

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	69
Program Memory Size	192KB (65.5K x 24)
Program Memory Type	FLASH
EEPROM Size	•
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj192ga108-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Device Overview	
2.0	Guidelines for Getting Started with 16-Bit Microcontrollers	
3.0	CPU	
4.0	Memory Organization	
5.0	Flash Program Memory	57
6.0	Resets	65
7.0	Interrupt Controller	71
8.0	Oscillator Configuration	115
9.0	Power-Saving Features	125
10.0	I/O Ports	127
11.0	Timer1	155
12.0	Timer2/3 and Timer4/5	157
13.0	Input Capture with Dedicated Timer	
14.0	Output Compare with Dedicated Timer	167
15.0	Serial Peripheral Interface (SPI)	175
16.0	Inter-Integrated Circuit (I ² C [™])	185
17.0	Universal Asynchronous Receiver Transmitter (UART)	
18.0	Parallel Master Port (PMP)	201
19.0	Real-Time Clock and Calendar (RTCC)	
20.0	Programmable Cyclic Redundancy Check (CRC) Generator	
21.0	10-Bit High-Speed A/D Converter	
22.0	Triple Comparator Module	
23.0	Comparator Voltage Reference	239
	Charge Time Measurement Unit (CTMU)	
25.0	Special Features	245
26.0	Instruction Set Summary	257
27.0	Development Support	
28.0	Electrical Characteristics	269
29.0	Packaging Information	305
Appe	ndix A: Revision History	319
Index	<	321
The N	Vicrochip Web Site	327
Custo	omer Change Notification Service	327
Custo	omer Support	327
Read	ler Response	328
Produ	uct Identification System	329

		Pin Number			Incost	
Function	64-Pin TQFP, QFN	80-Pin TQFP	100-Pin TQFP	٧o	Input Buffer	Description
CN43	—	52	66	I	ST	Interrupt-on-Change Inputs.
CN44	—	53	67	I	ST	
CN45	—	4	6	I	ST	
CN46	—	—	7	I	ST	
CN47	—	5	8	I	ST	
CN48	—	_	9	I	ST	
CN49	46	58	72	I	ST	
CN50	49	61	76	I	ST	
CN51	50	62	77	I	ST	
CN52	51	63	78	I	ST	
CN53	42	54	68	I	ST	
CN54	43	55	69	I	ST	
CN55	44	56	70	I	ST	
CN56	45	57	71	I	ST	
CN57	—	64	79	I	ST	
CN58	60	76	93	I	ST	
CN59	61	77	94	I	ST	-
CN60	62	78	98	I	ST	-
CN61	63	79	99	I	ST	-
CN62	64	80	100	I	ST	-
CN63	1	1	3	I	ST	-
CN64	2	2	4	I	ST	-
CN65	3	3	5	I	ST	
CN66	—	13	18	I	ST	
CN67	—	14	19	I	ST	
CN68	58	72	87	I	ST	
CN69	59	73	88	I	ST	
CN70	34	42	52	I	ST	
CN71	33	41	51	I	ST	1
CN72	35	45	55	I	ST	
CN73	—	44	54	I	ST	
CN74	—	43	53	Ι	ST	4
CN75	—	_	40	Ι	ST	4
CN76	—	_	39	Ι	ST	4
CN77	—	75	90	I	ST	
CN78	—	74	89	Ι	ST	4
CN79	—	—	96	I	ST	
CN80		—	97	I	ST	
CN81	—	—	95	I	ST	
CN82	—	_	1	Ι	ST	
CN83	37	47	57	Ι	ST	
CN84	36	46	56	I	ST	

TABLE 1-4: PIC24FJ256GA110 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

Legend:

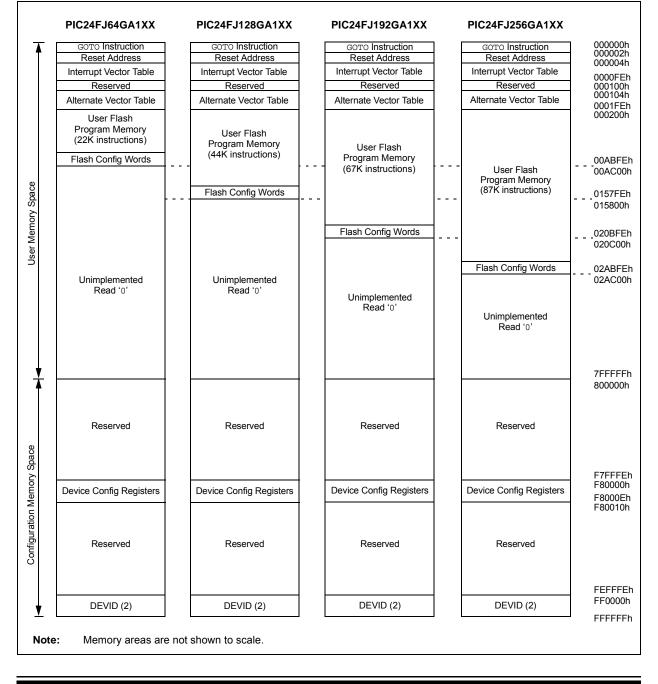
TTL = TTL input buffer ANA = Analog level input/output ST = Schmitt Trigger input buffer $I^2C^{TM} = I^2C/SMBus$ input buffer

© 2010 Microchip Technology Inc.

4.0 MEMORY ORGANIZATION

As Harvard architecture devices, PIC24F microcontrollers feature separate program and data memory spaces and busses. This architecture also allows the direct access of program memory from the data space during code execution.

4.1 **Program Address Space**


The program address memory space of the PIC24FJ256GA110 family devices is 4M instructions. The space is addressable by a 24-bit value derived

from either the 23-bit Program Counter (PC) during program execution, or from table operation or data space remapping, as described in **Section 4.3 "Interfacing Program and Data Memory Spaces"**.

