

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	53
Program Memory Size	256KB (85.5K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj256ga106-i-mr

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Device Overview	
2.0	Guidelines for Getting Started with 16-Bit Microcontrollers	
3.0	CPU	
4.0	Memory Organization	
5.0	Flash Program Memory	57
6.0	Resets	65
7.0	Interrupt Controller	71
8.0	Oscillator Configuration	115
9.0	Power-Saving Features	125
10.0	I/O Ports	127
11.0	Timer1	155
12.0	Timer2/3 and Timer4/5	157
13.0	Input Capture with Dedicated Timer	
14.0	Output Compare with Dedicated Timer	167
15.0	Serial Peripheral Interface (SPI)	175
16.0	Inter-Integrated Circuit (I ² C [™])	185
17.0	Universal Asynchronous Receiver Transmitter (UART)	
18.0	Parallel Master Port (PMP)	201
19.0	Real-Time Clock and Calendar (RTCC)	
20.0	Programmable Cyclic Redundancy Check (CRC) Generator	
21.0	10-Bit High-Speed A/D Converter	
22.0	Triple Comparator Module	
23.0	Comparator Voltage Reference	239
	Charge Time Measurement Unit (CTMU)	
25.0	Special Features	245
26.0	Instruction Set Summary	257
27.0	Development Support	
28.0	Electrical Characteristics	269
29.0	Packaging Information	305
Appe	ndix A: Revision History	319
Index	<	321
The N	Vicrochip Web Site	327
Custo	omer Change Notification Service	327
Custo	omer Support	327
Read	ler Response	328
Produ	uct Identification System	329

1.0 DEVICE OVERVIEW

This document contains device-specific information for the following devices:

- PIC24FJ64GA106 PIC24FJ64GA110
- PIC24FJ128GA106 PIC24F
 - PIC24FJ128GA110
 PIC24FJ192GA110
- PIC24FJ192GA106PIC24FJ256GA106
- PIC24FJ256GA110
- PIC24FJ64GA108
- PIC24FJ128GA108
- PIC24FJ192GA108
- PIC24FJ256GA108

This family expands on the existing line of Microchip's 16-bit general purpose microcontrollers, combining enhanced computational performance with an expanded and highly configurable peripheral feature set. The PIC24FJ256GA110 family provides a new platform for high-performance applications, which have outgrown their 8-bit platforms, but don't require the power of a digital signal processor.

1.1 Core Features

1.1.1 16-BIT ARCHITECTURE

Central to all PIC24F devices is the 16-bit modified Harvard architecture, first introduced with Microchip's dsPIC[®] digital signal controllers. The PIC24F CPU core offers a wide range of enhancements, such as:

- 16-bit data and 24-bit address paths with the ability to move information between data and memory spaces
- Linear addressing of up to 12 Mbytes (program space) and 64 Kbytes (data)
- A 16-element working register array with built-in software stack support
- A 17 x 17 hardware multiplier with support for integer math
- Hardware support for 32 by 16-bit division
- An instruction set that supports multiple addressing modes and is optimized for high-level languages, such as 'C'
- · Operational performance up to 16 MIPS

1.1.2 POWER-SAVING TECHNOLOGY

All of the devices in the PIC24FJ256GA110 family incorporate a range of features that can significantly reduce power consumption during operation. Key items include:

• **On-the-Fly Clock Switching:** The device clock can be changed under software control to the Timer1 source or the internal, low-power RC Oscillator during operation, allowing the user to incorporate power-saving ideas into their software designs.

- **Doze Mode Operation:** When timing-sensitive applications, such as serial communications, require the uninterrupted operation of peripherals, the CPU clock speed can be selectively reduced, allowing incremental power savings without missing a beat.
- Instruction-Based Power-Saving Modes: The microcontroller can suspend all operations, or selectively shut down its core while leaving its peripherals active, with a single instruction in software.

1.1.3 OSCILLATOR OPTIONS AND FEATURES

All of the devices in the PIC24FJ256GA110 family offer five different oscillator options, allowing users a range of choices in developing application hardware. These include:

- Two Crystal modes using crystals or ceramic resonators.
- Two External Clock modes offering the option of a divide-by-2 clock output.
- A Fast Internal Oscillator (FRC) with a nominal 8 MHz output, which can also be divided under software control to provide clock speeds as low as 31 kHz.
- A Phase Lock Loop (PLL) frequency multiplier available to the external oscillator modes and the FRC Oscillator, which allows clock speeds of up to 32 MHz.
- A separate internal RC Oscillator (LPRC) with a fixed 31 kHz output, which provides a low-power option for timing-insensitive applications.

