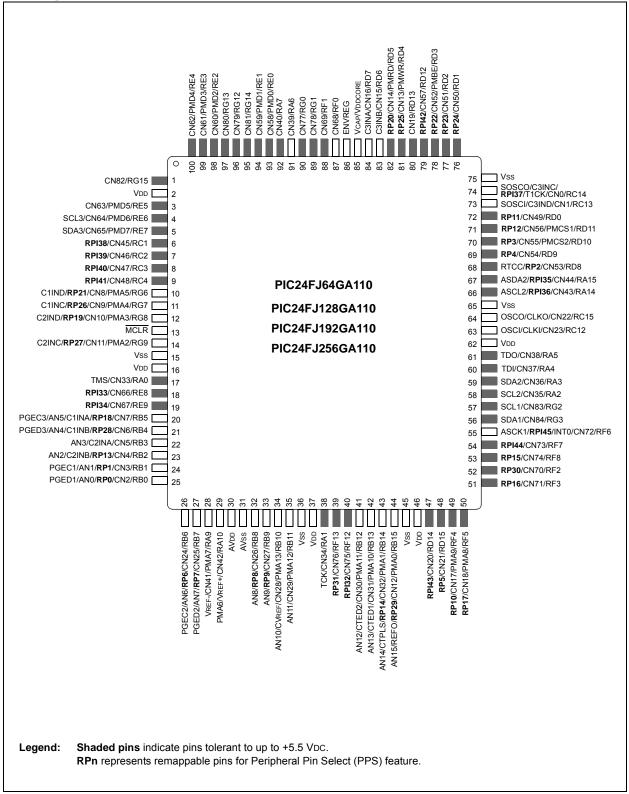


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	53
Program Memory Size	256KB (85.5K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj256ga106-e-pt

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagram (100-Pin TQFP)

3.3 Arithmetic Logic Unit (ALU)

The PIC24F ALU is 16 bits wide and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are 2's complement in nature. Depending on the operation, the ALU may affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the SR register. The C and DC Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations.

The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is used. Data for the ALU operation can come from the W register array, or data memory, depending on the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W register array or a data memory location.

The PIC24F CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware for 16-bit divisor division.

3.3.1 MULTIPLIER

The ALU contains a high-speed, 17-bit x 17-bit multiplier. It supports unsigned, signed or mixed sign operation in several multiplication modes:

- 1. 16-bit x 16-bit signed
- 2. 16-bit x 16-bit unsigned
- 3. 16-bit signed x 5-bit (literal) unsigned
- 4. 16-bit unsigned x 16-bit unsigned
- 5. 16-bit unsigned x 5-bit (literal) unsigned
- 6. 16-bit unsigned x 16-bit signed
- 7. 8-bit unsigned x 8-bit unsigned

3.3.2 DIVIDER

The divide block supports signed and unsigned integer divide operations with the following data sizes:

- 1. 32-bit signed/16-bit signed divide
- 2. 32-bit unsigned/16-bit unsigned divide
- 3. 16-bit signed/16-bit signed divide
- 4. 16-bit unsigned/16-bit unsigned divide

The quotient for all divide instructions ends up in W0 and the remainder in W1. Sixteen-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn), and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.

3.3.3 MULTI-BIT SHIFT SUPPORT

The PIC24F ALU supports both single bit and single-cycle, multi-bit arithmetic and logic shifts. Multi-bit shifts are implemented using a shifter block, capable of performing up to a 15-bit arithmetic right shift, or up to a 15-bit left shift, in a single cycle. All multi-bit shift instructions only support Register Direct Addressing for both the operand source and result destination.

A full summary of instructions that use the shift operation is provided below in Table 3-2.

TABLE 3-2: INSTRUCTIONS THAT USE THE SINGLE AND MULTI-BIT SHIFT OPERATION

Instruction	Description
ASR	Arithmetic shift right source register by one or more bits.
SL	Shift left source register by one or more bits.
LSR	Logical shift right source register by one or more bits.

TABLE 4-20: ADC REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0200									- Duffer 0								
ADC1BUF0	0300									a Buffer 0								XXXX
ADC1BUF1	0302								ADC Dat									XXXX
ADC1BUF2	0304									a Buffer 2								XXXX
ADC1BUF3	0306									a Buffer 3								XXXX
ADC1BUF4	0308									a Buffer 4								XXXX
ADC1BUF5	030A									a Buffer 5								xxxx
ADC1BUF6	030C									a Buffer 6								xxxx
ADC1BUF7	030E								ADC Dat	a Buffer 7								xxxx
ADC1BUF8	0310								ADC Dat	a Buffer 8								xxxx
ADC1BUF9	0312								ADC Data	a Buffer 9								xxxx
ADC1BUFA	0314								ADC Data	a Buffer 10								xxxx
ADC1BUFB	0316								ADC Data	a Buffer 11								xxxx
ADC1BUFC	0318								ADC Data	a Buffer 12								xxxx
ADC1BUFD	031A								ADC Data	a Buffer 13								xxxx
ADC1BUFE	031C								ADC Data	a Buffer 14								xxxx
ADC1BUFF	031E								ADC Data	a Buffer 15								xxxx
AD1CON1	0320	ADON	_	ADSIDL	_	_	_	FORM1	FORM0	SSRC2	SSRC1	SSRC0	_	_	ASAM	SAMP	DONE	0000
AD1CON2	0322	VCFG2	VCFG1	VCFG0	r	_	CSCNA	_	_	BUFS		SMPI3	SMPI2	SMPI1	SMPI0	BUFM	ALTS	0000
AD1CON3	0324	ADRC	r	r	SAMC4	SAMC3	SAMC2	SAMC1	SAMC0	ADCS7	ADCS6	ADCS5	ADCS4	ADCS3	ADCS2	ADCS1	ADCS0	0000
AD1CHS	0328	CH0NB	_	_	CH0SB4	CH0SB3	CH0SB2	CH0SB1	CH0SB0	CH0NA		_	CH0SA4	CH0SA3	CH0SA2	CH0SA1	CH0SA0	0000
AD1PCFGL	032C	PCFG15	PCFG14	PCFG13	PCFG12	PCFG11	PCFG10	PCFG9	PCFG8	PCFG7	PCFG6	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	0000
AD1PCFGH	032A	_	_	_	_	_	_	—	_	_	_	_	—	_	—	PCFG17	PCFG16	0000
AD1CSSL	0330	CSSL15	CSSL14	CSSL13	CSSL12	CSSL11	CSSL10	CSSL9	CSSL8	CSSL7	CSSL6	CSSL5	CSSL4	CSSL3	CSSL2	CSSL1	CSSL0	0000
Legend:	= unii	mplemented	, se hear h	r = record	Vod maintai	n as 'o' Pe	sot values	are shown i	in hevadeci	mal								4