User access to the program memory space is restricted to the lower half of the address range (000000h to 7FFFFFh). The exception is the use of TBLRD/TBLWT operations which use TBLPAG<7> to permit access to the Configuration bits and Device ID sections of the configuration memory space.

Memory maps for the PIC24FJ256GA110 family of devices are shown in Figure 4-1.

FIGURE 4-1: PROGRAM SPACE MEMORY MAP FOR PIC24FJ256GA110 FAMILY DEVICES

TABLE 4-26: PERIPHERAL PIN SELECT REGISTER MAP

IADLE	4-20.			AL PIN 3		INE OIS I												
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	0680	—	_	INT1R5	INT1R4	INT1R3	INT1R2	INT1R1	INT1R0	—	_	—	—	—	—	—	—	3F00
RPINR1	0682			INT3R5	INT3R4	INT3R3	INT3R2	INT3R1	INT3R0	—	-	INT2R5	INT2R4	INT2R3	INT2R2	INT2R1	INT2R0	3F3F
RPINR2	0684			—	—			—	—	—	-	INT4R5	INT4R4	INT4R3	INT4R2	INT4R1	INT4R0	003F
RPINR3	0686	_	_	T3CKR5	T3CKR4	T3CKR3	T3CKR2	T3CKR1	T3CKR0	_	_	T2CKR5	T2CKR4	T2CKR3	T2CKR2	T2CKR1	T2CKR0	3F3F
RPINR4	0688	_	_	T5CKR5	T5CKR4	T5CKR3	T5CKR2	T5CKR1	T5CKR0	_	_	T4CKR5	T4CKR4	T4CKR3	T4CKR2	T4CKR1	T4CKR0	3F3F
RPINR7	068E	_	_	IC2R5	IC2R4	IC2R3	IC2R2	IC2R1	IC2R0	_	_	IC1R5	IC1R4	IC1R3	IC1R2	IC1R1	IC1R0	3F3F
RPINR8	0690	_	_	IC4R5	IC4R4	IC4R3	IC4R2	IC4R1	IC4R0	_	_	IC3R5	IC3R4	IC3R3	IC3R2	IC3R1	IC3R0	3F3F
RPINR9	0692	_	_	IC6R5	IC6R4	IC6R3	IC6R2	IC6R1	IC6R0	_	_	IC5R5	IC5R4	IC5R3	IC5R2	IC5R1	IC5R0	3F3F
RPINR10	0694	_	_	IC8R5	IC8R4	IC8R3	IC8R2	IC8R1	IC8R0	_	_	IC7R5	IC7R4	IC7R3	IC7R2	IC7R1	IC7R0	3F3F
RPINR11	0696	_	_	OCFBR5	OCFBR4	OCFBR3	OCFBR2	OCFBR1	OCFBR0	_	_	OCFAR5	OCFAR4	OCFAR3	OCFAR2	OCFAR1	OCFAR0	3F3F
RPINR15	069E	_	_	IC9R5	IC9R4	IC9R3	IC9R2	IC9R1	IC9R0	_	_	_	_	_	_	_	_	3F00
RPINR17	06A2	_	_	U3RXR5	U3RXR4	U3RXR3	U3RXR2	U3RXR1	U3RXR0	_	_	_	_	_	_	_	_	3F00
RPINR18	06A4	_	_	U1CTSR5	U1CTSR4	U1CTSR3	U1CTSR2	U1CTSR1	U1CTSR0	_	_	U1RXR5	U1RXR4	U1RXR3	U1RXR2	U1RXR1	U1RXR0	3F3F
RPINR19	06A6	_	_	U2CTSR5	U2CTSR4	U2CTSR3	U2CTSR2	U2CTSR1	U2CTSR0	_	_	U2RXR5	U2RXR4	U2RXR3	U2RXR2	U2RXR1	U2RXR0	3F3F
RPINR20	06A8	_	_	SCK1R5	SCK1R4	SCK1R3	SCK1R2	SCK1R1	SCK1R0	_	_	SDI1R5	SDI1R4	SDI1R3	SDI1R2	SDI1R1	SDI1R0	3F3F
RPINR21	06AA	_	_	U3CTSR5	U3CTSR4	U3CTSR3	U3CTSR2	U3CTSR1	U3CTSR0	_	_	SS1R5	SS1R4	SS1R3	SS1R2	SS1R1	SS1R0	3F3F
RPINR22	06AC	_	_	SCK2R5	SCK2R4	SCK2R3	SCK2R2	SCK2R1	SCK2R0	_	_	SDI2R5	SDI2R4	SDI2R3	SDI2R2	SDI2R1	SDI2R0	3F3F
RPINR23	06AE	_	_	_		_	_			_	_	SS2R5	SS2R4	SS2R3	SS2R2	SS2R1	SS2R0	3F3F
RPINR27	06B6	_	_	U4CTSR5	U4CTSR4	U4CTSR3	U4CTSR2	U4CTSR1	U4CTSR0	_	_	U4RXR5	U4RXR4	U4RXR3	U4RXR2	U4RXR1	U4RXR0	3F3F
RPINR28	06B8	_	_	SCK3R5	SCK3R4	SCK3R3	SCK3R2	SCK3R1	SCK3R0	_	_	SDI3R5	SDI3R4	SDI3R3	SDI3R2	SDI3R1	SDI3R0	003F
RPINR29	06BA	_	_	_		_	_			_	_	SS3R5	SS3R4	SS3R3	SS3R2	SS3R1	SS3R0	003F
RPOR0	06C0	_	_	RP1R5	RP1R4	RP1R3	RP1R2	RP1R1	RP1R0	_	_	RP0R5	RP0R4	RP0R3	RP0R2	RP0R1	RP0R0	0000
RPOR1	06C2	_	_	RP3R5	RP3R4	RP3R3	RP3R2	RP3R1	RP3R0	_	_	RP2R5	RP2R4	RP2R3	RP2R2	RP2R1	RP2R0	0000
RPOR2	06C4	_	_	RP5R5 ⁽¹⁾	RP5R4 ⁽¹⁾	RP5R3 ⁽¹⁾	RP5R2 ⁽¹⁾	RP5R1 ⁽¹⁾	RP5R0 ⁽¹⁾	_	_	RP4R5	RP4R4	RP4R3	RP4R2	RP4R1	RP4R0	0000
RPOR3	06C6	_	_	RP7R5	RP7R4	RP7R3	RP7R2	RP7R1	RP7R0	_	_	RP6R5	RP6R4	RP6R3	RP6R2	RP6R1	RP6R0	0000
RPOR4	06C8	_	_	RP9R5	RP9R4	RP9R3	RP9R2	RP9R1	RP9R0	_	_	RP8R5	RP8R4	RP8R3	RP8R2	RP8R1	RP8R0	0000
RPOR5	06CA	_	_	RP11R5	RP11R4	RP11R3	RP11R2	RP11R1	RP11R0	_	_	RP10R5	RP10R4	RP10R3	RP10R2	RP10R1	RP10R0	0000
RPOR6	06CC	_	_	RP13R5	RP13R4	RP13R3	RP13R2	RP13R1	RP13R0	_	_	RP12R5	RP12R4	RP12R3	RP12R2	RP12R1	RP12R0	0000
RPOR7	06CE	_	_	RP15R5 ⁽¹⁾	RP15R4 ⁽¹⁾	RP15R3 ⁽¹⁾	RP15R2 ⁽¹⁾	RP15R1 ⁽¹⁾	RP15R0 ⁽¹⁾	_	_	RP14R5	RP14R4	RP14R3	RP14R2	RP14R1	RP14R0	0000
RPOR8	06D0	_	_	RP17R5	RP17R4	RP17R3	RP17R2	RP17R1	RP17R0	_	_	RP16R5	RP16R4	RP16R3	RP16R2	RP16R1	RP16R0	0000
RPOR9	06D2	_		RP19R5	RP19R4	RP19R3	RP19R2	RP19R1	RP19R0	_	_	RP18R5	RP18R4	RP18R3	RP18R2	RP18R1	RP18R0	0000
RPOR10	06D4	_	_	RP21R5	RP21R4	RP21R3	RP21R2	RP21R1	RP21R0	_	_	RP20R5	RP20R4	RP20R3	RP20R2	RP20R1	RP20R0	0000
RPOR11	06D6	_	_	RP23R5	RP23R4	RP23R3	RP23R2	RP23R1	RP23R0	_	_	RP22R5	RP22R4	RP22R3	RP22R2	RP22R1	RP22R0	0000
RPOR12	06D8	_		RP25R5	RP25R4	RP25R3	RP25R2	RP25R1	RP25R0	_		RP24R5	RP24R4	RP24R3	RP24R2	RP24R1	RP24R0	0000
RPOR13	06DA	_		RP27R5	RP27R4	RP27R3	RP27R2	RP27R1	RP27R0	_		RP26R5	RP26R4	RP26R3	RP26R2	RP26R1	RP26R0	0000
RPOR14	06DC	_	_	RP29R5	RP29R4	RP29R3	RP29R2	RP29R1	RP29R0	_	_	RP28R5	RP28R4	RP28R3	RP28R2	RP28R1	RP28R0	0000
RPOR15	06DE	_	_	RP31R5 ⁽²⁾	RP31R4 ⁽²⁾	RP31R3(2)	RP31R2 ⁽²⁾	RP31R1 ⁽²⁾	RP31R0 ⁽²⁾	_		RP30R5	RP30R4	RP30R3	RP30R2	RP30R1	RP30R0	0000
ALTRP	06E2	_	_	_	_	_	_	_	_	_	_	_	_	_		_	SCK1CM	xxx0
Legend:				s '0' Reset v													20.0.0	

