMU Current Control) CVRCON (Comparator Voltage Reference Control) CW1 (Flash Configuration Word 1) CW2 (Flash Configuration Word 2) CW3 (Flash Configuration Word 3) DEVID (Device ID) DEVREV (Device Revision) I2CxCON (I2Cx Control) I2CxMSK (I2Cx Slave Mode Address Mask) I2CxTAT (I2Cx Status) ICxCON1 (Input Capture x Control 1) ICxCON2 (Input Capture x Control 2) IEC0 (Interrupt Enable Control 0) IEC1 (Interrupt Enable Control 1) IEC2 (Interrupt Enable Control 3) IEC4 (Interrupt Enable Control 3) IEC4 (Interrupt Flag Status 0) IFS0 (Interrupt Flag Status 1) IFS3 (Interrupt Flag Status 3) IFS4 (Interrupt Flag Status 4)	244 240 246 248 249 250 250 188 192 190 165 166 84 85 87 88 89 90 78 79 80 81 82 83
CTMUICON (CTMU Current Control) CVRCON (Comparator Voltage Reference Control) CW1 (Flash Configuration Word 1) CW2 (Flash Configuration Word 2) CW3 (Flash Configuration Word 3) DEVID (Device ID) DEVREV (Device Revision) I2CxCON (I2Cx Control) I2CxMSK (I2Cx Slave Mode Address Mask) I2CxTAT (I2Cx Status) ICxCON1 (Input Capture x Control 1) ICxCON2 (Input Capture x Control 2) IEC0 (Interrupt Enable Control 0) IEC1 (Interrupt Enable Control 1) IEC2 (Interrupt Enable Control 3) IEC4 (Interrupt Enable Control 4) IEC5 (Interrupt Flag Status 0) IFS0 (Interrupt Flag Status 1) IFS3 (Interrupt Flag Status 3) IFS4 (Interrupt Flag Status 4) IFS5 (Interrupt Flag Status 5) INTCON1 (Interrupt Control 1)	244 240 246 248 249 250 250 188 192 190 165 166 84 85 87 88 89 90 78 79 80 81 82 83 76
CTMUICON (CTMU Current Control) CVRCON (Comparator Voltage Reference Control) CW1 (Flash Configuration Word 1) CW2 (Flash Configuration Word 2) CW3 (Flash Configuration Word 3) DEVID (Device ID) DEVREV (Device Revision) I2CxCON (I2Cx Control) I2CxCON (I2Cx Control) I2CxMSK (I2CX Slave Mode Address Mask) I2CxSTAT (I2CX Status) ICxCON1 (Input Capture x Control 1) ICxCON2 (Input Capture x Control 2) IEC0 (Interrupt Enable Control 0) IEC1 (Interrupt Enable Control 3) IEC3 (Interrupt Enable Control 3) IEC4 (Interrupt Enable Control 4) IEC5 (Interrupt Flag Status 0) IFS0 (Interrupt Flag Status 1) IFS1 (Interrupt Flag Status 3) IFS3 (Interrupt Flag Status 3) IFS5 (Interrupt Flag Status 4) IFS5 (Interrupt Flag Status 5) INTCON1 (Interrupt Control 1)	244 240 246 248 249 250 188 192 190 165 166 84 85 87 85 87 88 89 90 78 78 80 81 82 83 76 77
CTMUICON (CTMU Current Control) CVRCON (Comparator Voltage Reference Control) CW1 (Flash Configuration Word 1) CW2 (Flash Configuration Word 2) CW3 (Flash Configuration Word 3) DEVID (Device ID) DEVREV (Device Revision) I2CxCON (I2Cx Control) I2CxCON (I2Cx Control) I2CxMSK (I2CX Slave Mode Address Mask) I2CxTAT (I2CX Status) ICxCON1 (Input Capture x Control 1) ICxCON2 (Input Capture x Control 2) IEC0 (Interrupt Enable Control 0) IEC1 (Interrupt Enable Control 3) IEC3 (Interrupt Enable Control 3) IEC4 (Interrupt Enable Control 4) IEC5 (Interrupt Flag Status 0) IFS0 (Interrupt Flag Status 1) IFS2 (Interrupt Flag Status 2) IFS3 (Interrupt Flag Status 3) IFS4 (Interrupt Flag Status 4) IFS5 (Interrupt Flag Status 5) INTCON1 (Interrupt Control 1)	244 240 246 248 249 250 250 188 192 190 165 166 84 85 87 85 87 88 89 90 79 81 81 82 77 112
