

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	69
Program Memory Size	192KB (65.5K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj192ga108t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION. QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2010, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 978-1-60932-670-8

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEEL0Q® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

TABLE 4-26: PERIPHERAL PIN SELECT REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	0680	-		INT1R5	INT1R4	INT1R3	INT1R2	INT1R1	INT1R0		—	_	_		—	-		3F00
RPINR1	0682	_	_	INT3R5	INT3R4	INT3R3	INT3R2	INT3R1	INT3R0	_	_	INT2R5	INT2R4	INT2R3	INT2R2	INT2R1	INT2R0	3F3F
RPINR2	0684	_	_	—	-	_	—	—	_	_	—	INT4R5	INT4R4	INT4R3	INT4R2	INT4R1	INT4R0	003F
RPINR3	0686	_	_	T3CKR5	T3CKR4	T3CKR3	T3CKR2	T3CKR1	T3CKR0	_	—	T2CKR5	T2CKR4	T2CKR3	T2CKR2	T2CKR1	T2CKR0	3F3F
RPINR4	0688	_	_	T5CKR5	T5CKR4	T5CKR3	T5CKR2	T5CKR1	T5CKR0	_	—	T4CKR5	T4CKR4	T4CKR3	T4CKR2	T4CKR1	T4CKR0	3F3F
RPINR7	068E	_	_	IC2R5	IC2R4	IC2R3	IC2R2	IC2R1	IC2R0	_	—	IC1R5	IC1R4	IC1R3	IC1R2	IC1R1	IC1R0	3F3F
RPINR8	0690			IC4R5	IC4R4	IC4R3	IC4R2	IC4R1	IC4R0		—	IC3R5	IC3R4	IC3R3	IC3R2	IC3R1	IC3R0	3F3F
RPINR9	0692	_		IC6R5	IC6R4	IC6R3	IC6R2	IC6R1	IC6R0		—	IC5R5	IC5R4	IC5R3	IC5R2	IC5R1	IC5R0	3F3F
RPINR10	0694	_		IC8R5	IC8R4	IC8R3	IC8R2	IC8R1	IC8R0		—	IC7R5	IC7R4	IC7R3	IC7R2	IC7R1	IC7R0	3F3F
RPINR11	0696	_		OCFBR5	OCFBR4	OCFBR3	OCFBR2	OCFBR1	OCFBR0		—	OCFAR5	OCFAR4	OCFAR3	OCFAR2	OCFAR1	OCFAR0	3F3F
RPINR15	069E	—	_	IC9R5	IC9R4	IC9R3	IC9R2	IC9R1	IC9R0	—	—	—	—	_	—	—	_	3F00
RPINR17	06A2	—	_	U3RXR5	U3RXR4	U3RXR3	U3RXR2	U3RXR1	U3RXR0	—	—	—	—	—	—	—	_	3F00
RPINR18	06A4	—	_	U1CTSR5	U1CTSR4	U1CTSR3	U1CTSR2	U1CTSR1	U1CTSR0	—	—	U1RXR5	U1RXR4	U1RXR3	U1RXR2	U1RXR1	U1RXR0	3F3F
RPINR19	06A6	—	_	U2CTSR5	U2CTSR4	U2CTSR3	U2CTSR2	U2CTSR1	U2CTSR0	—	—	U2RXR5	U2RXR4	U2RXR3	U2RXR2	U2RXR1	U2RXR0	3F3F
RPINR20	06A8	—	_	SCK1R5	SCK1R4	SCK1R3	SCK1R2	SCK1R1	SCK1R0	—	—	SDI1R5	SDI1R4	SDI1R3	SDI1R2	SDI1R1	SDI1R0	3F3F
RPINR21	06AA	—	_	U3CTSR5	U3CTSR4	U3CTSR3	U3CTSR2	U3CTSR1	U3CTSR0	—	—	SS1R5	SS1R4	SS1R3	SS1R2	SS1R1	SS1R0	3F3F
RPINR22	06AC	—	_	SCK2R5	SCK2R4	SCK2R3	SCK2R2	SCK2R1	SCK2R0	—	—	SDI2R5	SDI2R4	SDI2R3	SDI2R2	SDI2R1	SDI2R0	3F3F
RPINR23	06AE	—	_	—	—	—	—	—	—	—	—	SS2R5	SS2R4	SS2R3	SS2R2	SS2R1	SS2R0	3F3F
RPINR27	06B6	_	_	U4CTSR5	U4CTSR4	U4CTSR3	U4CTSR2	U4CTSR1	U4CTSR0	_	_	U4RXR5	U4RXR4	U4RXR3	U4RXR2	U4RXR1	U4RXR0	3F3F
RPINR28	06B8	_	_	SCK3R5	SCK3R4	SCK3R3	SCK3R2	SCK3R1	SCK3R0	_	_	SDI3R5	SDI3R4	SDI3R3	SDI3R2	SDI3R1	SDI3R0	003F
RPINR29	06BA	_	_	—	_	_	_	_	_	_	_	SS3R5	SS3R4	SS3R3	SS3R2	SS3R1	SS3R0	003F
RPOR0	06C0	_	_	RP1R5	RP1R4	RP1R3	RP1R2	RP1R1	RP1R0	_	_	RP0R5	RP0R4	RP0R3	RP0R2	RP0R1	RP0R0	0000
RPOR1	06C2	_	_	RP3R5	RP3R4	RP3R3	RP3R2	RP3R1	RP3R0	_	_	RP2R5	RP2R4	RP2R3	RP2R2	RP2R1	RP2R0	0000
RPOR2	06C4	_	_	RP5R5 ⁽¹⁾	RP5R4 ⁽¹⁾	RP5R3 ⁽¹⁾	RP5R2 ⁽¹⁾	RP5R1 ⁽¹⁾	RP5R0 ⁽¹⁾	_	_	RP4R5	RP4R4	RP4R3	RP4R2	RP4R1	RP4R0	0000
RPOR3	06C6	_	_	RP7R5	RP7R4	RP7R3	RP7R2	RP7R1	RP7R0	_	_	RP6R5	RP6R4	RP6R3	RP6R2	RP6R1	RP6R0	0000
RPOR4	06C8	-		RP9R5	RP9R4	RP9R3	RP9R2	RP9R1	RP9R0	_	_	RP8R5	RP8R4	RP8R3	RP8R2	RP8R1	RP8R0	0000
RPOR5	06CA	-		RP11R5	RP11R4	RP11R3	RP11R2	RP11R1	RP11R0	_	_	RP10R5	RP10R4	RP10R3	RP10R2	RP10R1	RP10R0	0000
RPOR6	06CC			RP13R5	RP13R4	RP13R3	RP13R2	RP13R1	RP13R0		—	RP12R5	RP12R4	RP12R3	RP12R2	RP12R1	RP12R0	0000
RPOR7	06CE			RP15R5 ⁽¹⁾	RP15R4 ⁽¹⁾	RP15R3 ⁽¹⁾	RP15R2 ⁽¹⁾	RP15R1 ⁽¹⁾	RP15R0 ⁽¹⁾		—	RP14R5	RP14R4	RP14R3	RP14R2	RP14R1	RP14R0	0000
RPOR8	06D0			RP17R5	RP17R4	RP17R3	RP17R2	RP17R1	RP17R0		—	RP16R5	RP16R4	RP16R3	RP16R2	RP16R1	RP16R0	0000
RPOR9	06D2			RP19R5	RP19R4	RP19R3	RP19R2	RP19R1	RP19R0		—	RP18R5	RP18R4	RP18R3	RP18R2	RP18R1	RP18R0	0000
RPOR10	06D4			RP21R5	RP21R4	RP21R3	RP21R2	RP21R1	RP21R0		—	RP20R5	RP20R4	RP20R3	RP20R2	RP20R1	RP20R0	0000
RPOR11	06D6			RP23R5	RP23R4	RP23R3	RP23R2	RP23R1	RP23R0		—	RP22R5	RP22R4	RP22R3	RP22R2	RP22R1	RP22R0	0000
RPOR12	06D8	-		RP25R5	RP25R4	RP25R3	RP25R2	RP25R1	RP25R0	_	_	RP24R5	RP24R4	RP24R3	RP24R2	RP24R1	RP24R0	0000
RPOR13	06DA	-		RP27R5	RP27R4	RP27R3	RP27R2	RP27R1	RP27R0	_	_	RP26R5	RP26R4	RP26R3	RP26R2	RP26R1	RP26R0	0000
RPOR14	06DC	_	_	RP29R5	RP29R4	RP29R3	RP29R2	RP29R1	RP29R0		_	RP28R5	RP28R4	RP28R3	RP28R2	RP28R1	RP28R0	0000
RPOR15	06DE	—	_	RP31R5 ⁽²⁾	RP31R4 ⁽²⁾	RP31R3 ⁽²⁾	RP31R2 ⁽²⁾	RP31R1 ⁽²⁾	RP31R0 ⁽²⁾	_	_	RP30R5	RP30R4	RP30R3	RP30R2	RP30R1	RP30R0	0000
ALTRP	06E2	_	-	—		-	—	_	—		—	-	_	-	_	-	SCK1CM	xxx0