Legend: — = unimplemented, read as '0', r = reserved, maintain as '0'. Reset values are shown in hexadecimal.

TABLE 4-21: CTMU REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CTMUCON	033C	CTMUEN		CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN	CTTRIG	EDG2POL	EDG2SEL1	EDG2SEL0	EDG1POL	EDG1SEL1	EDG1SEL0	EDG2STAT	EDG1STAT	0000
CTMUICON	033E	ITRIM5	ITRIM4	ITRIM3	ITRIM2	ITRIM1	ITRIM0	IRNG1	IRNG0	_	_	_	-		-	_	-	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

5.2 RTSP Operation

The PIC24F Flash program memory array is organized into rows of 64 instructions or 192 bytes. RTSP allows the user to erase blocks of eight rows (512 instructions) at a time and to program one row at a time. It is also possible to program single words.

The 8-row erase blocks and single row write blocks are edge-aligned, from the beginning of program memory, on boundaries of 1536 bytes and 192 bytes, respectively.

When data is written to program memory using TBLWT instructions, the data is not written directly to memory. Instead, data written using table writes is stored in holding latches until the programming sequence is executed.

Any number of TBLWT instructions can be executed and a write will be successfully performed. However, 64 TBLWT instructions are required to write the full row of memory.

To ensure that no data is corrupted during a write, any unused addresses should be programmed with FFFFFFh. This is because the holding latches reset to an unknown state, so if the addresses are left in the Reset state, they may overwrite the locations on rows which were not rewritten.

The basic sequence for RTSP programming is to set up a Table Pointer, then do a series of TBLWT instructions to load the buffers. Programming is performed by setting the control bits in the NVMCON register.

Data can be loaded in any order and the holding registers can be written to multiple times before performing a write operation. Subsequent writes, however, will wipe out any previous writes.

Note: Writing to a location multiple times without erasing is *not* recommended.

All of the table write operations are single-word writes (2 instruction cycles), because only the buffers are written. A programming cycle is required for programming each row.

5.3 JTAG Operation

The PIC24F family supports JTAG boundary scan. Boundary scan can improve the manufacturing process by verifying pin to PCB connectivity.

5.4 Enhanced In-Circuit Serial Programming

Enhanced In-Circuit Serial Programming uses an on-board bootloader, known as the program executive, to manage the programming process. Using an SPI data frame format, the program executive can erase, program and verify program memory. For more information on Enhanced ICSP, see the device programming specification.

5.5 Control Registers

There are two SFRs used to read and write the program Flash memory: NVMCON and NVMKEY.

The NVMCON register (Register 5-1) controls which blocks are to be erased, which memory type is to be programmed and when the programming cycle starts.

NVMKEY is a write-only register that is used for write protection. To start a programming or erase sequence, the user must consecutively write 55h and AAh to the NVMKEY register. Refer to **Section 5.6 "Programming Operations"** for further details.

5.6 Programming Operations

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. During a programming or erase operation, the processor stalls (waits) until the operation is finished. Setting the WR bit (NVMCON<15>) starts the operation and the WR bit is automatically cleared when the operation is finished.

7.4 Interrupt Setup Procedures

7.4.1 INITIALIZATION

To configure an interrupt source:

- 1. Set the NSTDIS control bit (INTCON1<15>) if nested interrupts are not desired.
- Select the user-assigned priority level for the interrupt source by writing the control bits in the appropriate IPCx register. The priority level will depend on the specific application and type of interrupt source. If multiple priority levels are not desired, the IPCx register control bits for all enabled interrupt sources may be programmed to the same non-zero value.

Note:	At a device Reset, the IPCx registers are							
	initialized, such that all user interrupt							
	sources are assigned to priority level 4.							

- 3. Clear the interrupt status flag bit associated with the peripheral in the associated IFSx register.
- 4. Enable the interrupt source by setting the interrupt enable control bit associated with the source in the appropriate IECx register.

7.4.2 INTERRUPT SERVICE ROUTINE

The method that is used to declare an ISR and initialize the IVT with the correct vector address will depend on the programming language (i.e., 'C' or assembler) and the language development toolsuite that is used to develop the application. In general, the user must clear the interrupt flag in the appropriate IFSx register for the source of the interrupt that the ISR handles. Otherwise, the ISR will be re-entered immediately after exiting the routine. If the ISR is coded in assembly language, it must be terminated using a RETFIE instruction to unstack the saved PC value, SRL value and old CPU priority level.

7.4.3 TRAP SERVICE ROUTINE

A Trap Service Routine (TSR) is coded like an ISR, except that the appropriate trap status flag in the INTCON1 register must be cleared to avoid re-entry into the TSR.