DS39905E-page 51

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: Bits are unimplemented in 64-pin devices; read as '0'.

2: Bits are unimplemented in 64-pin and 80-pin devices; read as '0'.

FLASH PROGRAM MEMORY 5.0

Note:	This data sheet summarizes the features of									
	this group of PIC24F devices. It is not									
	intended to be a comprehensive reference									
	source. For more information, refer to the									
	"PIC24F Family Reference Manual",									
	Section 4. "Program Memory"									
	(DS39715).									

The PIC24FJ256GA110 family of devices contains internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable when operating with VDD over 2.35V. If the regulator is disabled, the VDDCORE voltage must be over 2.25V.

Flash memory can be programmed in three ways:

- In-Circuit Serial Programming[™] (ICSP[™])
- Run-Time Self-Programming (RTSP)
- Enhanced In-Circuit Serial Programming (Enhanced ICSP)

ICSP allows a PIC24FJ256GA110 family device to be serially programmed while in the end application circuit. This is simply done with two lines for the programming clock and programming data (which are named PGECx and PGEDx, respectively), and three other lines for power (VDD), ground (VSS) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

RTSP is accomplished using TBLRD (table read) and TBLWT (table write) instructions. With RTSP, the user may write program memory data in blocks of 64 instructions (192 bytes) at a time and erase program memory in blocks of 512 instructions (1536 bytes) at a time.

5.1 **Table Instructions and Flash** Programming

Regardless of the method used, all programming of Flash memory is done with the table read and table write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using the TBLPAG<7:0> bits and the Effective Address (EA) from a W register specified in the table instruction, as shown in Figure 5-1.