DS39905E-page 51

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: Bits are unimplemented in 64-pin devices; read as '0'.

2: Bits are unimplemented in 64-pin and 80-pin devices; read as '0'.

TABLE 4-27: SYSTEM REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RCON	0740	TRAPR	IOPUWR	—	_	—	_	СМ	PMSLP	EXTR	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR	Note 1
OSCCON	0742	—	COSC2	COSC1	COSC0	—	NOSC2	NOSC1	NOSC0	CLKLOCK	IOLOCK	LOCK	—	CF	POSCEN	SOSCEN	OSWEN	Note 2
CLKDIV	0744	ROI	DOZE2	DOZE1	DOZE0	DOZEN	RCDIV2	RCDIV1	RCDIV0	—	—	—	_	—	—	—	—	0100
OSCTUN	0748	—	—	—	_	—	_	—	—	—	_	TUN5	TUN4	TUN3	TUN2	TUN1	TUN0	0000
REFOCON	074E	ROEN	_	ROSSLP	ROSEL	RODIV3	RODIV2	RODIV1	RODIV0	—		_	_	_	_	_	-	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: The Reset value of the RCON register is dependent on the type of Reset event. See Section 6.0 "Resets" for more information.

2: The Reset value of the OSCCON register is dependent on both the type of Reset event and the device configuration. See Section 8.0 "Oscillator Configuration" for more information.