The internal oscillator block also provides a stable reference source for the Fail-Safe Clock Monitor. This option constantly monitors the main clock source against a reference signal provided by the internal oscillator and enables the controller to switch to the internal oscillator, allowing for continued low-speed operation or a safe application shutdown.

1.1.4 EASY MIGRATION

Regardless of the memory size, all devices share the same rich set of peripherals, allowing for a smooth migration path as applications grow and evolve. The consistent pinout scheme used throughout the entire family also aids in migrating from one device to the next larger, or even in jumping from 64-pin to 100-pin devices.

The PIC24F family is pin-compatible with devices in the dsPIC33 and PIC32 families, and shares some compatibility with the pinout schema for PIC18 and dsPIC30 devices. This extends the ability of applications to grow from the relatively simple, to the powerful and complex, yet still selecting a Microchip device.

TABLE 1-2: DEVICE FEATURES FOR THE PIC24FJ256GA110 FAMILY: 80-PIN DEVICES

Features	PIC24FJ64GA108	PIC24FJ128GA108	PIC24FJ192GA108	PIC24FJ256GA108			
Operating Frequency		DC – 3	32 MHz				
Program Memory (bytes)	64K	128K	192K	256K			
Program Memory (instructions)	22,016	44,032	67,072	87,552			
Data Memory (bytes)		16,	384				
Interrupt Sources (soft vectors/NMI traps)		66 (62/4)				
I/O Ports		Ports A, B,	C, D, E, F, G				
Total I/O Pins		6	9				
Remappable Pins		42 (31 I/O, 1	11 input only)				
Timers: Total Number (16-bit) 32-Bit (from paired 16-bit timers)	5(1)						
Input Capture Channels		9	(1)				
Output Compare/PWM Channels		9	(1)				
Input Change Notification Interrupt		6	9				
Serial Communications:							
UART	4(1)						
SPI (3-wire/4-wire)		3	(1)				
l ² C™			3				
Parallel Communications (PMP/PSP)		Y	es				
JTAG Boundary Scan		Y	es				
10-Bit Analog-to-Digital Module (input channels)		1	6				
Analog Comparators			3				
CTMU Interface		Y	es				
Resets (and delays)	POR, BOR, RESET Instruction, MCLR, WDT; Illegal Opcode, REPEAT Instruction, Hardware Traps, Configuration Word Mismatch (PWRT, OST, PLL Lock)						
Instruction Set	76 Base Instructions, Multiple Addressing Mode Variations						
Packages		80-Pir	TQFP				

Note 1: Peripherals are accessible through remappable pins.

4.2.2 DATA MEMORY ORGANIZATION AND ALIGNMENT

To maintain backward compatibility with PIC^{\circledast} devices and improve data space memory usage efficiency, the PIC24F instruction set supports both word and byte operations. As a consequence of byte accessibility, all Effective Address (EA) calculations are internally scaled to step through word-aligned memory. For example, the core recognizes that Post-Modified Register Indirect Addressing mode [Ws++] will result in a value of Ws + 1 for byte operations and Ws + 2 for word operations.

Data byte reads will read the complete word which contains the byte, using the LSb of any EA to determine which byte to select. The selected byte is placed onto the LSB of the data path. That is, data memory and registers are organized as two parallel, byte-wide entities with shared (word) address decode, but separate write lines. Data byte writes only write to the corresponding side of the array or register which matches the byte address.

All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, so care must be taken when mixing byte and word operations or translating from 8-bit MCU code. If a misaligned read or write is attempted, an address error trap will be generated. If the error occurred on a read, the instruction underway is completed; if it occurred on a write, the instruction will be executed but the write will not occur. In either case, a trap is then executed, allowing the system and/or user to examine the machine state prior to execution of the address Fault.

All byte loads into any W register are loaded into the Least Significant Byte. The Most Significant Byte is not modified.

A Sign-Extend (SE) instruction is provided to allow users to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, users can clear the MSB of any W register by executing a Zero-Extend (ZE) instruction on the appropriate address.

Although most instructions are capable of operating on word or byte data sizes, it should be noted that some instructions operate only on words.

4.2.3 NEAR DATA SPACE

The 8-Kbyte area between 0000h and 1FFFh is referred to as the near data space. Locations in this space are directly addressable via a 13-bit absolute address field within all memory direct instructions. The remainder of the data space is indirectly addressable. Additionally, the whole data space is addressable using MOV instructions, which support Memory Direct Addressing with a 16-bit address field.