The TBLRDL and the TBLWTL instructions are used to read or write to bits<15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

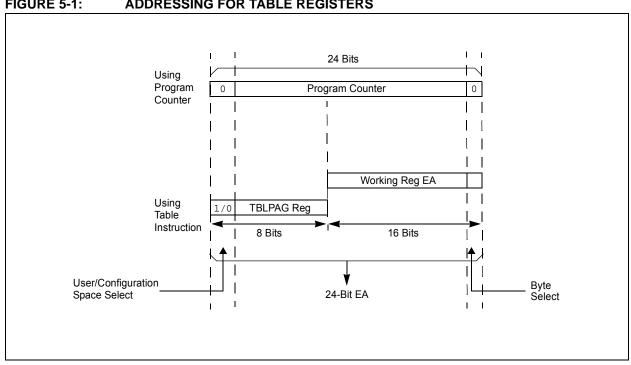


FIGURE 5-1: ADDRESSING FOR TABLE REGISTERS

TABLE 6-3: RESET DELAY TIMES FOR VARIOUS DEVICE RESETS

Reset Type	Clock Source	SYSRST Delay	System Clock Delay	Notes
POR ⁽⁶⁾	EC	TPOR + TPWRT + TRST	_	1, 2, 7
	FRC, FRCDIV	TPOR + TPWRT + TRST	TFRC	1, 2, 3, 7
	LPRC	TPOR + TPWRT + TRST	TLPRC	1, 2, 3, 7
	ECPLL	TPOR + TPWRT + TRST	TLOCK	1, 2, 4, 7
	FRCPLL	TPOR + TPWRT + TRST	TFRC + TLOCK	1, 2, 3, 4, 7
	XT, HS, SOSC	TPOR + TPWRT + TRST	Tost	1, 2, 5, 7
	XTPLL, HSPLL	TPOR + TPWRT + TRST	Tost + Tlock	1, 2, 4, 5, 7
BOR	EC	TPWRT + TRST	—	2, 7
	FRC, FRCDIV	TPWRT + TRST	TFRC	2, 3, 7
	LPRC	TPWRT + TRST	TLPRC	2, 3, 7
	ECPLL	TPWRT + TRST	TLOCK	2, 4, 7
	FRCPLL	TPWRT + TRST	TFRC + TLOCK	2, 3, 4, 7
	XT, HS, SOSC	TPWRT + TRST	Тоѕт	2, 5, 7
	XTPLL, HSPLL	TPWRT + TRST	TFRC + TLOCK	2, 3, 4, 7
All Others	Any Clock	Trst	—	7

Note 1: TPOR = Power-on Reset delay.

- 2: TPWRT = 64 ms nominal if regulator is disabled (ENVREG tied to Vss).
- 3: TFRC and TLPRC = RC Oscillator start-up times.
- **4:** TLOCK = PLL lock time.

5: TOST = Oscillator Start-up Timer (OST). A 10-bit counter waits 1024 oscillator periods before releasing the oscillator clock to the system.

6: If Two-Speed Start-up is enabled, regardless of the Primary Oscillator selected, the device starts with FRC, and in such cases, FRC start-up time is valid.

7: TRST = Internal State Reset Timer

Note: For detailed operating frequency and timing specifications, see Section 28.0 "Electrical Characteristics".

R/W-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0
ALTIVT	DISI	_	—	—	_	_	_
bit 15		• •	·				bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_		_	INT4EP	INT3EP	INT2EP	INT1EP	INTOEP
bit 7							bit (
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplem	ented bit, read	d as '0'	
-n = Value at	t POR	'1' = Bit is se	t	'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 14 bit 13-5 bit 4	0 = Use stand DISI: DISI In 1 = DISI inst 0 = DISI inst Unimplement INT4EP: Exte 1 = Interrupt of		vector table is bit e active 10' 4 Edge Detect F ge	Polarity Select b	it		
bit 3	1 = Interrupt c		ge	Polarity Select b	vit		
bit 2	1 = Interrupt o	rnal Interrupt 2 on negative ed on positive edg	ge	Polarity Select b	vit		
bit 1	1 = Interrupt c	rnal Interrupt on negative ed on positive edg	ge	Polarity Select b	vit		
bit 0	1 = Interrupt c	rnal Interrupt on negative ed	ge	Polarity Select b	vit		