TABLE 4-28: NVM REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
NVMCON	0760	WR	WREN	WRERR	_	—	—	_	_	-	ERASE	-	—	NVMOP3	NVMOP2	NVMOP1	NVMOP0	₀₀₀₀ (1)
NVMKEY	0766	_	_	_		-	—		_				NVMK	EY<7:0>				0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: Reset value shown is for POR only. Value on other Reset states is dependent on the state of memory write or erase operations at the time of Reset.

TABLE 4-29: PMD REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770	T5MD	T4MD	T3MD	T2MD	T1MD	—	-	-	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	—	—	ADC1MD	0000
PMD2	0772	IC8MD	IC7MD	IC6MD	IC5MD	IC4MD	IC3MD	IC2MD	IC1MD	OC8MD	OC7MD	OC6MD	OC5MD	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0774	—	_	_	_	—	CMPMD	RTCCMD	PMPMD	CRCMD	_	—	_	U3MD	I2C3MD	I2C2MD	—	0000
PMD4	0776	_	_	_	_	_	_	-	_	_	_	U4MD	_	REFOMD	CTMUMD	LVDMD	_	0000
PMD5	0778	—	—	—	—	—	—	—	IC9MD	—	—	—	—	—	—	_	OC9MD	0000
PMD6	077A	—	_	_	—	—	_	—	_	_	_	—	_	_	_	—	SPI3MD	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0
_		CTMUIF	_	_	_	—	LVDIF
bit 15							bit 8
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	U-0
_	—			CRCIF	U2ERIF	U1ERIF	
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	oit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15-14	Unimplemen	ted: Read as '0)'				
bit 13	CTMUIF: CTM	MU Interrupt Fla	ag Status bit				
	1 = Interrupt r 0 = Interrupt r	equest has occ equest has not	urred occurred				
bit 12-9	Unimplemen	ted: Read as 'd)'				
bit 8	LVDIF: Low-V	/oltage Detect I	nterrupt Flag S	Status bit			
	1 = Interrupt r 0 = Interrupt r	equest has occ equest has not	urred occurred				
bit 7-4	Unimplemen	ted: Read as 'd)'				
bit 3	CRCIF: CRC	Generator Inte	rrupt Flag Stat	us bit			
	1 = Interrupt r 0 = Interrupt r	equest has occ equest has not	urred occurred				
bit 2	U2ERIF: UAF	RT2 Error Interr	upt Flag Status	s bit			
	1 = Interrupt r 0 = Interrupt r	equest has occ equest has not	urred occurred				
bit 1	U1ERIF: UAF	RT1 Error Interr	upt Flag Status	s bit			
	1 = Interrupt r	equest has occ	urred				
	0 = Interrupt r	equest has not	occurred				
bit 0	Unimplemen	ted: Read as '0)'				

REGISTER 7-9: IFS4: INTERRUPT FLAG STATUS REGISTER 4

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		IC9IE	OC9IE	SPI3IE	SPF3IE	U4TXIE	U4RXIE
bit 15							bit 8
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
U4ERIE	—	MI2C3IE	SI2C3IE	U3TXIE	U3RXIE	U3ERIE	—
bit 7							bit 0
Languate							
Legena:	a hit	VV – Writeble	-it		nonted hit read		
$R = Reauable}{n = Value at}$		'1' = Bit is set	UIL	0' = 0	ared	v – Bitis unkr	
	TOR				aleu		lowin
bit 15-14	Unimplemer	nted: Read as ')'				
bit 13	IC9IE: Input	Capture Channe	el 9 Interrupt E	nable bit			
	1 = Interrupt	request enabled	3				
	0 = Interrupt	request not ena	bled				
bit 12	OC9IE: Outp	ut Compare Ch	annel 9 Interru	pt Enable bit			
	1 = Interrupt	request enabled) blod				
bit 11			Enchlo hit				
	1 = Interrunt	request enabled					
	0 = Interrupt	request not ena	bled				
bit 10	SPF3IE: SPI	3 Fault Interrup	Enable bit				
	1 = Interrupt	request enabled	ł				
	0 = Interrupt	request not ena	bled				
bit 9	U4TXIE: UA	RT4 Transmitter	Interrupt Enal	ble bit			
	1 = Interrupt	request enabled) blad				
hit Q		PT4 Receiver In	bieu	, bit			
DILO	1 = Interrupt	request enabled	iterrupt Enable				
	0 = Interrupt	request not ena	bled				
bit 7	U4ERIE: UA	RT4 Error Interr	upt Enable bit				
	1 = Interrupt	request enabled					
	0 = Interrupt	request not ena	bled				
bit 6	Unimplemer	nted: Read as '0)'				
bit 5	MI2C3IE: Ma	ster I2C3 Event	t Interrupt Ena	ble bit			
	$\perp = Interrupt$ 0 = Interrupt	request enabled) bled				
bit 4	SI2C3IE: Sla	ve I2C3 Event I	nterrupt Enabl	e bit			
	1 = Interrupt	request enabled	d	o bit			
	0 = Interrupt	request not ena	bled				
bit 3	U3TXIE: UA	RT3 Transmitter	Interrupt Enal	ble bit			
	1 = Interrupt	request enabled	1 				
	0 = Interrupt	request not ena	bled				
bit 2	U3RXIE: UA	R13 Receiver Ir	iterrupt Enable	bit			
	0 = Interrupt	request not ena	bled				
bit 1	U3ERIE: UA	RT3 Error Interr	upt Enable bit				
-	1 = Interrupt	request enabled	1				
	0 = Interrupt	request not ena	bled				
bit 0	Unimplemer	nted: Read as 'o)'				