7.4.4 INTERRUPT DISABLE

All user interrupts can be disabled using the following procedure:

- 1. Push the current SR value onto the software stack using the PUSH instruction.
- 2. Force the CPU to priority level 7 by inclusive ORing the value E0h with SRL.

To enable user interrupts, the POP instruction may be used to restore the previous SR value.

Note that only user interrupts with a priority level of 7 or less can be disabled. Trap sources (level 8-15) cannot be disabled.

The DISI instruction provides a convenient way to disable interrupts of priority levels 1-6 for a fixed period of time. Level 7 interrupt sources are not disabled by the DISI instruction.

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER (CONTINUED)

bit 7	CLKLOCK: Clock Selection Lock Enabled bit
	<u>If FSCM is enabled (FCKSM1 = 1):</u>
	1 = Clock and PLL selections are locked
	0 = Clock and PLL selections are not locked and may be modified by setting the OSWEN bit
	<u>If FSCM is disabled (FCKSM1 = 0):</u>
	Clock and PLL selections are never locked and may be modified by setting the OSWEN bit.
bit 6	IOLOCK: I/O Lock Enable bit ⁽²⁾
	1 = I/O lock is active
	0 = I/O lock is not active
bit 5	LOCK: PLL Lock Status bit ⁽³⁾
	1 = PLL module is in lock or PLL module start-up timer is satisfied
	0 = PLL module is out of lock, PLL start-up timer is running or PLL is disabled
bit 4	Unimplemented: Read as '0'
bit 3	CF: Clock Fail Detect bit
	1 = FSCM has detected a clock failure
	0 = No clock failure has been detected
bit 2	POSCEN: Primary Oscillator Sleep Enable bit
	1 = Primary Oscillator continues to operate during Sleep mode
	0 = Primary Oscillator disabled during Sleep mode
bit 1	SOSCEN: 32 kHz Secondary Oscillator (SOSC) Enable bit
	1 = Enable Secondary Oscillator
	0 = Disable Secondary Oscillator
bit 0	OSWEN: Oscillator Switch Enable bit
	1 = Initiate an oscillator switch to clock source specified by NOSC<2:0> bits
	0 = Oscillator switch is complete
Note 1.	Departurely on far theory hits are determined by the ENOCO Configuration hits

- **Note 1:** Reset values for these bits are determined by the FNOSC Configuration bits.
 - 2: The state of the IOLOCK bit can only be changed once an unlocking sequence has been executed. In addition, if the IOL1WAY Configuration bit is '1' once the IOLOCK bit is set, it cannot be cleared.
 - **3:** Also, resets to '0' during any valid clock switch or whenever a non-PLL Clock mode is selected.

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ROEN		ROSSLP	ROSEL	RODIV3	RODIV2	RODIV1	RODIV0
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 7							bit C
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15		ence Oscillator	-				
		e oscillator ena e oscillator disa		pin			
bit 14	Unimplemen	ted: Read as '	0'				
bit 13	ROSSLP: Re	ference Oscilla	tor Output Sto	p in Sleep bit			
		e oscillator con					
	0 = Reference	e oscillator is d	isabled in Slee	р			
bit 12		erence Oscillato					
				the operation ir		illator must be	enabled using
		•			•	switching of the	device
bit 11-8	RODIV<3:0>:	Reference Os	cillator Divisor	Select bits			
		clock value div	•				
		clock value div clock value div	•	ļ.			
		clock value div					
	1011 = Base	clock value div	ided by 2,048				
		clock value div					
		clock value div clock value div					
	0111 = Base	clock value div	ided by 128				
		clock value div clock value div					
		clock value div					
	0011 = Base	clock value div	ided by 8				
	0011 = Base 0010 = Base	clock value div clock value div	ided by 8 ided by 4				
	0011 = Base 0010 = Base	clock value div clock value div clock value div	ided by 8 ided by 4				

© 2010 Microchip Technology Inc.

NOTES:

REGISTER 10-22: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_		RP1R5	RP1R4	RP1R3	RP1R2	RP1R1	RP1R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_	RP0R5	RP0R4	RP0R3	RP0R2	RP0R1	RP0R0
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable I	bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-14	Unimplemen	ted: Read as 'o)'				
bit 13-8	RP1R<5:0>:	RP1 Output Pin	n Mapping bits	i			
	Peripheral out	tput number n i	s assigned to	pin, RP1 (see T	able 10-3 for p	eripheral functi	ion numbers).

- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP0R<5:0>:** RP0 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP0 (see Table 10-3 for peripheral function numbers).

REGISTER 10-23: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP3R5	RP3R4	RP3R3	RP3R2	RP3R1	RP3R0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP2R5	RP2R4	RP2R3	RP2R2	RP2R1	RP2R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP3R<5:0>:** RP3 Output Pin Mapping bits

Peripheral output number n is assigned to pin, RP3 (see Table 10-3 for peripheral function numbers).

- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP2R<5:0>:** RP2 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP2 (see Table 10-3 for peripheral function numbers).

REGISTER 10-36: RPOR14: PERIPHERAL PIN SELECT OUTPUT REGISTER 14

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
bit 15	RP29R0	RP29R1	RP29R2	RP29R3	RP29R4	RP29R5	—	—
	bit 8							bit 15

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP28R5	RP28R4	RP28R3	RP28R2	RP28R1	RP28R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP29R<5:0>: RP29 Output Pin Mapping bits
	Peripheral output number n is assigned to pin, RP29 (see Table 10-3 for peripheral function numbers).
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP28R<5:0>: RP28 Output Pin Mapping bits
	Peripheral output number n is assigned to pin, RP28 (see Table 10-3 for peripheral function numbers).

