

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	85
Program Memory Size	192KB (65.5K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj192ga110t-i-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

Features	PIC24FJ64GA106	PIC24FJ128GA106	PIC24FJ192GA106	PIC24FJ256GA106
Operating Frequency		DC – 3	32 MHz	•
Program Memory (bytes)	64K	128K	192K	256K
Program Memory (instructions)	22,016	44,032	67,072	87,552
Data Memory (bytes)		. 16,	384	
Interrupt Sources (soft vectors/NMI traps)		66 (62/4)	
I/O Ports		Ports B, C	, D, E, F, G	
Total I/O Pins		5	53	
Remappable Pins		31 (29 I/O, 1	2 input only)	
Timers:				
Total Number (16-bit)		5	(1)	
32-Bit (from paired 16-bit timers)			2	
Input Capture Channels		9	(1)	
Output Compare/PWM Channels		9	(1)	
Input Change Notification Interrupt		5	53	
Serial Communications:				
UART		4	(1)	
SPI (3-wire/4-wire)		3	(1)	
I ² C™			3	
Parallel Communications (PMP/PSP)		Y	es	
JTAG Boundary Scan		Y	es	
10-Bit Analog-to-Digital Module (input channels)		1	6	
Analog Comparators		:	3	
CTMU Interface		Y	es	
Resets (and delays)		r Instruction, MCLR, V ps, Configuration Wor		
Instruction Set	76 Bas	e Instructions, Multiple	e Addressing Mode Va	ariations
Packages		64-Pin	TQFP	

TABLE 1-1: DEVICE FEATURES FOR THE PIC24FJ256GA110 FAMILY: 64-PIN DEVICES

Note 1: Peripherals are accessible through remappable pins.

TABLE 4-22: PARALLEL MASTER/SLAVE PORT REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMCON	0600	PMPEN		PSIDL	ADRMUX1	ADRMUX0	PTBEEN	PTWREN	PTRDEN	CSF1	CSF0	ALP	CS2P	CS1P	BEP	WRSP	RDSP	0000
PMMODE	0602	BUSY	IRQM1	IRQM0	INCM1	INCM0	MODE16	MODE1	MODE0	WAITB1	WAITB0	WAITM3	WAITM2	WAITM1	WAITM0	WAITE1	WAITE0	0000
PMADDR	0604	CS2	CS1	ADDR13	ADDR12	ADDR11	ADDR10	ADDR9	ADDR8	ADDR7	ADDR6	ADDR5	ADDR4	ADDR3	ADDR2	ADDR1	ADDR0	0000
PMDOUT1			Parallel Port Data Out Register 1 (Buffers 0 and 1) 0										0000					
PMDOUT2	0606						Pa	rallel Port D	ata Out Reg	gister 2 (Buf	fers 2 and 3)						0000
PMDIN1	0608						Pa	arallel Port [Data In Regi	ster 1 (Buffe	ers 0 and 1)							0000
PMDIN2	060A						Pa	arallel Port [Data In Regi	ster 2 (Buffe	ers 2 and 3)							0000
PMAEN	060C	PTEN15	PTEN14	PTEN13	PTEN12	PTEN11	PTEN10	PTEN9	PTEN8	PTEN7	PTEN6	PTEN5	PTEN4	PTEN3	PTEN2	PTEN1	PTEN0	0000
PMSTAT	060E	IBF	IBOV	_		IB3F	IB2F	IB1F	IB0F	OBE	OBUF			OB3E	OB2E	OB1E	OB0E	0000
PMSTAT	060E	IBF	IBOV		—	IB3F	IB2F	IB1F	IB0F	OBE	OBUF	—	—	OB3E	OB2E	OB1E	OB0E	L

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-23: REAL-TIME CLOCK AND CALENDAR REGISTER MAP