REGISTER 7-16: IEC5: INTERRUPT ENABLE CONTROL REGISTER 5

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1
ROI	DOZE2	DOZE1	DOZE0	DOZEN ⁽¹⁾	RCDIV2	RCDIV1	RCDIV0
bit 15	·						bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	_	—	—	—	_
bit 7							bit 0
Legena:	la hit	M - Mritabla	hit		contod bit room		
		vv = vvritable	DIL	U = Unimplem	iented bit, read	ias u	
-n = value al	IPOR	I = Bit is set		0 = Bit is clea	ared	x = Bit is unkn	IOWN
hit 15	ROI. Recove	r on Interrunt hi	ŧ				
		s clear the DO7	'EN hit and res	set the CPU ner	inheral clock ra	atio to 1.1	
	0 = Interrupt	s have no effect	t on the DOZE	N bit			
bit 14-12	DOZE<2:0>:	CPU Periphera	al Clock Ratio	Select bits			
	111 = 1 : 128						
	110 = 1:64						
	101 = 1:32						
	100 = 1.16 011 = 1.8						
	011 = 1.0 010 = 1.4						
	001 = 1:2						
	000 = 1:1						
bit 11	DOZEN: DO	ZE Enable bit ⁽¹⁾					
	1 = DOZE<2	2:0> bits specify	the CPU perip	oheral clock ratio	0		
	0 = CPU per	ripheral clock ra	tio set to 1:1				
bit 10-8	RCDIV<2:0>	: FRC Postscal	er Select bits				
	111 = 31.25	kHz (divide by 2	256)				
	101 = 250 kH	Hz (divide by 04 Hz (divide by 32					
	100 = 500 kH	Hz (divide by 16)				
	011 = 1 MHz	(divide by 8)	,				
	010 = 2 MHz	(divide by 4)					
	001 = 4 MHz	(divide by 2)					
			o'				
U- 1 Jia	Unimplemer	itea: Read as '	U				

REGISTER 8-2: CLKDIV: CLOCK DIVIDER REGISTER

Note 1: This bit is automatically cleared when the ROI bit is set and an interrupt occurs.

10.4.2 AVAILABLE PERIPHERALS

The peripherals managed by the Peripheral Pin Select are all digital only peripherals. These include general serial communications (UART and SPI), general purpose timer clock inputs, timer related peripherals (input capture and output compare) and external interrupt inputs. Also included are the outputs of the comparator module, since these are discrete digital signals.

Peripheral Pin Select is not available for I^2C^{TM} , change notification inputs, RTCC alarm outputs or peripherals with analog inputs.

A key difference between pin select and non pin select peripherals is that pin select peripherals are not associated with a default I/O pin. The peripheral must always be assigned to a specific I/O pin before it can be used. In contrast, non pin select peripherals are always available on a default pin, assuming that the peripheral is active and not conflicting with another peripheral.

10.4.2.1 Peripheral Pin Select Function Priority

Pin-selectable peripheral outputs (e.g. OC, UART Transmit) take priority over general purpose digital functions on a pin, such as PMP and port I/O. Specialized digital outputs, such as USB functionality, will take priority over PPS outputs on the same pin. The pin diagrams provided at the beginning of this data sheet list peripheral outputs in order of priority. Refer to them for priority concerns on a particular pin.

Unlike PIC24F devices with fixed peripherals, pin-selectable peripheral inputs never take ownership of a pin. The pin's output buffer is controlled by the TRISx setting or by a fixed peripheral on the pin. If the pin is configured in Digital mode, the PPS input will operate correctly. If an analog function is enabled on the pin, the PPS input will be disabled.

10.4.3 CONTROLLING PERIPHERAL PIN SELECT

Peripheral Pin Select features are controlled through two sets of Special Function Registers: one to map peripheral inputs and one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.

The association of a peripheral to a peripheral-selectable pin is handled in two different ways, depending on if an input or an output is being mapped.

10.4.3.1 Input Mapping

The inputs of the Peripheral Pin Select options are mapped on the basis of the peripheral; that is, a control register associated with a peripheral dictates the pin it will be mapped to. The RPINRx registers are used to configure peripheral input mapping (see Register 10-1 through Register 10-21). Each register contains two sets of 6-bit fields, with each set associated with one of the pin-selectable peripherals. Programming a given peripheral's bit field with an appropriate 6-bit value maps the RPn pin with that value to that peripheral. For any given device, the valid range of values for any of the bit fields corresponds to the maximum number of Peripheral Pin Select options supported by the device.

10.4.3.2 Output Mapping

In contrast to inputs, the outputs of the Peripheral Pin Select options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPORx registers are used to control output mapping. Each register contains two 6-bit fields, with each field being associated with one RPn pin (see Register 10-22 through Register 10-37). The value of the bit field corresponds to one of the peripherals and that peripheral's output is mapped to the pin (see Table 10-3).

Because of the mapping technique, the list of peripherals for output mapping also includes a null value of '000000'. This permits any given pin to remain disconnected from the output of any of the pin-selectable peripherals.