REGISTER 10-37: RPOR15: PERIPHERAL PIN SELECT OUTPUT REGISTER 15

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP31R5 ⁽¹⁾	RP31R4 ⁽¹⁾	RP31R3 ⁽¹⁾	RP31R2 ⁽¹⁾	RP31R1 ⁽¹⁾	RP31R0 ⁽¹⁾
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP30R5	RP30R4	RP30R3	RP30R2	RP30R1	RP30R0
bit 7	•						bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8**RP31R<5:0>:** RP31 Output Pin Mapping bits⁽¹⁾
Peripheral output number n is assigned to pin, RP31 (see Table 10-3 for peripheral function numbers).bit 7-6**Unimplemented:** Read as '0'

bit 5-0 **RP30R<5:0>:** RP30 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP30 (see Table 10-3 for peripheral function numbers).

Note 1: Unimplemented in 64-pin and 80-pin devices; read as '0'.

REGISTER 13-1: ICxCON1: INPUT CAPTURE x CONTROL REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0		
—	_	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0		—		
bit 15							bit 8		
U-0	R/W-0	R/W-0	R-0, HCS	R-0, HCS	R/W-0	R/W-0	R/W-0		
	ICI1	ICI0	ICOV	ICBNE	ICM2 ⁽¹⁾	ICM1 ⁽¹⁾	ICM0 ⁽¹⁾		
bit 7							bit (
Legend:		HCS = Hardv	vare Clearable/	Settable bit					
R = Readat	ole bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'			
-n = Value a	at POR	'1' = Bit is set	t	'0' = Bit is clea		x = Bit is unkr	nown		
bit 15-14	Unimpleme	nted: Read as '	0'						
bit 13	ICSIDL: Inpu	it Capture x Mo	dule Stop in Idl	e Control bit					
		oture module ha							
		oture module co	•		e mode				
bit 12-10		>: Input Captur		DITS					
	111 = Syste 110 = Reser	m clock (Fosc/: wed	2)						
	101 = Reser								
	100 = Time r	1							
	011 = Timer	-							
	010 = Timer 001 = Timer								
	000 = Timer								
bit 9-7	Unimpleme	nted: Read as '	0'						
bit 6-5	ICI<1:0>: Se	elect Number of	Captures per li	nterrupt bits					
		ot on every four		t					
		ot on every third							
		ot on every seco ot on every capt	•	ent					
bit 4		Capture x Over		a hit (rood only	N				
DIL 4		oture overflow c		g bit (read-only)				
		capture overflo							
bit 3	-	t Capture x Buf		is bit (read-only	y)				
		oture buffer is n				n be read			
		oture buffer is e							
bit 2-0		nput Capture M							
		111 = Interrupt mode: Input capture functions as interrupt pin only when device is in Sleep or Idle mode							
		g edge detect o ed (module disa		ntrol bits are no	ot applicable)				
		aler Capture m	,	n every 16th rig	sina edae				
		aler Capture m							
	011 = Simpl	le Capture mod	e: Capture on e	every rising edg	ge				
		e Capture mod					0. 1.1.		
		Detect Captur ol interrupt gene			ige (rising and	falling), ICI<1:	u> bits do no		
		capture module							
	ooo mput	sapta o module							

Note 1: The ICx input must also be configured to an available RPn pin. For more information, see Section 10.4 "Peripheral Pin Select".

17.2 Transmitting in 8-Bit Data Mode

- 1. Set up the UART:
 - a) Write appropriate values for data, parity and Stop bits.
 - b) Write appropriate baud rate value to the UxBRG register.
 - c) Set up transmit and receive interrupt enable and priority bits.
- 2. Enable the UART.
- 3. Set the UTXEN bit (causes a transmit interrupt two cycles after being set).
- 4. Write data byte to lower byte of UxTXREG word. The value will be immediately transferred to the Transmit Shift Register (TSR) and the serial bit stream will start shifting out with the next rising edge of the baud clock.
- Alternately, the data byte may be transferred while UTXEN = 0, and then the user may set UTXEN. This will cause the serial bit stream to begin immediately because the baud clock will start from a cleared state.
- 6. A transmit interrupt will be generated as per interrupt control bit, UTXISELx.

17.3 Transmitting in 9-Bit Data Mode

- 1. Set up the UART (as described in **Section 17.2** "**Transmitting in 8-Bit Data Mode**").
- 2. Enable the UART.
- 3. Set the UTXEN bit (causes a transmit interrupt).
- 4. Write UxTXREG as a 16-bit value only.
- 5. A word write to UxTXREG triggers the transfer of the 9-bit data to the TSR. The serial bit stream will start shifting out with the first rising edge of the baud clock.
- 6. A transmit interrupt will be generated as per the setting of control bit, UTXISELx.

17.4 Break and Sync Transmit Sequence

The following sequence will send a message frame header made up of a Break, followed by an Auto-Baud Sync byte.

- 1. Configure the UART for the desired mode.
- 2. Set UTXEN and UTXBRK to set up the Break character.
- 3. Load the UxTXREG with a dummy character to initiate transmission (value is ignored).
- 4. Write '55h' to UxTXREG; this loads the Sync character into the transmit FIFO.
- 5. After the Break has been sent, the UTXBRK bit is reset by hardware. The Sync character now transmits.

17.5 Receiving in 8-Bit or 9-Bit Data Mode

- 1. Set up the UART (as described in Section 17.2 "Transmitting in 8-Bit Data Mode").
- 2. Enable the UART.
- 3. A receive interrupt will be generated when one or more data characters have been received as per interrupt control bit, URXISELx.
- 4. Read the OERR bit to determine if an overrun error has occurred. The OERR bit must be reset in software.
- 5. Read UxRXREG.