4.2.4 SFR SPACE

The first 2 Kbytes of the near data space, from 0000h to 07FFh, are primarily occupied with Special Function Registers (SFRs). These are used by the PIC24F core and peripheral modules for controlling the operation of the device.

SFRs are distributed among the modules that they control and are generally grouped together by module. Much of the SFR space contains unused addresses; these are read as '0'. A diagram of the SFR space, showing where SFRs are actually implemented, is shown in Table 4-2. Each implemented area indicates a 32-byte region where at least one address is implemented as an SFR. A complete listing of implemented SFRs, including their addresses, is shown in Tables 4-3 through 4-29.

	SFR Space Address								
	xx00	xx20	xx40	xx60	xx	80	xxA0	xxC0	xxE0
000h		Core		ICN			Interrupts		_
100h	Tim	ners	(Capture	apture Compare				
200h	l ² C™	UART	SPI/UART	SPI/I ² C	SPI		UART I/		0
300h	A/D	A/D/CTMU	_	_	_	_	—		_
400h	_	—	_	_	-	_			_
500h	-	—	_	_	_	_	—	—	_
600h	PMP	RTC/Comp	CRC	_			PPS		—
700h	_	—	System	NVM/PMD	_	_	—	_	—

TABLE 4-2:IMPLEMENTED REGIONS OF SFR DATA SPACE

Legend: — = No implemented SFRs in this block

TABLE 4-7: INPUT CAPTURE REGISTER MAP

IADLE 4				TOILE	REGIS I													
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IC1CON1 (0140	—	_	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	—	-	-	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC1CON2 0	0142	—		_	—	_	—	_	IC32	ICTRIG	TRIGSTAT	_	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000D
IC1BUF (0144	Input Capture 1 Buffer Register											0000					
IC1TMR 0	0146								Timer	Value 1 Re	gister							xxxx
IC2CON1 0	0148	—	_	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	—			ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC2CON2 C	014A	—	—	_	—	_	—	—	IC32	ICTRIG	TRIGSTAT	_	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000D
IC2BUF 0	014C	Input Capture 2 Buffer Register											0000					
IC2TMR C	014E								Timer	Value 2 Re	gister					-		xxxx
IC3CON1 (0150	—		ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	_	_	_	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC3CON2 (0152	_	—	—	—	—	—	—	IC32	ICTRIG	TRIGSTAT	—	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000D
IC3BUF (0154								Input Cap	ture 3 Buffei	Register							0000
IC3TMR (0156								Timer	Value 3 Re	gister							xxxx
IC4CON1 (0158	—	—	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	_	_	_	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC4CON2 C	015A	—	—	—	—	_	—	_	IC32	ICTRIG	TRIGSTAT	_	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000D
IC4BUF 0	015C								Input Cap	ture 4 Buffei	Register							0000
IC4TMR C	015E								Timer	Value 4 Re	gister							xxxx
IC5CON1 (0160	—	—	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	—	—	—	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC5CON2 (0162	—	—	—	—	—	—	—	IC32	ICTRIG	TRIGSTAT	—	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000D
	0164								Input Cap	ture 5 Buffei	Register							0000
	0166						,		Timer	Value 5 Re	5				1			xxxx
IC6CON1 (0168	—	—	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	—	—	—	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC6CON2 C	016A	—	—	—	—	—	—	—	IC32	ICTRIG	TRIGSTAT	—	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000D
IC6BUF 0	016C								Input Cap	ture 6 Buffei	Register							0000
IC6TMR C	016E	i			ı	-			Timer	Value 6 Re	gister				1			xxxx
IC7CON1 (0170	—	—	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	—	—	—	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC7CON2	0172	_		_	—	—			IC32	ICTRIG	TRIGSTAT		SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000D
	0174								Input Cap	ture 7 Buffei	Register							0000
	0176								Timer	Value 7 Re					1			xxxx
IC8CON1 (0178	—	—	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	—	—	—	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
	017A	—	—	—	—	—	—	_	IC32	ICTRIG	TRIGSTAT	_	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000D
IC8BUF 0	017C								Input Cap	ture 8 Buffei	Register							0000
	017E				1				Timer	Value 8 Re				1	1	1		xxxx
	0180	—	—	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	_	—	—	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC9CON2 (0182	—	—	—	—	—	—	—	IC32	ICTRIG	TRIGSTAT	_	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000D
		Input Capture 9 Buffer Register 000									0000							
	0184 0186								input Cap	ture 9 Buffei	Register							0000