Bit 11 Bit 10	Bit 9 Bit	it 8 Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
Alarm Value Register Window Based on ALRMPTR<1:0>										xxxx
AMASK1 AMASK0 A	ALRMPTR1 ALRM	MPTR0 ARPT7	ARPT6	ARPT5	ARPT4	ARPT3	ARPT2	ARPT1	ARPT0	0000
RTCC Value Register Window Based on RTCPTR<1:0> xxxx									xxxx	
IALFSEC RTCOE F	RTCPTR1 RTCF	PTR0 CAL7	CAL6	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0	xxxx
4	Alarm V MASK1 AMASK0 A RTCC	Alarm Value Register Wind MASK1 AMASK0 ALRMPTR1 ALRM RTCC Value Register Win ALFSEC RTCOE RTCPTR1 RTC	Alarm Value Register Window Based on ALR MASK1 AMASK0 ALRMPTR1 ALRMPTR0 ARPT7 RTCC Value Register Window Based on RT0 ALFSEC RTCOE RTCPTR1 RTCPTR0 CAL7	Alarm Value Register Window Based on ALRMPTR<1:0> MASK1 AMASK0 ALRMPTR1 ALRMPTR0 ARPT7 ARPT6 RTCC Value Register Window Based on RTCPTR<1:0> ALFSEC RTCOE RTCPTR1 RTCPTR0 CAL7 CAL6	Alarm Value Register Window Based on ALRMPTR<1:0> MASK1 AMASK0 ALRMPTR1 ALRMPTR0 ARPT7 ARPT6 ARPT5 RTCC Value Register Window Based on RTCPTR<1:0> ALFSEC RTCOE RTCPTR1 RTCPTR0 CAL7 CAL6 CAL5	Alarm Value Register Window Based on ALRMPTR<1:0> MASK1 AMASK0 ALRMPTR1 ALRMPTR0 ARPT7 ARPT6 ARPT5 ARPT4 RTCC Value Register Window Based on RTCPTR<1:0> ALFSEC RTCOE RTCPTR1 RTCPTR0 CAL7 CAL6 CAL5 CAL4	Alarm Value Register Window Based on ALRMPTR<1:0> MASK1 AMASK0 ALRMPTR1 ALRMPTR0 ARPT7 ARPT6 ARPT5 ARPT4 ARPT3 RTCC Value Register Window Based on RTCPTR<1:0> ALFSEC RTCOE RTCPTR1 RTCPTR0 CAL7 CAL6 CAL5 CAL4 CAL3	Alarm Value Register Window Based on ALRMPTR<1:0> MASK1 AMASK0 ALRMPTR1 ALRMPTR0 ARPT7 ARPT6 ARPT5 ARPT4 ARPT3 ARPT2 RTCC Value Register Window Based on RTCPTR<1:0> ALFSEC RTCOE RTCPTR1 RTCPTR0 CAL7 CAL6 CAL5 CAL4 CAL3 CAL2	Alarm Value Register Window Based on ALRMPTR<1:0> MASK1 AMASK0 ALRMPTR1 ALRMPTR0 ARPT7 ARPT6 ARPT5 ARPT4 ARPT3 ARPT2 ARPT1 RTCC Value Register Window Based on RTCPTR<1:0> RTCPTR1 RTCPTR0 CAL7 CAL6 CAL5 CAL4 CAL3 CAL2 CAL1	Alarm Value Register Window Based on ALRMPTR<1:0> MASK1 AMASK0 ALRMPTR1 ALRMPTR0 ARPT7 ARPT6 ARPT5 ARPT4 ARPT3 ARPT2 ARPT1 ARPT0 RTCC Value Register Window Based on RTCPTR<1:0> RTCPTR1 RTCPTR0 CAL7 CAL6 CAL5 CAL4 CAL3 CAL2 CAL1 CAL0

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-24: COMPARATORS REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CMSTAT	0630	CMIDL	-	—	_	-	C3EVT	C2EVT	C1EVT	—	—		—	—	C3OUT	C2OUT	C10UT	0000
CVRCON	0632	—	—	—	—	—	—	—	—	CVREN	CVROE	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0	0000
CM1CON	0634	CEN	COE	CPOL	—	—	—	CEVT	COUT	EVPOL1	EVPOL0	—	CREF	—	_	CCH1	CCH0	0000
CM2CON	0636	CEN	COE	CPOL	—	—	—	CEVT	COUT	EVPOL1	EVPOL0	—	CREF	—	_	CCH1	CCH0	0000
CM3CON	0638	CEN	COE	CPOL	_	_		CEVT	COUT	EVPOL1	EVPOL0	—	CREF	_		CCH1	CCH0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-25: CRC REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CRCCON	0640	—		CSIDL	VWORD4	VWORD3	VWORD2	VWORD1	VWORD0	CRCFUL	CRCMPT		CRCGO	PLEN3	PLEN2	PLEN1	PLEN0	0040
CRCXOR	0642	X15	X14	X13	X12	X11	X10	X9	X8	X7	X6	X5	X4	X3	X2	X1	_	0000
CRCDAT	0644		CRC Data Input Register										0000					
CRCWDAT	0646		CRC Result Register										0000					

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

FLASH PROGRAM MEMORY 5.0

Note:	This data sheet summarizes the features of
	this group of PIC24F devices. It is not
	intended to be a comprehensive reference
	source. For more information, refer to the
	"PIC24F Family Reference Manual",
	Section 4. "Program Memory"
	(DS39715).

The PIC24FJ256GA110 family of devices contains internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable when operating with VDD over 2.35V. If the regulator is disabled, the VDDCORE voltage must be over 2.25V.