The act of reading the UxRXREG character will move the next character to the top of the receive FIFO, including a new set of PERR and FERR values.

17.6 Operation of UxCTS and UxRTS Control Pins

UARTx Clear to Send (UxCTS) and Request to Send (UxRTS) are the two hardware controlled pins that are associated with the UART module. These two pins allow the UART to operate in Simplex and Flow Control mode. They are implemented to control the transmission and reception between the Data Terminal Equipment (DTE). The UEN<1:0> bits in the UxMODE register configure these pins.

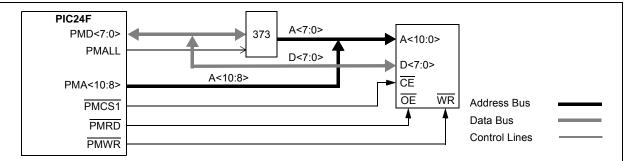
17.7 Infrared Support

The UART module provides two types of infrared UART support: one is the IrDA clock output to support external IrDA encoder and decoder device (legacy module support), and the other is the full implementation of the IrDA encoder and decoder. Note that because the IrDA modes require a 16x baud clock, they will only work when the BRGH bit (UxMODE<3>) is '0'.

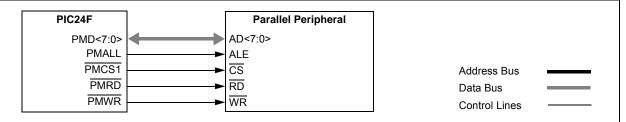
17.7.1 IrDA CLOCK OUTPUT FOR EXTERNAL IrDA SUPPORT

To support external IrDA encoder and decoder devices, the BCLKx pin (same as the UxRTS pin) can be configured to generate the 16x baud clock. When UEN<1:0> = 11, the BCLKx pin will output the 16x baud clock if the UART module is enabled. It can be used to support the IrDA codec chip.

17.7.2 BUILT-IN IrDA ENCODER AND DECODER

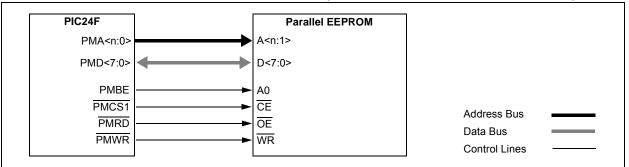

The UART has full implementation of the IrDA encoder and decoder as part of the UART module. The built-in IrDA encoder and decoder functionality is enabled using the IREN bit (UxMODE<12>). When enabled (IREN = 1), the receive pin (UxRX) acts as the input from the infrared receiver. The transmit pin (UxTX) acts as the output to the infrared transmitter.