REGISTER 7-4: INTCON2: INTERRUPT CONTROL REGISTER 2

REGISTER 7-17: IPC0: INTERRUPT PRIORITY CONTROL REGISTER 0

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	T1IP2	T1IP1	T1IP0		OC1IP2	OC1IP1	OC1IP0
bit 15							bit 8
	D/// 4	DAVA	D /// 0		D 0.01 4	DAALO	D 444.0
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
 bit 7	IC1IP2	IC1IP1	IC1IP0	_	INT0IP2	INT0IP1	INT0IP0 bit
							DIL
Legend:							
R = Readab	le bit	W = Writable I	oit	U = Unimplen	nented bit, read	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15	Unimplemen	nted: Read as '0)'				
bit 14-12	-	imer1 Interrupt					
		ipt is priority 7 (h	2	y interrupt)			
	•		• • •				
	•						
	001 = Interru	pt is priority 1					
		pt source is disa	abled				
bit 11	Unimplemer	nted: Read as 'o)'				
	-	nted: Read as '0 : Output Compa		Interrupt Priority	y bits		
	OC1IP<2:0>		re Channel 1		y bits		
bit 11 bit 10-8	OC1IP<2:0>	: Output Compa	re Channel 1		y bits		
	OC1IP<2:0>	: Output Compa	re Channel 1		y bits		
	OC1IP<2:0> 111 = Interru 001 = Interru	: Output Compa pt is priority 7 (h pt is priority 1	re Channel 1 highest priorit		y bits		
bit 10-8	OC1IP<2:0> 111 = Interru	: Output Compa pt is priority 7 (h pt is priority 1 pt source is disa	re Channel 1 highest priority abled		y bits		
bit 10-8	OC1IP<2:0> 111 = Interru	: Output Compa pt is priority 7 (h pt is priority 1 pt source is disa nted: Read as '0	re Channel 1 nighest priority abled	y interrupt)			
	OC1IP<2:0> 111 = Interru 001 = Interru 000 = Interru Unimplemen IC1IP<2:0>:	: Output Compa pt is priority 7 (h pt is priority 1 pt source is disa nted: Read as 'c Input Capture C	re Channel 1 highest priority abled hannel 1 Inte	y interrupt) rrupt Priority bits			
bit 10-8	OC1IP<2:0> 111 = Interru 001 = Interru 000 = Interru Unimplemen IC1IP<2:0>:	: Output Compa pt is priority 7 (h pt is priority 1 pt source is disa nted: Read as '0	re Channel 1 highest priority abled hannel 1 Inte	y interrupt) rrupt Priority bits			
bit 10-8	OC1IP<2:0> 111 = Interru 001 = Interru 000 = Interru Unimplemen IC1IP<2:0>:	: Output Compa pt is priority 7 (h pt is priority 1 pt source is disa nted: Read as 'c Input Capture C	re Channel 1 highest priority abled hannel 1 Inte	y interrupt) rrupt Priority bits			
bit 10-8	OC1IP<2:0> 111 = Interru 001 = Interru 000 = Interru Unimplemen IC1IP<2:0>: 111 = Interru	: Output Compa pt is priority 7 (h pt is priority 1 pt source is disa nted: Read as 'c Input Capture C pt is priority 7 (h	re Channel 1 highest priority abled hannel 1 Inte	y interrupt) rrupt Priority bits			
bit 10-8	OC1IP<2:0> 111 = Interru 001 = Interru 000 = Interru Unimplemen IC1IP<2:0>: 111 = Interru 001 = Interru	: Output Compa pt is priority 7 (h pt is priority 1 pt source is disa nted: Read as '0 Input Capture C pt is priority 7 (h	re Channel 1 highest priority abled hannel 1 Inte highest priority	y interrupt) rrupt Priority bits			
bit 10-8 bit 7 bit 6-4	OC1IP<2:0> 111 = Interru 001 = Interru 000 = Interru Unimplemen IC1IP<2:0>: 111 = Interru 001 = Interru 001 = Interru	: Output Compa pt is priority 7 (h pt is priority 1 pt source is disa nted: Read as 'c Input Capture C pt is priority 7 (h pt is priority 1 pt source is disa	re Channel 1 highest priority abled , hannel 1 Inte highest priority	y interrupt) rrupt Priority bits			
bit 10-8 bit 7 bit 6-4 bit 3	OC1IP<2:0> 111 = Interru 001 = Interru 000 = Interru Unimplemen IC1IP<2:0>: 111 = Interru 001 = Interru 001 = Interru Unimplemen	: Output Compa pt is priority 7 (h pt is priority 1 pt source is disa nted: Read as '0 Input Capture C pt is priority 7 (h pt is priority 1 pt source is disa nted: Read as '0	re Channel 1 highest priority abled hannel 1 Inte highest priority abled	y interrupt) rrupt Priority bits y interrupt)			
bit 10-8 bit 7 bit 6-4 bit 3	OC1IP<2:0> 111 = Interru 001 = Interru 000 = Interru Unimplemen IC1IP<2:0>: 111 = Interru 001 = Interru 001 = Interru Unimplemen INT0IP<2:0>	: Output Compa pt is priority 7 (h pt is priority 1 pt source is disa nted: Read as '0 Input Capture C pt is priority 7 (h pt is priority 1 pt source is disa nted: Read as '0 : External Intern	re Channel 1 highest priority abled hannel 1 Inte highest priority abled	y interrupt) rrupt Priority bits y interrupt)			
bit 10-8 bit 7 bit 6-4 bit 3	OC1IP<2:0> 111 = Interru 001 = Interru 000 = Interru Unimplemen IC1IP<2:0>: 111 = Interru 001 = Interru 001 = Interru Unimplemen INT0IP<2:0>	: Output Compa pt is priority 7 (h pt is priority 1 pt source is disa nted: Read as '0 Input Capture C pt is priority 7 (h pt is priority 1 pt source is disa nted: Read as '0	re Channel 1 highest priority abled hannel 1 Inte highest priority abled	y interrupt) rrupt Priority bits y interrupt)			
bit 10-8	OC1IP<2:0> 111 = Interru 001 = Interru 000 = Interru Unimplemen IC1IP<2:0>: 111 = Interru 001 = Interru 001 = Interru Unimplemen INT0IP<2:0>	: Output Compa pt is priority 7 (h pt is priority 1 pt source is disa nted: Read as '0 Input Capture C pt is priority 7 (h pt is priority 1 pt source is disa nted: Read as '0 : External Intern	re Channel 1 highest priority abled hannel 1 Inte highest priority abled	y interrupt) rrupt Priority bits y interrupt)			
bit 10-8 bit 7 bit 6-4 bit 3	OC1IP<2:0> 111 = Interru 001 = Interru 000 = Interru Unimplemer IC1IP<2:0>: 111 = Interru 001 = Interru 001 = Interru Unimplemer INT0IP<2:0> 111 = Interru	: Output Compa pt is priority 7 (h pt is priority 1 pt source is disa nted: Read as '0 Input Capture C pt is priority 7 (h pt is priority 1 pt source is disa nted: Read as '0 : External Intern	re Channel 1 highest priority abled hannel 1 Inte highest priority abled	y interrupt) rrupt Priority bits y interrupt)			

REGISTER 7-31: IPC15: INTERRUPT PRIORITY CONTROL REGISTER 15

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0	
—	—	—		—	RTCIP2	RTCIP1	RTCIP0	
bit 15	·	·					bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	_	—	—	—	—	
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable b	bit	U = Unimplem	nented bit, read	l as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown				
bit 15-11	Unimplemen	ted: Read as '0	3					
bit 10-8	RTCIP<2:0>:	Real-Time Cloc	k/Calendar In	terrupt Priority I	bits			
	111 = Interru	pt is priority 7 (h	ighest priority	interrupt)				
	•							
	•							
	001 = Interru	pt is priority 1						
		pt source is disa	bled					
bit 7-0	Unimplemen	ted: Read as '0	3					