Flash memory can be programmed in three ways:

- In-Circuit Serial Programming[™] (ICSP[™])
- Run-Time Self-Programming (RTSP)
- Enhanced In-Circuit Serial Programming (Enhanced ICSP)

ICSP allows a PIC24FJ256GA110 family device to be serially programmed while in the end application circuit. This is simply done with two lines for the programming clock and programming data (which are named PGECx and PGEDx, respectively), and three other lines for power (VDD), ground (VSS) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

RTSP is accomplished using TBLRD (table read) and TBLWT (table write) instructions. With RTSP, the user may write program memory data in blocks of 64 instructions (192 bytes) at a time and erase program memory in blocks of 512 instructions (1536 bytes) at a time.

5.1 **Table Instructions and Flash** Programming

Regardless of the method used, all programming of Flash memory is done with the table read and table write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using the TBLPAG<7:0> bits and the Effective Address (EA) from a W register specified in the table instruction, as shown in Figure 5-1.

The TBLRDL and the TBLWTL instructions are used to read or write to bits<15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

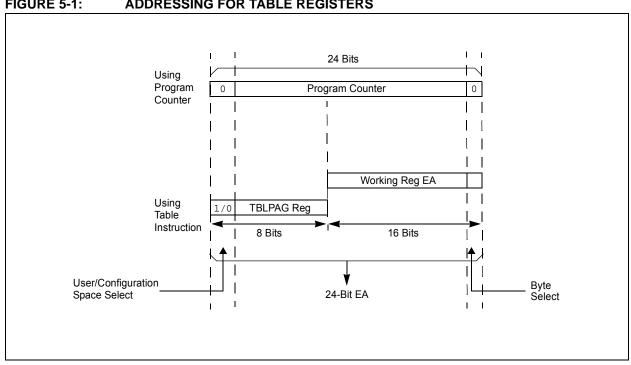


FIGURE 5-1: ADDRESSING FOR TABLE REGISTERS

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	IC9IF	OC9IF	SPI3IF	SPF3IF	U4TXIF	U4RXIF
bit 15							bit
DAMO	11.0						
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
U4ERIF		MI2C3IF	SI2C3IF	U3TXIF	U3RXIF	U3ERIF	
oit 7							bit
_egend:							
R = Readabl	e bit	W = Writable I	oit	U = Unimplen	nented bit, read	d as '0'	
n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
oit 15-14	Unimpleme	nted: Read as '0)'				
oit 13		Capture Channe		lag Status bit			
		request has occ					
	•	request has not		nt Elan Otatua I	_: .		
bit 12		out Compare Cha t request has occ		pi riag Status i	JIL		
		request has not					
oit 11		3 Event Interrupt		t			
		request has occ	-				
	0 = Interrupt	request has not	occurred				
pit 10		13 Fault Interrupt	-	t			
		request has occ					
	•	request has not					
oit 9		RT4 Transmitter		Status bit			
		request has not					
oit 8		RT4 Receiver In		atus bit			
		request has occ					
	0 = Interrupt	request has not	occurred				
oit 7		RT4 Error Interro		s bit			
		request has occ					
	-	request has not					
oit 6	-	nted: Read as '0		0			
oit 5		aster I2C3 Event request has occ		Status bit			
		request has not					
oit 4	•	ave I2C3 Event li		Status bit			
		request has occ					
	0 = Interrupt	request has not	occurred				
oit 3		RT3 Transmitter		Status bit			
		request has occ					
	-	request has not					
oit 2		RT3 Receiver In		atus dit			
		t request has occ t request has not					
oit 1	-	RT3 Error Interro		s bit			
		request has occ					
		request has not					

REGISTER 7-19: IPC2: INTERRUPT PRIORITY CONTROL REGISTER

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0							
	U1RXIP2	U1RXIP1	U1RXIP0		SPI1IP2	SPI1IP1	SPI1IP0							
pit 15							bit							
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0							
—	SPF1IP2	SPF1IP1	SPF1IP0	—	T3IP2	T3IP1	T3IP0							
bit 7							bit							
Legend:														
R = Readab	ole bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'								
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown							
L:1 4 F	Unimalaman	tad: Daad as f	o'											
bit 15	-	ted: Read as '		Driarity bita										
bit 14-12		: UART1 Rece pt is priority 7 (I	=	-										
	•		ingricor priority	apt)										
	•													
	•	ntio maiority 1												
	001 = Interrupt is priority 1 000 = Interrupt source is disabled													
bit 11		000 = Interrupt source is disabled Unimplemented: Read as '0'												
bit 10-8	-	SPI1 Event In		hits										
		pt is priority 7 (I												
	•	p												
	•													
	• 001 = Interru	nt is priority 1												
		pt is priority i pt source is dis	abled											
bit 7		ted: Read as '												
bit 6-4	-	SPI1 Fault In		bits										
		pt is priority 7 (I												
	•		/	• /										
	•													
	• 001 = Interru	pt is priority 1												
		pt source is dis	abled											
bit 3	Unimplemen	ted: Read as '	o'											
bit 2-0	T3IP<2:0>: ⊺	imer3 Interrupt	Priority bits											
	111 = Interru	pt is priority 7 (I	highest priority	interrupt)										
	•													
	•													
	•													
	• 001 = Interru	pt is priority 1												