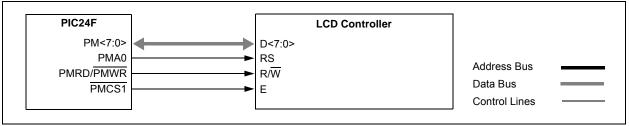
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PMPEN	_	PSIDL	ADRMUX1	ADRMUX0	PTBEEN	PTWREN	PTRDEN
bit 15		·		•			bit 8
		R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾			
R/W-0	R/W-0		-		R/W-0	R/W-0	R/W-0
CSF1 bit 7	CSF0	ALP	CS2P	CS1P	BEP	WRSP	RDSP bit 0
							bit t
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15	PMPEN: Par 1 = PMP en	allel Master Po	rt Enable bit				
	-	abled, no off-ch	nip access perfo	ormed			
bit 14	Unimplemer	nted: Read as '	0'				
bit 13	PSIDL: Stop	in Idle Mode bi	t				
		nue module ope e module opera			e mode		
bit 12-11	ADRMUX<1	:0>: Address/D	ata Multiplexing	Selection bits			
	11 = Reserv						
						per 3 bits are r	nultiplexed or
		ss and data app	ear on separat	e pins			
bit 10			-	-			
			Enable bit (16-	Bit Master mod	e)		
	1 = PMBE po 0 = PMBE po	ort enabled		Bit Master mod	e)		
bit 9	0 = PMBE po	ort enabled			e)		
bit 9	0 = PMBE po PTWREN: W 1 = PMWR/F	ort enabled ort disabled	bbe Port Enable abled		e)		
bit 9 bit 8	0 = PMBE po PTWREN: W 1 = PMWR/F 0 = PMWR/F	ort enabled ort disabled /rite Enable Stro PMENB port en	obe Port Enable abled abled	e bit	e)		
	0 = PMBE po PTWREN: W 1 = PMWR/f 0 = PMWR/f PTRDEN: Re 1 = PMRD/F	ort enabled ort disabled /rite Enable Stro PMENB port en PMENB port dis ead/Write Strob PMWR port ena	obe Port Enable abled abled e Port Enable b bled	e bit	e)		
bit 8	0 = PMBE po PTWREN: W 1 = PMWR/F 0 = PMWR/F PTRDEN: Re 1 = PMRD/F 0 = PMRD/F	ort enabled ort disabled /rite Enable Stro PMENB port en PMENB port dis ead/Write Strob PMWR port ena PMWR port disa	obe Port Enable abled abled e Port Enable b bled bled	e bit	e)		
	0 = PMBE po PTWREN: W 1 = PMWR/F 0 = PMWR/F PTRDEN: Re 1 = PMRD/F 0 = PMRD/F	ort enabled ort disabled /rite Enable Stro PMENB port en PMENB port dis ead/Write Strob PMWR port ena PMWR port disa Chip Select Fun	obe Port Enable abled abled e Port Enable b bled bled	e bit	e)		
bit 8	0 = PMBE pc PTWREN: W 1 = PMWR/f 0 = PMWR/f PTRDEN: Re 1 = PMRD/F 0 = PMRD/F CSF<1:0>: C 11 = Reserve 10 = PMCS1 01 = PMCS2	ort enabled ort disabled /rite Enable Stro PMENB port en PMENB port dis ead/Write Strob PMWR port ena PMWR port disa Chip Select Fun	obe Port Enable abled e Port Enable b bled bled ction bits inction as chip nip select, PMC	e bit bit select S1 functions as	s address bit 1	4	
bit 8	0 = PMBE pc PTWREN: W 1 = PMWR/F 0 = PMWR/F PTRDEN: Re 1 = PMRD/F 0 = PMRD/F CSF<1:0>: C 11 = Reserve 10 = PMCS1 01 = PMCS1 00 = PMCS1	ort enabled ort disabled /rite Enable Stro PMENB port en PMENB port dis ead/Write Strob PMWR port ena PMWR port disa Chip Select Fun ed and PMCS2 fu functions as cl	obe Port Enable abled abled e Port Enable t bled bled ction bits inction as chip nip select, PMC inction as addre	e bit bit select S1 functions as	s address bit 1	4	
bit 8 bit 7-6	0 = PMBE pc PTWREN: W 1 = PMWR/f 0 = PMWR/f PTRDEN: Re 1 = PMRD/F CSF<1:0>: C 11 = Reserve 10 = PMCS1 01 = PMCS1 00 = PMCS1 ALP: Address 1 = Active-h	ort enabled ort disabled /rite Enable Stro PMENB port en PMENB port dis ead/Write Strob PMWR port disa PMWR port disa PMWR port disa Chip Select Fun ed and PMCS2 fu and PMCS2 fu	obe Port Enable abled abled e Port Enable t bled bled ction bits inction as chip nip select, PMC inction as addre / bit ⁽¹⁾ d PMALH)	e bit bit select S1 functions as	s address bit 1	4	
bit 8 bit 7-6	0 = PMBE pc PTWREN: W 1 = PMWR/f 0 = PMWR/f PTRDEN: Re 1 = PMRD/F 0 = PMRD/F CSF<1:0>: C 11 = Reserve 10 = PMCS1 01 = PMCS2 00 = PMCS1 ALP: Address 1 = Active-h 0 = Active-lo	ort enabled ort disabled /rite Enable Strop PMENB port en PMENB port dis ead/Write Strob PMWR port ena PMWR port disa Chip Select Fun ed and PMCS2 fu and PMCS2 fu s Latch Polarity igh (PMALL and	obe Port Enable abled e Port Enable b bled ction bits inction as chip nip select, PMC inction as addre d bit ⁽¹⁾ d PMALH) PMALH)	e bit bit select S1 functions as	s address bit 1	4	
bit 8 bit 7-6 bit 5	0 = PMBE pc PTWREN: W 1 = PMWR/f 0 = PMWR/f PTRDEN: Re 1 = PMRD/F 0 = PMRD/F CSF<1:0>: C 11 = Reserve 10 = PMCS1 01 = PMCS2 00 = PMCS1 ALP: Address 1 = Active-h 0 = Active-h 1 = Active-h	ort enabled ort disabled /rite Enable Stro PMENB port en PMENB port dis ead/Write Strob PMWR port disa PMWR por	obe Port Enable abled abled e Port Enable to bled bled ction bits inction as chip nip select, PMC inction as addre / bit ⁽¹⁾ d PMALH) y bit ⁽¹⁾	e bit bit select S1 functions as	s address bit 1	4	
bit 8 bit 7-6 bit 5	0 = PMBE pc PTWREN: W 1 = PMWR/f 0 = PMWR/f PTRDEN: Re 1 = PMRD/F CSF<1:0>: C 11 = Reserve 10 = PMCS1 01 = PMCS2 00 = PMCS1 ALP: Address 1 = Active-h 0 = Active-lo	ort enabled ort disabled /rite Enable Stro PMENB port en PMENB port dis ead/Write Strob PMWR port disa PMWR disa PMWR port disa PMWR dis	obe Port Enable abled abled e Port Enable t bled bled ction bits inction as chip nip select, PMC inction as addre / bit ⁽¹⁾ d PMALH) PMALH) y bit ⁽¹⁾ (CS2)	e bit bit select S1 functions as	s address bit 1	4	


REGISTER 18-1: PMCON: PARALLEL MASTER PORT CONTROL REGISTER

Note 1: These bits have no effect when their corresponding pins are used as address lines.

FIGURE 18-8: EXAMPLE OF A PARTIALLY MULTIPLEXED ADDRESSING APPLICATION


FIGURE 18-9: EXAMPLE OF AN 8-BIT MULTIPLEXED ADDRESS AND DATA APPLICATION


FIGURE 18-10: PARALLEL EEPROM EXAMPLE (UP TO 15-BIT ADDRESS, 8-BIT DATA)

PIC24F		Parallel EEPROM		
PMA <n:0></n:0>		A <n:0></n:0>		
PMD<7:0>	\longleftrightarrow	D<7:0>		
PMCS1 PMRD PMWR		CE OE WR	Address Bus Data Bus Control Lines	

FIGURE 18-11: PARALLEL EEPROM EXAMPLE (UP TO 15-BIT ADDRESS, 16-BIT DATA)

FIGURE 18-12: LCD CONTROL EXAMPLE (BYTE MODE OPERATION)

REGISTER 21-3: AD1CON3: A/D CONTROL REGISTER 3

R/W-0	r-0	r-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADRC	r	r	SAMC4	SAMC3	SAMC2	SAMC1	SAMC0
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| ADCS7 | ADCS6 | ADCS5 | ADCS4 | ADCS3 | ADCS2 | ADCS1 | ADCS0 |
| bit 7 | | | | | | | bit 0 |

Legend:		r = Reserved bit					
R = Readab	ole bit	W = Writable bit	ble bit U = Unimplemented bit, read as '0'				
-n = Value a	t POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			
			- 1-14				
bit 15	1 = A/D ii	D Conversion Clock Source nternal RC clock derived from system clock					
bit 14-13	Reserved	l: Maintain as '0'					
bit 12-8	11111 = 3 00001 = 7						
bit 7-0 ADCS<7:0>: A/D Conversion Clock Select bits 11111111 = Reserved, do not use 01000000 00111111 = 64 Tcy 00111110 = 63 Tcy							

© 2010 Microchip Technology Inc.