10.4.3.3 Alternate Fixed Pin Mapping

To provide a migration option from earlier high pin count PIC24F devices, PIC24FJ256GA110 family devices implement an additional option for mapping the clock output (SCK) of SPI1. This option permits users to map SCK10UT specifically to the fixed pin function, ASCK1. The SCK1CM bit (ALTRP<0>) controls this mapping; setting the bit maps SCK10UT to ASCK1.

The SCK1CM bit must be set (= 1) before enabling the SPI module. It must remain set while transactions using SPI1 are in progress, in order to prevent transmission errors; when the module is disabled, the bit must be cleared. Additionally, no other RPOUT register should be configured to output the SCK1OUT function while SCK1CM is set.

REGISTE	R 12-1: TxC	ON: TIMER2 A	ND TIMER4		EGISTER ⁽³⁾		
R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
TON	—	TSIDL	—	—	—	—	—
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0
_	TGATE	TCKPS1	TCKPS0	T32 ⁽¹⁾	—	TCS ⁽²⁾	_
bit 7							bit C
Legend:							
R = Reada	able bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkno	own
bit 15	TON: Timer	< On bit					
	When TxCO	<u>N<3> = 1:</u>					
	1 = Starts 3 0 = Stops 3	2-bit Timerx/y					
	When TxCO	N<3> = 0:					
	1 = Starts 1	6-bit Timerx					
	0 = Stops 1	6-bit Timerx					
bit 14	Unimpleme	nted: Read as 'o)'				
bit 13	TSIDL: Stop	in Idle Mode bit					
	1 = Discontii 0 = Continue	nue module oper e module operati	ration when de on in Idle mode	vice enters Idle e	mode		
bit 12-7	Unimpleme	nted: Read as 'o)'				
bit 6	TGATE: Tim	erx Gated Time	Accumulation	Enable bit			
	When TCS =	<u>= 1:</u>					
	I his bit is igi	nored.					
	1 = Gated ti	<u>= 0:</u> me accumulatio	n enabled				
	0 = Gated ti	me accumulatio	n disabled				
bit 5-4	TCKPS<1:0	>: Timerx Input	Clock Prescale	Select bits			
	11 = 1:256						
	10 = 1:64 01 = 1:8						
	00 = 1:1						
bit 3	T32: 32-Bit ⁻	Fimer Mode Sele	ect bit ⁽¹⁾				
	1 = Timerx a	and Timery form	a single 32-bit	timer			
	0 = Timerx	and Timery act a	s two 16-bit tin	ners	or operation		
hit 2		nted: Pead as '			er operation.		
bit 1		Clock Source S	Select hit(2)				
	1 = Externa	al clock from pin,	TxCK (on the	rising edge)			
bit 0	0 = Interna Unimpleme	l clock (Fosc/2) nted: Read as '()'				
Note 1.	In 32-hit mode t	the T3CON or T	5CON control h	nits do not affec	t 32-hit timer o	neration	
2:	If TCS = 1, RPIN	NRx (TxCK) mus	t be configured	to an available	e RPn pin. For	more informatio	n, see
	Section 10.4 "P						

3: Changing the value of TxCON while the timer is running (TON = 1) causes the timer prescale counter to reset and is not recommended.

NOTES:

REGISTER 18-3: PMADDR: PARALLEL MASTER PORT ADDRESS REGISTER	REGISTER 18-3:	PMADDR: PARALLEL MASTER PORT ADDRESS REGISTER
--	----------------	---

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CS2	CS1	ADDR13	ADDR12	ADDR11	ADDR10	ADDR9	ADDR8
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| ADDR7 | ADDR6 | ADDR5 | ADDR4 | ADDR3 | ADDR2 | ADDR1 | ADDR0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	CS2: Chip Select 2 bit
	1 = Chip Select 2 is active
	0 = Chip Select 2 is inactive
bit 14	CS1: Chip Select 1 bit
	1 = Chip Select 1 is active
	0 = Chip Select 1 is inactive
bit 13-0	ADDR<13:0>: Parallel Port Destination Address bits

REGISTER 18-4: PMAEN: PARALLEL MASTER PORT ENABLE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PTEN15	PTEN14	PTEN13	PTEN12	PTEN11	PTEN10	PTEN9	PTEN8
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| PTEN7 | PTEN6 | PTEN5 | PTEN4 | PTEN3 | PTEN2 | PTEN1 | PTEN0 |
| bit 7 | | | | | | | bit 0 |

Legend:				
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-14	PTEN<15:14>: PMCSx Strobe Enable bits						
	 1 = PMA15 and PMA14 function as either PMA<15:14> or PMCS2 and PMCS1 0 = PMA15 and PMA14 function as port I/O 						
bit 13-2	PTEN<13:2>: PMP Address Port Enable bits						
	1 = PMA<13:2> function as PMP address lines0 = PMA<13:2> function as port I/O						
bit 1-0	PTEN<1:0>: PMALH/PMALL Strobe Enable bits						
	 1 = PMA1 and PMA0 function as either PMA<1:0> or PMALH and PMALL 0 = PMA1 and PMA0 pads functions as port I/O 						

21.0 10-BIT HIGH-SPEED A/D CONVERTER

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"PIC24F Family Reference Manual"*, Section 17. "10-Bit A/D Converter" (DS39705).