REGISTER 10-3: RPINR2: PERIPHERAL PIN SELECT INPUT REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	INT4R5	INT4R4	INT4R3	INT4R2	INT4R1	INT4R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-6 Unimplemented: Read as '0'

bit 5-0 INT4R<5:0>: Assign External Interrupt 4 (INT4) to Corresponding RPn or RPIn Pin bits

REGISTER 10-4: RPINR3: PERIPHERAL PIN SELECT INPUT REGISTER 3

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	_	T3CKR5	T3CKR4	T3CKR3	T3CKR2	T3CKR1	T3CKR0
bit 15							bit 8
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	_	T2CKR5	T2CKR4	T2CKR3	T2CKR2	T2CKR1	T2CKR0
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'			

'0' = Bit is cleared

bit 15-14 **Unimplemented:** Read as '0'

'1' = Bit is set

bit 13-8 T3CKR<5:0>: Assign Timer3 External Clock (T3CK) to Corresponding RPn or RPIn Pin bits

bit 7-6 Unimplemented: Read as '0'

bit 5-0 T2CKR<5:0>: Assign Timer2 External Clock (T2CK) to Corresponding RPn or RPIn Pin bits

-n = Value at POR

x = Bit is unknown

REGISTER 10-17: RPINR22: PERIPHERAL PIN SELECT INPUT REGISTER 22

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—		SCK2R5	SCK2R4	SCK2R3	SCK2R2	SCK2R1	SCK2R0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	SDI2R5	SDI2R4	SDI2R3	SDI2R2	SDI2R1	SDI2R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	SCK2R<5:0>: Assign SPI2 Clock Input (SCK2IN) to Corresponding RPn or RPIn Pin bits
bit 7-6	Unimplemented: Read as '0'
bit 5-0	SDI2R<5:0>: Assign SPI2 Data Input (SDI2) to Corresponding RPn or RPIn Pin bits

REGISTER 10-18: RPINR23: PERIPHERAL PIN SELECT INPUT REGISTER 23

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	—	SS2R5	SS2R4	SS2R3	SS2R2	SS2R1	SS2R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

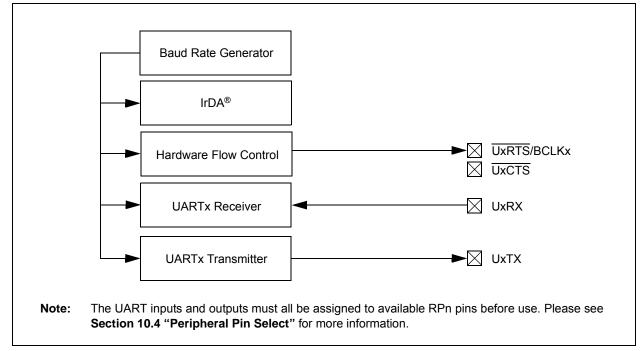
bit 15-6 Unimplemented: Read as '0'

bit 5-0 SS2R<5:0>: Assign SPI2 Slave Select Input (SS2IN) to Corresponding RPn or RPIn Pin bits

17.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

Note:	This data sheet summarizes the features of
	this group of PIC24F devices. It is not
	intended to be a comprehensive reference
	source. For more information, refer to the
	"PIC24F Family Reference Manual",
	Section 21. "UART" (DS39708).

The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in the PIC24F device family. The UART is a full-duplex asynchronous system that can communicate with peripheral devices, such as personal computers, LIN, RS-232 and RS-485 interfaces. The module also supports a hardware flow control option with the UxCTS and UxRTS pins, and also includes an IrDA[®] encoder and decoder.