00000001 = 2 * Tcy 00000000 = Tcy

TABLE 26-1: SYMBOLS USED IN OPCODE DESCRIPTIONS

Field	Description
#text	Means literal defined by "text"
(text)	Means "content of text"
[text]	Means "the location addressed by text"
{ }	Optional field or operation
<n:m></n:m>	Register bit field
.b	Byte mode selection
.d	Double-Word mode selection
.S	Shadow register select
.W	Word mode selection (default)
bit4	4-bit bit selection field (used in word addressed instructions) $\in \{015\}$
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero
Expr	Absolute address, label or expression (resolved by the linker)
f	File register address ∈ {0000h1FFFh}
lit1	1-bit unsigned literal $\in \{0,1\}$
lit4	4-bit unsigned literal ∈ {015}
lit5	5-bit unsigned literal ∈ {031}
lit8	8-bit unsigned literal ∈ {0255}
lit10	10-bit unsigned literal \in {0255} for Byte mode, {0:1023} for Word mode
lit14	14-bit unsigned literal ∈ {016384}
lit16	16-bit unsigned literal \in {065535}
lit23	23-bit unsigned literal ∈ {08388608}; LSB must be '0'
None	Field does not require an entry, may be blank
PC	Program Counter
Slit10	10-bit signed literal \in {-512511}
Slit16	16-bit signed literal ∈ {-3276832767}
Slit6	6-bit signed literal ∈ {-1616}
Wb	Base W register ∈ {W0W15}
Wd	Destination W register ∈ { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }
Wdo	Destination W register ∈ { Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] }
Wm,Wn	Dividend, Divisor working register pair (direct addressing)
Wn	One of 16 working registers ∈ {W0W15}
Wnd	One of 16 destination working registers \in {W0W15}
Wns	One of 16 source working registers ∈ {W0W15}
WREG	W0 (working register used in file register instructions)
Ws	Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }
Wso	Source W register ∈ { Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }

DC CHARACTE	RISTICS		$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Parameter No.	Typical ⁽¹⁾	Max	Units						
Operating Curre	ent (IDD): PM	D Bits are S	et ⁽²⁾	•					
DC20	0.83	1.2	mA	-40°C					
DC20a	0.83	1.2	mA	+25°C	2.0√ ⁽³⁾				
DC20b	0.83	1.2	mA	+85°C	2.000				
DC20c	0.9	1.3	mA	+125°C		4 МІРО			
DC20d	1.1	1.7	mA	-40°C		– 1 MIPS			
DC20e	1.1	1.7	mA	+25°C	3.3√ ⁽⁴⁾				
DC20f	1.1	1.7	mA	+85°C	3.30(*)				
DC20g	1.2	1.7	mA	+125°C					
DC23	3.3	4.5	mA	-40°C					
DC23a	3.3	4.5	mA	+25°C	2.0√ ⁽³⁾				
DC23b	3.3	4.6	mA	+85°C	2.000	- 4 MIPS			
DC23c	3.4	4.6	mA	+125°C					
DC23d	4.3	6.5	mA	-40°C					
DC23e	4.3	6.5	mA	+25°C	3.3√(4)				
DC23f	4.3	6.5	mA	+85°C	3.30(*)				
DC23g	4.3	6.5	mA	+125°C					
DC24	18.2	24.0	mA	-40°C					
DC24a	18.2	24.0	mA	+25°C	2.5∨ ⁽³⁾				
DC24b	18.2	24.0	mA	+85°C	2.50(0)				
DC24c	18.2	24.0	mA	+125°C					
DC24d	18.2	24.0	mA	-40°C		- 16 MIPS			
DC24e	18.2	24.0	mA	+25°C	3.3√(4)				
DC24f	18.2	24.0	mA	+85°C	3.30(*)				
DC24g	18.2	24.0	mA	+125°C					
DC31	15.0	54.0	μA	-40°C					
DC31a	15.0	54.0	μA	+25°C	2.0√ ⁽³⁾				
DC31b	20.0	69.0	μΑ	+85°C	2.000				
DC31c	60.0	159.0	μA	+125°C]				
DC31d	57.0	96.0	μΑ	-40°C		LPRC (31 kHz)			
DC31e	57.0	96.0	μΑ	+25°C	3.3√(4)				
DC31f	95.0	145.0	μA	+85°C	3.30				
DC31g	120.0	281.0	μA	+125°C	1				

TABLE 28-4: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows: OSCI driven with external square wave from rail to rail. All I/O pins are configured as inputs and pulled to VDD. MCLR = VDD; WDT and FSCM are disabled. CPU, SRAM, program memory and data memory are operational. No peripheral modules are operating and all of the Peripheral Module Disable (PMD) bits are set.

3: On-chip voltage regulator disabled (ENVREG tied to Vss).

4: On-chip voltage regulator enabled (ENVREG tied to VDD).