The 10-bit A/D Converter has the following key features:

- Successive Approximation (SAR) Conversion
- Conversion Speeds of up to 500 ksps
- 16 Analog Input pins
- External Voltage Reference Input pins
- Internal Band Gap Reference Inputs
- · Automatic Channel Scan mode
- Selectable Conversion Trigger Source
- 16-Word Conversion Result Buffer
- Selectable Buffer Fill modes
- Four Result Alignment Options
- · Operation during CPU Sleep and Idle modes

On all PIC24FJ256GA110 family devices, the 10-bit A/D Converter has 16 analog input pins, designated AN0 through AN15. In addition, there are two analog input pins for external voltage reference connections (VREF+ and VREF-). These voltage reference inputs may be shared with other analog input pins.

A block diagram of the A/D Converter is shown in Figure 21-1.

To perform an A/D conversion:

- 1. Configure the A/D module:
 - Configure port pins as analog inputs and/or select band gap reference input (AD1PCFGL<15:0> and AD1PCFGH<1:0>).
 - b) Select voltage reference source to match expected range on analog inputs (AD1CON2<15:13>).
 - c) Select the analog conversion clock to match the desired data rate with the processor clock (AD1CON3<7:0>).
 - d) Select the appropriate sample/conversion sequence (AD1CON1<7:5> and AD1CON3<12:8>).
 - e) Select how conversion results are presented in the buffer (AD1CON1<9:8>).
 - f) Select interrupt rate (AD1CON2<5:2>).
 - g) Turn on A/D module (AD1CON1<15>).
- 2. Configure the A/D interrupt (if required):
 - a) Clear the AD1IF bit.
 - b) Select A/D interrupt priority.

REGISTER 21-5: AD1PCFGL: A/D PORT CONFIGURATION REGISTER (LOW)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PCFG15	PCFG14	PCFG13	PCFG12	PCFG11	PCFG10	PCFG9	PCFG8
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| PCFG7 | PCFG6 | PCFG5 | PCFG4 | PCFG3 | PCFG2 | PCFG1 | PCFG0 |
| bit 7 | | | | | | | bit 0 |

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15-0 PCFG<15:0>: Analog Input Pin Configuration Control bits

1 = Pin for corresponding analog channel is configured in Digital mode; I/O port read enabled

0 = Pin configured in Analog mode; I/O port read disabled, A/D samples pin voltage

REGISTER 21-6: AD1PCFGH: A/D PORT CONFIGURATION REGISTER (HIGH)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	—	—	—	PCFG17	PCFG16
bit 7							

Legend:				
R = Readable bit	W = Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-2 Unimplemented: Read as '0'

bit 1

PCFG17: A/D Input Band Gap Scan Enable bit

- 1 = Analog channel disabled from input scan
 - 0 = Internal band gap (VBG) channel enabled for input scan

bit 0 PCFG16: A/D Input Half Band Gap Scan Enable bit

1 = Analog channel disabled from input scan

0 = Internal VBG/2 channel enabled for input scan

REGISTER 22-1: CMxCON: COMPARATOR x CONTROL REGISTERS (COMPARATORS 1 THROUGH 3)

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R-0
CEN	COE	CPOL	—	_	_	CEVT	COUT
bit 15	- -	•					bit 8
R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0
EVPOL1	EVPOL0		CREF		_	CCH1	CCH0
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15	CEN: Compar	rator Enable bit					
	1 = Compara	tor is enabled					
bit 14		rator Output Er	able bit				
bit 14	1 = Compara	tor output is pr	esent on the C	XOUT nin			
	0 = Compara	tor output is int	ernal only				
bit 13	CPOL: Comp	arator Output F	Polarity Select	bit			
	1 = Compara	tor output is inv	/erted				
	0 = Compara	tor output is no	t inverted				
bit 12-10	Unimplement	ted: Read as ')'				
bit 9	CEVT: Compa	arator Event bit					
	1 = Compara	tor event define	ed by EVPOL [.] leared	<1:0> nas occu	rrea; subseque	ent triggers and	interrupts are
	0 = Compara	tor event has n	ot occurred				
bit 8	COUT: Comp	arator Output b	bit				
	When CPOL =	<u>= 0:</u>					
	1 = VIN+ > VI	N-					
	0 = VIN+ < VI When CPOL =	N- = 1 ·					
	1 = VIN + < VI	<u></u> N-					
	0 = VIN + > VI	N-					
bit 7-6	EVPOL<1:0>	: Trigger/Event	/Interrupt Pola	rity Select bits			
	11 = Trigger/ 10 = Trigger/	/event/interrupt /event/interrupt	generated on generated on	any change of transition of the	the comparato e comparator o	r output (while (output:	CEVT = 0)
	<u>If CPOL</u> High-to	<u> = 0 (non-inve</u> -low transition (<u>rted polarity):</u> only.				
	<u>If CPOL</u>	<u>= 1 (inverted</u>	<u>polarity):</u>				
	Low-to- 01 = Tr	high transition igger/Event/Int	only. errupt generat	ed on transition	of comparator	output:	
	<u>If CPOL</u> Low-to-	<u>_ = 0 (non-inve</u> high transition	<u>rted polarity):</u> only.				
	<u>If CPOL</u>	_ = 1 (inverted	<u>polarity):</u>				
	High-to	-low transition	only.	on is disabled			
bit 5		ted. Peed as '	nupi generati v				
DILU	ommplemen	ieu. Nedu as (J				