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	_	—	—	—	—
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	TUN5 ⁽¹⁾	TUN4 ⁽¹⁾	TUN3 ⁽¹⁾	TUN2 ⁽¹⁾	TUN1 ⁽¹⁾	TUN0 ⁽¹⁾
bit 7				·			bit 0
Legend:							
R = Reada	ble bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-6	Unimplemen	ted: Read as '	0'				
bit 5-0	TUN<5:0>: F	RC Oscillator T	uning bits ⁽¹⁾				
	011111 = Ma	iximum frequer	ncy deviation				
	011110 =						
	•						
	•						
	• 000001 =						
		nter frequency	oscillator is ri	inning at factory	v calibrated free	nuency	
	111111 =			ar laotory		100109	
	•						
	•						
	•						

REGISTER 8-3: OSCTUN: FRC OSCILLATOR TUNE REGISTER

Note 1: Increments or decrements of TUN<5:0> may not change the FRC frequency in equal steps over the FRC tuning range and may not be monotonic.

8.4 Clock Switching Operation

100001 =

With few limitations, applications are free to switch between any of the four clock sources (POSC, SOSC, FRC and LPRC) under software control and at any time. To limit the possible side effects that could result from this flexibility, PIC24F devices have a safeguard lock built into the switching process.

100000 = Minimum frequency deviation

Note:	The Primary Oscillator mode has three different submodes (XT, HS and EC) which are determined by the POSCMDx Configuration bits. While an application
	can switch to and from Primary Oscillator mode in software, it cannot switch between the different primary submodes without reprogramming the device.

8.4.1 ENABLING CLOCK SWITCHING

To enable clock switching, the FCKSM1 Configuration bit in CW 2 must be programmed to '0'. (Refer to **Section 25.1 "Configuration Bits"** for further details.) If the FCKSM1 Configuration bit is unprogrammed ('1'), the clock switching function and Fail-Safe Clock Monitor function are disabled; this is the default setting.

The NOSCx control bits (OSCCON<10:8>) do not control the clock selection when clock switching is disabled. However, the COSCx bits (OSCCON<14:12>) will reflect the clock source selected by the FNOSCx Configuration bits.

The OSWEN control bit (OSCCON<0>) has no effect when clock switching is disabled; it is held at '0' at all times.

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0			
TON	—	TSIDL	_	—		—	_			
bit 15							bit			
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0			
	TGATE	TCKPS1	TCKPS0	—	TSYNC	TCS				
bit 7							bit			
Legend:										
R = Readabl	e bit	W = Writable	bit	U = Unimpler	nented bit, read	1 as '0'				
-n = Value at		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkno	own			
bit 15	TON: Timer1	On bit								
	1 = Starts 16									
	0 = Stops 16									
bit 14	-	nted: Read as '								
bit 13	TSIDL: Stop in Idle Mode bit									
		nue module ope e module operat			e mode					
bit 12-7		-		e						
	•	nted: Read as '		Enchla hit						
bit 6	When TCS =	er1 Gated Time	Accumulation	Enable bit						
	This bit is igr									
	When TCS =									
		me accumulatio	n enabled							
	0 = Gated ti	me accumulatio	n disabled							
bit 5-4		>: Timer1 Input	Clock Prescale	e Select bits						
	11 = 1:256									
	10 = 1:64 01 = 1:8									
	00 = 1:1									
bit 3	Unimpleme	nted: Read as '	o'							
bit 2	TSYNC: Tim	er1 External Clo	ock Input Syncl	hronization Sel	ect bit					
	When TCS =	<u>: 1:</u>								
		onize external c								
		synchronize ext	ernal clock inp	ut						
	When TCS = This bit is igr									
bit 1	•	Clock Source S	Select hit							
		l clock from T1		risina edae)						
		clock (Fosc/2)								

Note 1: Changing the value of TxCON while the timer is running (TON = 1) causes the timer prescale counter to reset and is not recommended.

For 32-bit cascaded operation, these steps are also necessary:

- 1. Set the OC32 bits for both registers (OCyCON2<8> and (OCxCON2<8>). Enable the even-numbered module first to ensure the modules will start functioning in unison.
- Clear the OCTRIG bit of the even module (OCyCON2<7>), so the module will run in Synchronous mode.
- 3. Configure the desired output and Fault settings for OCyCON2.
- 4. Force the output pin for OCx to the output state by clearing the OCTRIS bit.
- If Trigger mode operation is required, configure the trigger options in OCx by using the OCTRIG (OCxCON2<7>), TRIGSTAT (OCxCON2<6>) and SYNCSEL (OCxCON2<4:0>) bits.
- Configure the desired Compare or PWM mode of operation (OCM<2:0>) for OCyCON1 first, then for OCxCON1.

Depending on the output mode selected, the module holds the OCx pin in its default state and forces a transition to the opposite state when OCxR matches the timer. In Double Compare modes, OCx is forced back to its default state when a match with OCxRS occurs. The OCxIF interrupt flag is set after an OCxR match in Single Compare modes, and after each OCxRS match in Double Compare modes.

Single-shot pulse events only occur once, but may be repeated by simply rewriting the value of the OCxCON1 register. Continuous pulse events continue indefinitely until terminated.

14.3 Pulse-Width Modulation (PWM) Mode

In PWM mode, the enhanced output compare module can be configured for edge-aligned or center-aligned pulse waveform generation. All PWM operations are double-buffered (buffer registers are internal to the module and are not mapped into SFR space).