TABLE 28-7: D	C CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS
---------------	---

DC CHARACTERISTICS			Standard Opera Operating tempo	ditions: 2.0V to 3.6V (unless otherwise st -40°C \leq TA \leq +85°C for Industrial -40°C \leq TA \leq +125°C for Extended			
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
	VIL	Input Low Voltage ⁽⁴⁾					
DI10		I/O Pins with ST Buffer	Vss	_	0.2 Vdd	V	
DI11		I/O Pins with TTL Buffer	Vss	_	0.15 Vdd	V	
DI15		MCLR	Vss	_	0.2 VDD	V	
DI16		OSC1 (XT mode)	Vss	_	0.2 VDD	V	
DI17		OSC1 (HS mode)	Vss	_	0.2 VDD	V	
DI18		I/O Pins with I ² C™ Buffer	Vss	_	0.3 VDD	V	
DI19		I/O Pins with SMBus Buffer	Vss	_	0.8	V	SMBus enabled
	Vih	Input High Voltage ^(4,5)					
DI20		I/O Pins with ST Buffer: with Analog Functions Digital Only	0.8 Vdd 0.8 Vdd	_	Vdd 5.5	V V	
DI21		I/O Pins with TTL buffer: with Analog Functions Digital Only	0.25 Vdd + 0.8 0.25 Vdd + 0.8	_	Vdd 5.5	V V	
DI25		MCLR	0.8 VDD	_	Vdd	V	
DI26		OSC1 (XT mode)	0.7 VDD	_	Vdd	V	
DI27		OSC1 (HS mode)	0.7 Vdd	_	Vdd	V	
DI28		I/O Pins with I ² C Buffer: with Analog Functions Digital Only	0.7 Vdd 0.7 Vdd		Vdd 5.5	V V	
DI29		I/O Pins with SMBus Buffer: with Analog Functions Digital Only	2.1 2.1		VDD 5.5	V V	$2.5V \leq V \text{PIN} \leq V \text{DD}$
DI30	ICNPU	CNx Pull-up Current	50	250	400	μA	VDD = 3.3V, VPIN = 0
DI30A	ICNPD	CNx Pull-Down Current	—	80	_	μA	VDD = 3.3V, VPIN = VDD
DI31	IPU	Maximum Load Current for Digital High Detection w/ Internal Pull-up		_	30 100	μA μA	VDD = 2.0V VDD = 3.3V

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

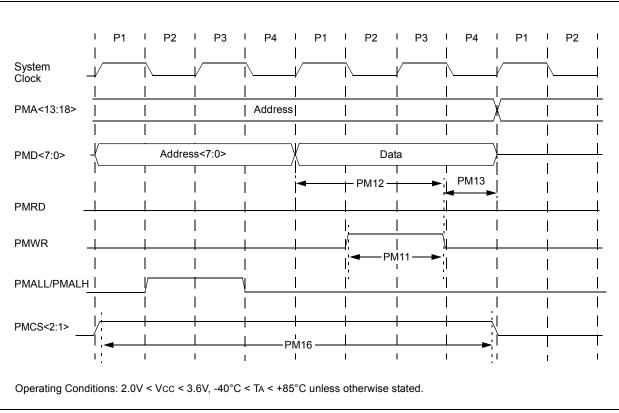
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

4: Refer to Table 1-4 for I/O pins buffer types.

5: VIH requirements are met when internal pull-ups are enabled.

DC CHARACTERISTICS				$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param No.	Sym	Characteristic Min Typ ⁽¹⁾ Max Units				Conditions		
D130	Eр	Cell Endurance	10000	_	_	E/W	-40°C to +85°C	
D131	Vpr	VDD for Read	Vmin	—	3.6	V	VMIN = Minimum operating voltage	
	VPEW	Supply Voltage for Self-Timed Writes						
D132A		VDDCORE	2.25	—	VDDCORE	V		
D132B		Vdd	2.35	—	3.6	V		
D133A	Tiw	Self-Timed Write Cycle Time		3	—	ms		
D133B	TIE	Self-Timed Page Erase Time	40	—	—	ms		
D134	TRETD	Characteristic Retention	20	—	—	Year	Provided no other specifications are violated	
D135	Iddp	Supply Current during Programming		7	—	mA		


TABLE 28-9: DC CHARACTERISTICS: PROGRAM MEMORY

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

TABLE 28-10: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

Operati	Operating Conditions: -40°C < TA < +125°C (unless otherwise stated)										
Param No.	Symbol	Characteristics	Min	Тур	Max	Units	Comments				
	Vrgout	Regulator Output Voltage	_	2.5	_	V					
	Vbg	Internal Band Gap Reference	—	1.2	—	V					
	Cefc	External Filter Capacitor Value	4.7	10	—	μF	Series resistance < 3 Ohm recommended; < 5 Ohm required.				
	TVREG	Regulator Start-up Time									
			—	10		μs	PMSLP = 1, or any POR or BOR				
			—	250		μS	Wake for Sleep when PMSLP = 0				
	Твg	Band Gap Reference Start-up Time	_	_	1	ms					

DS39905E-page 280

FIGURE 28-23: PARALLEL MASTER PORT WRITE TIMING DIAGRAM

TABLE 28-36: PARALLEL MASTER PORT WRITE TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated) Operating temperature -40°C \leq TA \leq +85°C for Industrial				
Param. No	Symbol	Characteristics ⁽¹⁾	Min	Тур	Max	Units	Conditions
PM11		PMWR Pulse Width	—	0.5 TCY		ns	
PM12		Data Out Valid before PMWR or PMENB goes Inactive (data setup time)	—	0.75 TCY	_	ns	
PM13		PMWR or PMEMB Invalid to Data Out Invalid (data hold time)	—	0.25 TCY	_	ns	
PM16		PMCSx Pulse Width	TCY – 5	_	_	ns	

Note 1: Wait states disabled for all cases.