The primary features of the UART module are:

- Full-Duplex, 8 or 9-Bit Data Transmission through the UxTX and UxRX Pins
- Even, Odd or No Parity Options (for 8-bit data)
- · One or Two Stop bits
- Hardware Flow Control Option with UxCTS and UxRTS Pins

- Fully Integrated Baud Rate Generator with 16-Bit Prescaler
- Baud Rates Ranging from 1 Mbps to 15 bps at 16 MIPS
- 4-Deep, First-In-First-Out (FIFO) Transmit Data Buffer
- · 4-Deep FIFO Receive Data Buffer
- Parity, Framing and Buffer Overrun Error Detection
- Support for 9-Bit mode with Address Detect (9th bit = 1)
- · Transmit and Receive Interrupts
- Loopback mode for Diagnostic Support
- · Support for Sync and Break Characters
- Supports Automatic Baud Rate Detection
- · IrDA Encoder and Decoder Logic
- 16x Baud Clock Output for IrDA Support

A simplified block diagram of the UART is shown in Figure 17-1. The UART module consists of these key important hardware elements:

- · Baud Rate Generator
- Asynchronous Transmitter
- Asynchronous Receiver

FIGURE 17-1: UART SIMPLIFIED BLOCK DIAGRAM

REGISTER 18-1: PMCON: PARALLEL MASTER PORT CONTROL REGISTER (CONTINUED)

bit 2	BEP: Byte Enable Polarity bit 1 = Byte enable active-high (PMBE) 0 = Byte enable active-low (PMBE)
bit 1	WRSP: Write Strobe Polarity bit
	For Slave Modes and Master Mode 2 (PMMODE<9:8> = 00, 01, 10): 1 = Write strobe active-high (PMWR) 0 = Write strobe active-low (PMWR)
	For Master Mode 1 (PMMODE<9:8> = 11): 1 = Enable strobe active-high (PMENB) 0 = Enable strobe active-low (PMENB)
bit 0	RDSP: Read Strobe Polarity bit
	For Slave Modes and Master Mode 2 (PMMODE<9:8> = 00, 01, 10): 1 = Read strobe active-high (PMRD) 0 = Read strobe active-low (PMRD)
	For Master Mode 1 (PMMODE<9:8> = 11): 1 = Read/write strobe active-high (PMRD/PMWR) 0 = Read/write strobe active-low (PMRD/PMWR)

Note 1: These bits have no effect when their corresponding pins are used as address lines.

R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
BUSY	IRQM1	IRQM0	INCM1	INCM0	MODE16	MODE1	MODE0			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
WAITB1 ⁽¹⁾	WAITB0 ⁽¹⁾	WAITM3	WAITM2	WAITM1	WAITM0	WAITE1 ⁽¹⁾	WAITE0 ⁽¹⁾			
bit 7							bit C			
Legend:										
R = Readab	ole bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'				
-n = Value a	It POR	'1' = Bit is set		ʻ0' = Bit is cle	eared	x = Bit is unkr	nown			
bit 15	BUSY: Busy b	oit (Master mod	le only)							
	-	sy (not useful	• •	essor stall is a	ctive)					
bit 14-13		nterrupt Reque	et Mode hits							
				er 3 is read or V	Write Buffer 3 is	written (Buffere	ed PSP mode)			
					11 (Addressable	e PSP mode or	ıly)			
		rrupt generated at			cle					
		rrupt generated		read, write by						
bit 12-11	INCM<1:0>: Increment Mode bits									
	11 = PSP read and write buffers auto-increment (Legacy PSP mode only)									
	 10 = Decrement ADDR<10:0> by 1 every read/write cycle 01 = Increment ADDR<10:0> by 1 every read/write cycle 									
		ement or decre	• •	•						
bit 10	MODE16: 8/1	6-Bit Mode bit								
					o the Data regis the Data registe					
bit 9-8		Parallel Port N			C C					
		11 = Master Mode 1 (PMCS1, PMRD/PMWR, PMENB, PMBE, PMA <x:0> and PMD<7:0>)</x:0>								
	10 = Master Mode 2 (PMCS1, PMRD, PMWR, PMBE, PMA <x:0> and PMD<7:0>) 01 = Enhanced PSP, control signals (PMRD, PMWR, PMCS1, PMD<7:0> and PMA<1:0>)</x:0>									
	01 = Ennanced PSP, control signals (PMRD, PMWR, PMCS1, PMD<7:0> and PMA<1:0>) 00 = Legacy Parallel Slave Port, control signals (PMRD, PMWR, PMCS1 and PMD<7:0>)									
bit 7-6	WAITB<1:0>:	Data Setup to	Read/Write W	ait State Conf	iguration bits ⁽¹⁾					
		ait of 4 TCY; mu	•	•						
		ait of 3 TCY; mu ait of 2 TCY; mu								
		ait of 1 Tcy; mu								
bit 5-2	WAITM<3:0>:	Read to Byte	Enable Strobe	Wait State Co	onfiguration bits					
	1111 = Wait c	of additional 15	Тсү							
	 0001 = Wait o	of additional 1	I CY							
		ditional wait cy		n forced into o	ne Tcy) ⁽²⁾					
bit 1-0	WAITE<1:0>:	Data Hold Afte	er Strobe Wait	State Configu	ration bits ⁽¹⁾					
	11 = Wait of									
	10 = Wait of 3 01 = Wait of 3									
	00 = Wait of									
Note 1: V	VAITB and WAIT	F hits are igno	red whenever	\M/&ITM~2·0>	= 0000					
		-								

REGISTER 18-2: PMMODE: PARALLEL MASTER PORT MODE REGISTER

2: A single cycle delay is required between consecutive read and/or write operations.