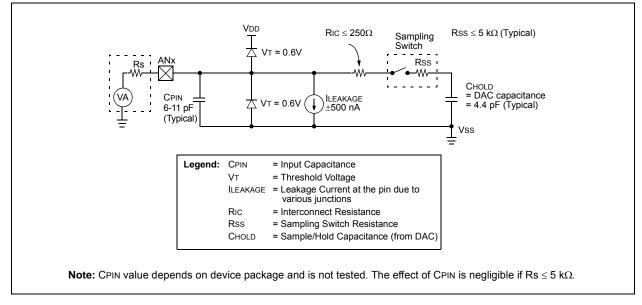
To set up the module for PWM operations:

- 1. Configure the OCx output for one of the available Peripheral Pin Select pins.
- 2. Calculate the desired duty cycles and load them into the OCxR register.
- 3. Calculate the desired period and load it into the OCxRS register.
- Select the current OCx as the synchronization source by writing 0x1F to SYNCSEL<4:0> (OCxCON2<4:0>) and clearing OCTRIG (OCxCON2<7>).
- 5. Select a clock source by writing to the OCTSEL2<2:0> (OCxCON<12:10>) bits.
- 6. Enable interrupts, if required, for the timer and output compare modules. The output compare interrupt is required for PWM Fault pin utilization.
- 7. Select the desired PWM mode in the OCM<2:0> (OCxCON1<2:0>) bits.
- If a timer is selected as a clock source, set the TMRy prescale value and enable the time base by setting the TON (TxCON<15>) bit.
- Note: This peripheral contains input and output functions that may need to be configured by the Peripheral Pin Select. See Section 10.4 "Peripheral Pin Select" for more information.

REGISTER 18-1: PMCON: PARALLEL MASTER PORT CONTROL REGISTER (CONTINUED)

bit 2	BEP: Byte Enable Polarity bit 1 = Byte enable active-high (PMBE) 0 = Byte enable active-low (PMBE)
bit 1	WRSP: Write Strobe Polarity bit
	For Slave Modes and Master Mode 2 (PMMODE<9:8> = 00, 01, 10): 1 = Write strobe active-high (PMWR) 0 = Write strobe active-low (PMWR)
	For Master Mode 1 (PMMODE<9:8> = 11): 1 = Enable strobe active-high (PMENB) 0 = Enable strobe active-low (PMENB)
bit 0	RDSP: Read Strobe Polarity bit
	For Slave Modes and Master Mode 2 (PMMODE<9:8> = 00, 01, 10): 1 = Read strobe active-high (PMRD) 0 = Read strobe active-low (PMRD)
	For Master Mode 1 (PMMODE<9:8> = 11): 1 = Read/write strobe active-high (PMRD/PMWR) 0 = Read/write strobe active-low (PMRD/PMWR)

Note 1: These bits have no effect when their corresponding pins are used as address lines.


EQUATION 21-1: A/D CONVERSION CLOCK PERIOD⁽¹⁾

 $TAD = TCY \bullet (ADCS + 1)$

ADCS = $\frac{\text{TAD}}{\text{TCY}} - 1$

Note 1: Based on Tcy = 2 * Tosc, Doze mode and PLL are disabled.

FIGURE 21-2: 10-BIT A/D CONVERTER ANALOG INPUT MODEL

REGISTER 25-1: CW1: FLASH CONFIGURATION WORD 1 (CONTINUED)

bit 3-0 **WDTPS<3:0>:** Watchdog Timer Postscaler Select bits

1111 = 1:32,768 1110 = 1:16,384 1101 = 1:8,192 1100 = 1:4,096 1011 **= 1:2,048** 1010 = 1:1,024 1001 **= 1:512** 1000 **= 1:256** 0111 = 1:128 0110 **= 1:64** 0101 = 1:32 0100 = 1:16 0011 = 1:8 0010 = 1:4 0001 = 1:2 0000 = 1:1

REGISTER 25-2: CW2: FLASH CONFIGURATION WORD 2

R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1			
—	—	—	—	—	—	—	—			
bit 23	bit 23 bit 16									
R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1			
IESO	R/FO-1	K/FO-1	K/FU-1	K/FO-1	FNOSC2	FNOSC1	FNOSC0			
bit 15					110002	110001	bit 8			
R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1			
FCKSM1	FCKSM0	OSCIOFCN	IOL1WAY	_	12C2SEL ⁽¹⁾	POSCMD1	POSCMD0			
bit 7							bit 0			
Legend:										
R = Readable	bit	PO = Program	Once hit	II = I Inimpler	nented bit, read	l as '∩'				
	en device is ur	•		'1' = Bit is set		'0' = Bit is clea	ared			
		programmed								
bit 23-16	Reserved									
bit 15	IESO: Interna	I External Swite	hover bit							
		de (Two-Speed								
		de (Two-Speed	Start-up) disat	bled						
bit 14-11 bit 10-8	Reserved	: Initial Oscillat	or Soloot bito							
DIL 10-8		C Oscillator with								
	110 = Reserv			(CDIV)						
		ower RC Oscilla								
		dary Oscillator (
		y Oscillator with y Oscillator (XT		XIPLL, HSPL	L, ECPLL)					
		C Oscillator with		nd PLL module	e (FRCPLL)					
		C Oscillator (FF	,							
bit 7-6			•		tor Configuratio	n bits				
		witching and Fa witching is ena								
		witching is ena								
bit 5		OSCO Pin Con								
		1:0> = 11 or 00	•							
		KO/RC15 func								
		KO/RC15 func		O (RC15)						
		1:0> = 10 or 0: as no effect on		/RC15						
bit 4										
	IOL1WAY: IOLOCK One-Way Set Enable bit 1 = The IOLOCK bit (OSCCON<6>) can be set once, provided the unlock sequence has									
	completed. Once set, the Peripheral Pin Select registers cannot be written to a second time.									
	0 = The IOLOCK bit can be set and cleared as needed, provided the unlock sequence has been									
bit 3	complete Reserved	u								
bit 2		2 Pin Select bi	.(1)							
	1 = Use SCL2/SDA2 pins for I2C2									
		L2/ASDA2 pins								
Note 1: Implemented in 100-pin devices only: otherwise unimplemented, read as '1'.										