REGISTER 24-1: CTMUCON: CTMU CONTROL REGISTER (CONTINUED)

- bit 3-2
 EDG1SEL<1:0>: Edge 1 Source Select bits

 11 = CTED1 pin
 10 = CTED2 pin

 01 = OC1 module
 00 = Timer1 module

 bit 1
 EDG2STAT: Edge 2 Status bit

 1 = Edge 2 event has occurred
 0 = Edge 2 event has not occurred

 bit 0
 EDG1STAT: Edge 1 Status bit

 1 = Edge 1 event has occurred
 0 = Edge 1 event has not occurred
- **Note 1:** If TGEN = 1, the CTEDGx inputs and CTPLS outputs must be assigned to available RPn pins before use. See Section 10.4 "Peripheral Pin Select" for more information.

REGISTER 24-2: CTMUICON: CTMU CURRENT CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
ITRIM5	ITRIM4	ITRIM3	ITRIM2	ITRIM1	ITRIM0	IRNG1	IRNG0	
bit 15	-			•	•		bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_	—		_	_	—	—	—	
bit 7	-			•	•		bit 0	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 15-10	ITRIM<5:0>: Current Source Trim bits 011111 = Maximum positive change from nominal current 011110 000001 = Minimum positive change from nominal current 000000 = Nominal current output specified by IRNG<1:0> 111111 = Minimum negative change from nominal current 							
bit 9-8 bit 7-0	IRNG<1:0>: Current Source Range Select bits $11 = 100 \times Base Current$ $10 = 10 \times Base Current$ 01 = Base current level (0.55 µA nominal) 00 = Current source disabled Unimplemented: Read as '0'							

25.2 On-Chip Voltage Regulator

All PIC24FJ256GA110 family devices power their core digital logic at a nominal 2.5V. This may create an issue for designs that are required to operate at a higher typical voltage, such as 3.3V. To simplify system design, all devices in the PIC24FJ256GA110 family incorporate an on-chip regulator that allows the device to run its core logic from VDD.

The regulator is controlled by the ENVREG pin. Tying VDD to the pin enables the regulator, which in turn, provides power to the core from the other VDD pins. When the regulator is enabled, a low-ESR capacitor (such as ceramic) must be connected to the VDDCORE/VCAP pin (Figure 25-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor (CEFC) is provided in Section 28.1 "DC Characteristics".

If ENVREG is tied to Vss, the regulator is disabled. In this case, separate power for the core logic at a nominal 2.5V must be supplied to the device on the VDDCORE/VCAP pin to run the I/O pins at higher voltage levels, typically 3.3V. Alternatively, the VDDCORE/VCAP and VDD pins can be tied together to operate at a lower nominal voltage. Refer to Figure 25-1 for possible configurations.

25.2.1 VOLTAGE REGULATOR TRACKING MODE AND LOW-VOLTAGE DETECTION

When it is enabled, the on-chip regulator provides a constant voltage of 2.5V nominal to the digital core logic.

The regulator can provide this level from a VDD of about 2.5V, all the way up to the device's VDDMAX. It does not have the capability to boost VDD levels below 2.5V. In order to prevent "brown-out" conditions when the voltage drops too low for the regulator, the regulator enters Tracking mode. In Tracking mode, the regulator output follows VDD with a typical voltage drop of 100 mV.

When the device enters Tracking mode, it is no longer possible to operate at full speed. To provide information about when the device enters Tracking mode, the on-chip regulator includes a simple, Low-Voltage Detect circuit. When VDD drops below full-speed operating voltage, the circuit sets the Low-Voltage Detect Interrupt Flag, LVDIF (IFS4<8>). This can be used to generate an interrupt and put the application into a Low-Power Operational mode or trigger an orderly shutdown.

Low-Voltage Detection is only available when the regulator is enabled.

FIGURE 25-1: CONNECTIONS FOR THE ON-CHIP REGULATOR

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
TBLRDH	TBLRDH	Ws,Wd	Read Prog<23:16> to Wd<7:0>	1	2	None
TBLRDL	TBLRDL	Ws,Wd	Read Prog<15:0> to Wd	1	2	None
TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None
TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog<15:0>	1	2	None
ULNK	ULNK		Unlink Frame Pointer	1	1	None
XOR	XOR	f	f = f .XOR. WREG	1	1	N, Z
	XOR	f,WREG	WREG = f .XOR. WREG	1	1	N, Z
	XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N, Z
	XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N, Z
	XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N, Z
ZE	ZE	Ws,Wnd	Wnd = Zero-Extend Ws	1	1	C, Z, N

TABLE 26-2: INSTRUCTION SET OVERVIEW (CONTINUED)

27.11 PICkit 2 Development Programmer/Debugger and PICkit 2 Debug Express

The PICkit[™] 2 Development Programmer/Debugger is a low-cost development tool with an easy to use interface for programming and debugging Microchip's Flash families of microcontrollers. The full featured Windows[®] programming interface supports baseline (PIC10F, PIC12F5xx, PIC16F5xx), midrange (PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30, dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit microcontrollers, and many Microchip Serial EEPROM products. With Microchip's powerful MPLAB Integrated Development Environment (IDE) the PICkit[™] 2 enables in-circuit debugging on most PIC[®] microcontrollers. In-Circuit-Debugging runs, halts and single steps the program while the PIC microcontroller is embedded in the application. When halted at a breakpoint, the file registers can be examined and modified.