R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0			
ADON ⁽¹⁾	—	ADSIDL	—	—	—	FORM1	FORM0			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0, HCS	R-0, HCS			
SSRC2	SSRC1	SSRC0	—	—	ASAM	SAMP	DONE			
bit 7 bit 0										
Legend:		HCS = Hardw	are Clearable/	Settable bit						
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own			
bit 15	ADON: A/D C	Operating Mode	bit ⁽¹⁾							
		verter module is	s operating							
	0 = A/D Conv	verter is off								
bit 14	Unimplemen	ted: Read as ')'							
bit 13	-	o in Idle Mode I								
				evice enters Idle	e mode					
h:+ 40 40		module operat		le						
bit 12-10	-	ted: Read as '								
bit 9-8		Data Output F								
		ractional (sddd al (dddd dddd								
		nteger (ssss	,							
		6 550 0000		,						
bit 7-5	SSRC<2:0>: Conversion Trigger Source Select bits									
				starts conversio	on (auto-conve	rt)				
		event ends sar	mpling and star	rts conversion						
	101 = Reserv		sampling and	starts conversi	on					
	011 = Reserv	-	bamping and							
				starts conversi						
			•	ampling and sta						
h it 4 0		-		nd starts convei	sion					
bit 4-3	-	ted: Read as '								
bit 2		Sample Auto-Sta		t conversion co	moletes: SAM	P bit is auto-set				
		begins when t								
bit 1		ample Enable								
		ole/hold amplifie		nput						
	0 = A/D samp	le/hold amplifie	er is holding							
bit 0	DONE: A/D C	onversion Stat	us bit							
		ersion is done								
	0 = A/D conversion	ersion is NOT c	ione							
Note 1: Va	alues of ADC1B	UFx registers v	vill not retain th	eir values once	e the ADON bit	t is cleared. Rea	ad out the			

REGISTER 21-1: AD1CON1: A/D CONTROL REGISTER 1

Note 1: Values of ADC1BUFx registers will not retain their values once the ADON bit is cleared. Read out the conversion values from the buffer before disabling the module.

REGISTER 22-1: CMxCON: COMPARATOR x CONTROL REGISTERS (COMPARATORS 1 THROUGH 3)

	•			•						
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R-0			
CEN	COE	CPOL				CEVT	COUT			
bit 15							bit 8			
R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0			
EVPOL1	EVPOL0	—	CREF		<u> </u>	CCH1	CCH0			
bit 7	bit 7 bit 0									
Legend:										
R = Readable	e bit	W = Writable b	it	U = Unimplen	nented bit, rea	d as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown			
bit 15	CEN: Compa	rator Enable bit								
	•	ator is enabled								
		ator is disabled								
bit 14	•	rator Output En								
		ator output is pre ator output is inte		CxOUT pin.						
bit 13	•	arator Output is inte	,	hit						
DIL 13		ator output is inv	•	DI						
		ator output is not								
bit 12-10		ted: Read as '0								
bit 9	-	arator Event bit								
	•	ator event define	d by EVPOL	<1:0> has occu	rred; subseque	ent triggers and	interrupts are			
	disabled	until the bit is cl	eared		•		·			
	0 = Compara	ator event has no	ot occurred							
bit 8		parator Output bi	t							
	When CPOL									
	1 = VIN + > V									
	0 = VIN+ < V When CPOL									
	1 = VIN + < V									
	0 = VIN + > V									
bit 7-6	EVPOL<1:0>	: Trigger/Event/	nterrupt Pola	rity Select bits						
		/event/interrupt					CEVT = 0)			
		/event/interrupt	-	transition of the	e comparator o	output:				
		<u>L = 0 (non-inver</u>								
	•	-low transition o	•							
		<u>L = 1 (inverted p</u> -high transition c								
		rigger/Event/Inte		ed on transition	of comparato	r output:				
	<u>If CPO</u>	L = 0 (non-inver	ted polarity):							
		-high transition of	-							
		L = 1 (inverted p								
		o-low transition o rigger/event/inte		ion is disabled						
bit 5		ited: Read as '0								
bit 5	Sumplemen	iteu. iteau as 0								

REGISTER 22-1: CMxCON: COMPARATOR x CONTROL REGISTERS (COMPARATORS 1 THROUGH 3) (CONTINUED)