CTMUICON (CTMU Current Control) CVRCON (Comparator Voltage Reference Control) CW1 (Flash Configuration Word 1) CW2 (Flash Configuration Word 2) CW3 (Flash Configuration Word 3) DEVID (Device ID) DEVREV (Device Revision) I2CxCON (I2Cx Control) I2CxMSK (I2Cx Slave Mode Address Mask) I2CxTAT (I2Cx Status) ICxCON1 (Input Capture x Control 1) ICxCON2 (Input Capture x Control 2) IEC0 (Interrupt Enable Control 0) IEC1 (Interrupt Enable Control 2) IEC3 (Interrupt Enable Control 3) IEC4 (Interrupt Enable Control 3) IEC5 (Interrupt Flag Status 0) IFS0 (Interrupt Flag Status 1) IFS1 (Interrupt Flag Status 2) IFS3 (Interrupt Flag Status 3) IFS5 (Interrupt Flag Status 4) IFS5 (Interrupt Flag Status 5) INTCON1 (Interrupt Control 2) INTCON2 (Interrupt Control 2)	244 240 246 248 249 250 250 188 192 190 165 166 84 85 87 87 88 87 88 87 79 78 81 82 83 76 77 112 91
CTMUICON (CTMU Current Control) CVRCON (Comparator Voltage Reference Control) CW1 (Flash Configuration Word 1) CW2 (Flash Configuration Word 2) CW3 (Flash Configuration Word 3) DEVID (Device ID) DEVREV (Device Revision) I2CxCON (I2Cx Control) I2CxCON (I2Cx Control) I2CxMSK (I2Cx Slave Mode Address Mask) I2CxSTAT (I2Cx Status) ICxCON1 (Input Capture x Control 1) ICxCON2 (Input Capture x Control 2) IEC0 (Interrupt Enable Control 0) IEC1 (Interrupt Enable Control 2) IEC3 (Interrupt Enable Control 3) IEC3 (Interrupt Enable Control 3) IEC4 (Interrupt Enable Control 4) IEC5 (Interrupt Enable Control 5) IFS0 (Interrupt Flag Status 0) IFS1 (Interrupt Flag Status 2) IFS3 (Interrupt Flag Status 3) IFS4 (Interrupt Flag Status 3) IFS5 (Interrupt Flag Status 3) IFS5 (Interrupt Flag Status 4) IFS5 (Interrupt Flag Status 5) INTCON1 (Interrupt Control 1) INTCON2 (Interrupt Control 2) INTCON2 (Interrupt Control 1) IPC0 (Interrupt Priority Control 0)	244 240 246 248 249 250 188 192 190 165 166 84 85 87 85 87 88 89 90 78 78 80 77 112 91 92
CTMUICON (CTMU Current Control) CVRCON (Comparator Voltage Reference Control) CW1 (Flash Configuration Word 1) CW2 (Flash Configuration Word 2) CW3 (Flash Configuration Word 3) DEVID (Device ID) DEVREV (Device Revision) I2CxCON (I2Cx Control) I2CxMSK (I2Cx Slave Mode Address Mask) I2CxTAT (I2Cx Status) ICxCON1 (Input Capture x Control 1) ICxCON2 (Input Capture x Control 2) IEC0 (Interrupt Enable Control 0) IEC1 (Interrupt Enable Control 2) IEC3 (Interrupt Enable Control 3) IEC4 (Interrupt Enable Control 3) IEC5 (Interrupt Flag Status 0) IFS0 (Interrupt Flag Status 1) IFS1 (Interrupt Flag Status 2) IFS3 (Interrupt Flag Status 3) IFS5 (Interrupt Flag Status 4) IFS5 (Interrupt Flag Status 5) INTCON1 (Interrupt Control 2) INTCON2 (Interrupt Control 2)	244 240 246 248 249 250 188 192 190 165 166 84 85 87 85 87 88 89 90 78 79 80 77 112 91 92 101