Note 1: Implemented in 100-pin devices only; otherwise unimplemented, read as '1'.

27.11 PICkit 2 Development Programmer/Debugger and PICkit 2 Debug Express

The PICkit[™] 2 Development Programmer/Debugger is a low-cost development tool with an easy to use interface for programming and debugging Microchip's Flash families of microcontrollers. The full featured Windows[®] programming interface supports baseline (PIC10F, PIC12F5xx, PIC16F5xx), midrange (PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30, dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit microcontrollers, and many Microchip Serial EEPROM products. With Microchip's powerful MPLAB Integrated Development Environment (IDE) the PICkit[™] 2 enables in-circuit debugging on most PIC[®] microcontrollers. In-Circuit-Debugging runs, halts and single steps the program while the PIC microcontroller is embedded in the application. When halted at a breakpoint, the file registers can be examined and modified.

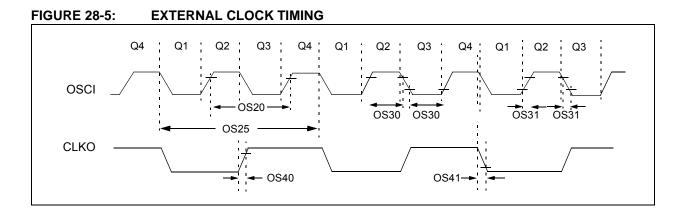
The PICkit 2 Debug Express include the PICkit 2, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

27.12 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an MMC card for file storage and data applications.

27.13 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

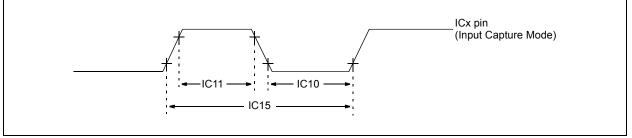

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.


TABLE 28-13: EXTERNAL CLOCK TIMING REQUIREMENTS

		$\begin{array}{l} \mbox{Standard Operating Conditions: 2.50 to 3.6V (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
OS10	Fosc	External CLKI Frequency (external clocks allowed only in EC mode)	DC 4		32 8	MHz MHz	EC ECPLL
		Oscillator Frequency	3 4 10 31	 	10 8 32 33	MHz MHz MHz kHz	XT XTPLL HS SOSC
OS20	Tosc	Tosc = 1/Fosc	_	—	—	-	See Parameter OS10 for Fosc value
OS25	Тсү	Instruction Cycle Time ⁽²⁾	62.5	_	DC	ns	
OS30	TosL, TosH	External Clock in (OSCI) High or Low Time	0.45 x Tosc	—	_	ns	EC
OS31	TosR, TosF	External Clock in (OSCI) Rise or Fall Time	-	—	20	ns	EC
OS40	TckR	CLKO Rise Time ⁽³⁾	—	6	10	ns	
OS41	TckF	CLKO Fall Time ⁽³⁾	—	6	10	ns	

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

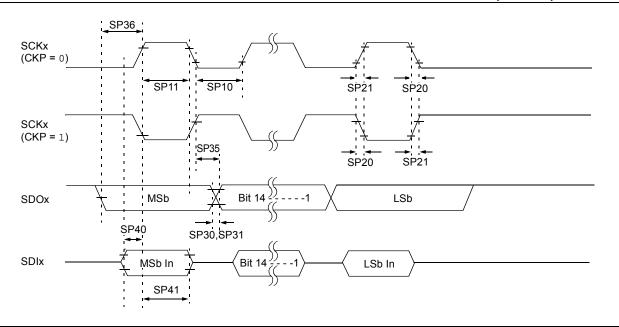

- 2: Instruction cycle period (Tcr) equals two times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "Min." values with an external clock applied to the OSCI/CLKI pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.
- **3:** Measurements are taken in EC mode. The CLKO signal is measured on the OSCO pin. CLKO is low for the Q1-Q2 period (1/2 TCY) and high for the Q3-Q4 period (1/2 TCY).

FIGURE 28-10: INPUT CAPTURE TIMINGS

TABLE 28-23: INPUT CAPTURE

Param. No.	Symbol	Characteristic		Min	Max	Units	Conditions
IC10	TccL	ICx Input Low Time –	No Prescaler	Tcy + 20		ns	Must also meet
	Synchronous Timer	Synchronous Timer	With Prescaler	20	-	ns	parameter IC15
IC11	TccH	ICx Input Low Time –	No Prescaler	Tcy + 20	-	ns	Must also meet
		Synchronous Timer	With Prescaler	20	_	ns	parameter IC15
IC15	TccP	ICx Input Period – Synchronous Timer		<u>2 * Tcy + 40</u> N		ns	N = prescale value (1, 4, 16)

FIGURE 28-12: SPIX MODULE MASTER MODE TIMING CHARACTERISTICS (CKE = 1)

TABLE 28-25: SPIX MODULE MASTER MODE TIMING REQUIREMENTS (CKE = 1)

AC CHARACTERISTICS		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions
SP10	TscL	SCKx Output Low Time ⁽²⁾	Tcy/2	_	_	ns	
SP11	TscH	SCKx Output High Time ⁽²⁾	Tcy/2	_	_	ns	
SP20	TscF	SCKx Output Fall Time ⁽³⁾	_	10	25	ns	
SP21	TscR	SCKx Output Rise Time ⁽³⁾	_	10	25	ns	
SP30	TdoF	SDOx Data Output Fall Time ⁽³⁾	_	10	25	ns	
SP31	TdoR	SDOx Data Output Rise Time ⁽³⁾	_	10	25	ns	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_	—	30	ns	
SP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	_	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	20	—	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	20	—	—	ns	

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: The minimum clock period for SCKx is 100 ns. Therefore, the clock generated in Master mode must not violate this specification.

3: Assumes 50 pF load on all SPIx pins.