- bit 4 CREF: Comparator Reference Select bits (non-inverting input)
 - 1 = Non-inverting input connects to internal CVREF voltage
 - 0 = Non-inverting input connects to CXINA pin
- bit 3-2 Unimplemented: Read as '0'
- bit 1-0 CCH<1:0>: Comparator Channel Select bits
 - 11 = Inverting input of comparator connects to VBG/2
 - 10 = Inverting input of comparator connects to CxIND pin
 - 01 = Inverting input of comparator connects to CxINC pin
 - 00 = Inverting input of comparator connects to CxINB pin

REGISTER 22-2: CMSTAT: COMPARATOR MODULE STATUS REGISTER

R/W-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0
CMIDL	—	—	—	—	C3EVT	C2EVT	C1EVT
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0
—	—	—	—	—	C3OUT	C2OUT	C1OUT
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = B		'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			

bit 15	CMIDL: Comparator Stop in Idle Mode bit
	1 = Module does not generate interrupts in Idle mode, but is otherwise operational0 = Module continues normal operation in Idle mode
bit 14-11	Unimplemented: Read as '0'
bit 10	C3EVT: Comparator 3 Event Status bit (read-only)
	Shows the current event status of Comparator 3 (CM3CON<9>).
bit 9	C2EVT: Comparator 2 Event Status bit (read-only)
	Shows the current event status of Comparator 2 (CM2CON<9>).
bit 8	C1EVT: Comparator 1 Event Status bit (read-only)
	Shows the current event status of Comparator 1 (CM1CON<9>).
bit 7-3	Unimplemented: Read as '0'
bit 2	C3OUT: Comparator 3 Output Status bit (read-only)
	Shows the current output of Comparator 3 (CM3CON<8>).
bit 1	C2OUT: Comparator 2 Output Status bit (read-only)
	Shows the current output of Comparator 2 (CM2CON<8>).
bit 0	C1OUT: Comparator 1 Output Status bit (read-only)
	Shows the current output of Comparator 1 (CM1CON<8>).

REGISTER 23-1: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
—	—	—	—	—	—	—	—			
bit 15					•		bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
CVREN	CVROE	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0			
bit 7 bit C										
Legend:										
R = Readabl	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
bit 15-8 bit 7 bit 6 bit 5 bit 4	CVREN: Com 1 = CVREF cii 0 = CVREF cii CVROE: Com 1 = CVREF vc 0 = CVREF vc CVRR: Comp 1 = CVRSRC 1 0 = CVRSRC 1	Unimplemented: Read as '0' CVREN: Comparator Voltage Reference Enable bit 1 = CVREF circuit powered on 0 = CVREF circuit powered down CVROE: Comparator VREF Output Enable bit 1 = CVREF voltage level is output on CVREF pin 0 = CVREF voltage level is disconnected from CVREF pin CVRR: Comparator VREF Range Selection bit 1 = CVRSRC range should be 0 to 0.625 CVRSRC with CVRSRC/24 step size 0 = CVRSRC range should be 0.25 to 0.719 CVRSRC with CVRSRC/32 step size								
bit 4	CVRSS: Comparator VREF Source Selection bit 1 = Comparator reference source, CVRSRC = VREF+ – VREF- 0 = Comparator reference source, CVRSRC = AVDD – AVSS									
bit 3-0	$CVR<3:0>: Comparator VREF Value Selection, 0 \le CVR<3:0> \le 15, bits$ $When CVRR = 1:$ $CVREF = (CVR<3:0>/24) \bullet (CVRSRC)$ $When CVRR = 0:$ $CVREF = 1/4 \bullet (CVRSRC) + (CVR<3:0>/32) \bullet (CVRSRC)$									

27.11 PICkit 2 Development Programmer/Debugger and PICkit 2 Debug Express

The PICkit[™] 2 Development Programmer/Debugger is a low-cost development tool with an easy to use interface for programming and debugging Microchip's Flash families of microcontrollers. The full featured Windows[®] programming interface supports baseline (PIC10F, PIC12F5xx, PIC16F5xx), midrange (PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30, dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit microcontrollers, and many Microchip Serial EEPROM products. With Microchip's powerful MPLAB Integrated Development Environment (IDE) the PICkit[™] 2 enables in-circuit debugging on most PIC[®] microcontrollers. In-Circuit-Debugging runs, halts and single steps the program while the PIC microcontroller is embedded in the application. When halted at a breakpoint, the file registers can be examined and modified.