The PICkit 2 Debug Express include the PICkit 2, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

27.12 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an MMC card for file storage and data applications.

27.13 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

TABLE 28-5: DC CHARACTERISTICS: IDLE CURRENT (IIDLE) (CONTINUED)

DC CHARACTERISTICS			Standard Ope Operating terr	rating Conditions: 2.0 perature $-40^{\circ}C \le -40^{\circ}C $	/ to 3.6V (unless other TA \leq +85°C for Industri TA \leq +125°C for Extended	wise stated) al ded		
Parameter No.	Typical ⁽¹⁾	Мах	Units	Conditions				
Idle Current (li	DLE): Core O	ff, Clock On	Base Current,	PMD Bits are Set ⁽²⁾				
DC51	4.3	13.0	μA	-40°C				
DC51a	4.5	13.0	μA	+25°C	2 OV(3)			
DC51b	10	32	μA	+85°C	2.000			
DC51c	40	115	μA	+125°C				
DC51d	44	77	μA	-40°C				
DC51e	44	77	μA	+25°C	2 21/(4)			
DC51f	70	132	μÂ	+85°C	5.57			
DC51g	130	217	μÂ	+125°C				

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Base IIDLE current is measured with core off, clock on, all modules off and all of the Peripheral Module Disable (PMD) bits are set.

3: On-chip voltage regulator disabled (ENVREG tied to Vss).

4: On-chip voltage regulator enabled (ENVREG tied to VDD).

TABLE 28-14: PLL CLOCK TIMING SPECIFICATIONS (VDD = 2.0V TO 3.6V)

AC CHARACTERISTICS			Standard Operating	Operating temperatu	Conditions re -40°(-40°(5: 2.0V to C ≤ TA ≤ + C ≤ TA ≤ +	3.6V (unless otherwise stated) 85°C for Industrial 125°C for Extended
Param No.	Sym	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Мах	Units	Conditions
OS50	Fplli	PLL Input Frequency Range ⁽²⁾	4	—	8	MHz	ECPLL, HSPLL, XTPLL modes
OS51	Fsys	PLL Output Frequency Range	16	—	32	MHz	
OS52	TLOCK	PLL Start-up Time (Lock Time)	—	—	2	ms	
OS53	DCLK	CLKO Stability (Jitter)	-2	1	+2	%	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

TABLE 28-15: INTERNAL RC OSCILLATOR SPECIFICATIONS

AC CHARACTERISTICS			$\begin{array}{ll} \mbox{Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No.	Sym Characteristic		Min	Тур	Мах	Units	Conditions
	TFRC	FRC Start-up Time	—	15	—	μS	
	TLPRC	LPRC Start-up Time	_	40	_	μS	

TABLE 28-16: INTERNAL RC OSCILLATOR ACCURACY

AC CHARACTERISTICS		$\begin{array}{ll} \mbox{Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$				
Param No.	Characteristic	Min	Тур	Max	Units	Conditions
F20	FRC Accuracy @ 8 MHz ⁽¹⁾	-2	—	2	%	+25°C, $3.0V \le VDD \le 3.6V$
		-5	—	5	%	$\begin{array}{l} -40^{\circ}C \leq TA \leq +85^{\circ}C, \\ 3.0V \leq VDD \leq 3.6V \end{array}$
F21	LPRC Accuracy @ 31 kHz ⁽²⁾	-20	_	20	%	$\begin{array}{l} -40^{\circ}C \leq \text{TA} \leq +85^{\circ}\text{C}, \\ 3.0\text{V} \leq \text{VDD} \leq 3.6\text{V} \end{array}$

Note 1: Frequency calibrated at 25°C and 3.3V. OSCTUN bits can be used to compensate for temperature drift.

2: Change of LPRC frequency as VDD changes.

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Microchip Trader Architecture — Flash Memory Fa Program Memory Product Group Pin Count — Tape and Reel Fl Temperature Rar Package — Pattern —	PIC 24 FJ 256 GA1 10 T - 1 / PT - XXX markamily y Size (KB) ag (if applicable)	 Examples: a) PIC24FJ128GA106-I/PT: General purpose PIC24F, 128-Kbyte program memory, 64-pin, Industrial temp.,TQFP package. b) PIC24FJ256GA110-I/PT: General purpose PIC24F, 256-Kbyte program memory, 100-pin, Industrial temp.,TQFP package. 				
Architecture	24 = 16-bit modified Harvard without DSP					
Flash Memory Family	FJ = Flash program memory					
Product Group	GA1 = General purpose microcontrollers					
Pin Count	06 = 64-pin 08 = 80-pin 10 = 100-pin					
Temperature Range	I = -40° C to $+85^{\circ}$ C (Industrial)					
Package	PF = 100-lead (14x14x1mm) TQFP (Thin Quad Flatpack) PT = 64-lead, 80-lead, 100-lead (12x12x1 mm) TQFP (Thin Quad Flatpack) MR = 64-lead (9x9x0.9 mm) QFN (Quad Flatpack No Leads)					
Pattern	Three-digit QTP, SQTP, Code or Special Requirements (blank otherwise) ES = Engineering Sample					