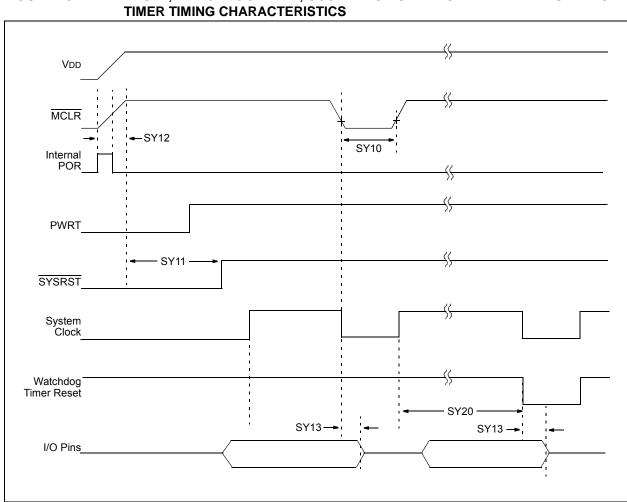
The PICkit 2 Debug Express include the PICkit 2, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

27.12 MPLAB PM3 Device Programmer

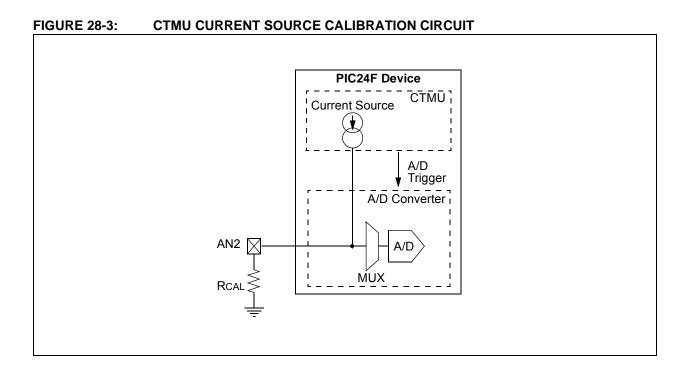
The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an MMC card for file storage and data applications.

27.13 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

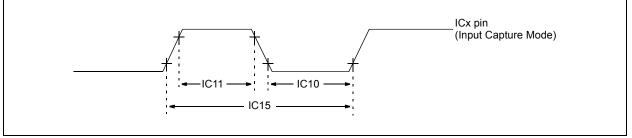
A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.


The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.


In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.


Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP **FIGURE 28-2:**

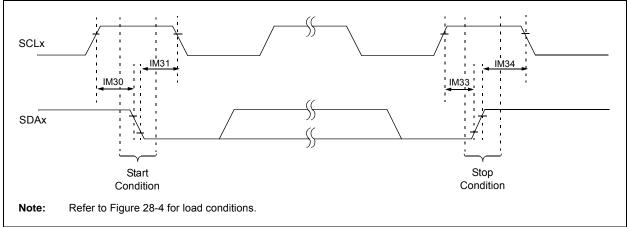

FIGURE 28-10: INPUT CAPTURE TIMINGS

TABLE 28-23: INPUT CAPTURE

Param. No.	Symbol	Characteristic		Min	Max	Units	Conditions
IC10	TccL	ICx Input Low Time –	No Prescaler	Tcy + 20		ns	Must also meet
		Synchronous Timer	With Prescaler	20	-	ns	parameter IC15
IC11	TccH	ICx Input Low Time –	No Prescaler	Tcy + 20	-	ns	Must also meet
		Synchronous Timer	With Prescaler	20	_	ns	parameter IC15
IC15	TccP	ICx Input Period – Synchronous Timer		<u>2 * Tcy + 40</u> N		ns	N = prescale value (1, 4, 16)

TABLE 28-30: I²C[™] BUS START/STOP BIT TIMING REQUIREMENTS (MASTER MODE)

AC CHA	RACTER	ISTICS		(unless otherwise	ing Conditions: 2.0V to 3.6V se stated) are -40°C \leq TA \leq +85°C (Industrial)			
Param No.	Symbol	Charac	teristic	Min ⁽¹⁾	Max	Units	Conditions	
IM30	TSU:STA	Start Condition	100 kHz mode	Tcy/2 (BRG + 1)		μS	Only relevant for	
		Setup Time	400 kHz mode	Tcy/2 (BRG + 1)	_	μS	Repeated Start	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μS	condition	
IM31		Start Condition Hold Time	100 kHz mode	Tcy/2 (BRG + 1)	_	μS	After this period, the	
			400 kHz mode	Tcy/2 (BRG + 1)	_	μS	first clock pulse is	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μS	generated	
IM33	TSU:STO	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)	_	μS	—	
		Setup Time	400 kHz mode	Tcy/2 (BRG + 1)	_	μS		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μS		
IM34	THD:STO	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)		ns	—	
		Hold Time	400 kHz mode	Tcy/2 (BRG + 1)	_	ns		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	ns		

Note 1: BRG is the value of the I²C[™] Baud Rate Generator. Refer to Section 16.3 "Setting Baud Rate When Operating as a Bus Master" for details

2: Maximum pin capacitance = 10 pF for all I²C pins (for 1 MHz mode only).