PIC24FJ256GA110 FAMILY

Legend:

- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

5.6.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

The user can program one row of Flash program memory at a time. To do this, it is necessary to erase the 8-row erase block containing the desired row. The general process is as follows:

- 1. Read eight rows of program memory (512 instructions) and store in data RAM.
- 2. Update the program data in RAM with the desired new data.
- 3. Erase the block (see Example 5-1 for an implementation in assembler):
 - a) Set the NVMOP bits (NVMCON<3:0>) to ⁽⁰⁰¹⁰⁾ to configure for block erase. Set the ERASE (NVMCON<6>) and WREN (NVMCON<14>) bits.
 - b) Write the starting address of the block to be erased into the TBLPAG and W registers.
 - c) Write 55h to NVMKEY.
 - d) Write AAh to NVMKEY.
 - e) Set the WR bit (NVMCON<15>). The erase cycle begins and the CPU stalls for the duration of the erase cycle. When the erase is done, the WR bit is cleared automatically.
- 4. Write the first 64 instructions from data RAM into the program memory buffers (see Example 5-3 for the implementation in assembler).

- 5. Write the program block to Flash memory:
 - a) Set the NVMOP bits to '0001' to configure for row programming. Clear the ERASE bit and set the WREN bit.
 - b) Write 55h to NVMKEY.
 - c) Write AAh to NVMKEY.
 - d) Set the WR bit. The programming cycle begins and the CPU stalls for the duration of the write cycle. When the write to Flash memory is done, the WR bit is cleared automatically.
- 6. Repeat Steps 4 and 5, using the next available 64 instructions from the block in data RAM by incrementing the value in TBLPAG, until all 512 instructions are written back to Flash memory.

For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPs, as shown in Example 5-5.

Note: The equivalent C code for these steps, prepared using Microchip's MPLAB C30 compiler and a specific library of built-in hardware functions, is shown in Examples 5-2, 5-4 and 5-6.

EXAMPLE 5-1: ERASING A PROGRAM MEMORY BLOCK (ASSEMBLY LANGUAGE CODE)

; Set up	NVMCON	for block erase operation		
M	OV	#0x4042, W0	;	
M	OV	W0, NVMCON	;	Initialize NVMCON
; Init po	ointer	to row to be ERASED		
M	OV	<pre>#tblpage(PROG_ADDR), W0</pre>	;	
M	OV	W0, TBLPAG	;	Initialize PM Page Boundary SFR
M	OV	<pre>#tbloffset(PROG_ADDR), W0</pre>	;	Initialize in-page EA[15:0] pointer
TI	BLWTL	WO, [WO]	;	Set base address of erase block
D	ISI	#5	;	Block all interrupts with priority <7
			;	for next 5 instructions
M	OV	#0x55, W0		
M	OV	W0, NVMKEY	;	Write the 55 key
M	OV	#0xAA, W1	;	
M	OV	W1, NVMKEY	;	Write the AA key
B	SET	NVMCON, #WR	;	Start the erase sequence
N	OP		;	Insert two NOPs after the erase
N	OP		;	command is asserted

REGISTER 7-17: IPC0: INTERRUPT PRIORITY CONTROL REGISTER 0

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0		
—	T1IP2	T1IP1	T1IP0		OC1IP2	OC1IP1	OC1IP0		
bit 15							bit 8		
	D ////	DAVA	D /// 0		D 0.01 4	DAALO	D 444.0		
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0		
 bit 7	IC1IP2	IC1IP1	IC1IP0	_	INT0IP2	INT0IP1	INT0IP0 bit		
							DIL		
Legend:									
R = Readab	le bit	W = Writable I	oit	U = Unimplen	nented bit, read	d as '0'			
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown		
bit 15	Unimplemen	nted: Read as '0)'						
bit 14-12	-	imer1 Interrupt							
		ipt is priority 7 (h	2	y interrupt)					
	•		• • •						
	•								
	001 = Interru	pt is priority 1							
		pt source is disa	abled						
	Unimplemented: Read as '0'								
bit 11	Unimplemer	nted: Read as 'o)'						
	-	nted: Read as '0 : Output Compa		Interrupt Priority	y bits				
	OC1IP<2:0>		re Channel 1		y bits				
bit 11 bit 10-8	OC1IP<2:0>	: Output Compa	re Channel 1		y bits				
	OC1IP<2:0>	: Output Compa	re Channel 1		y bits				
	OC1IP<2:0> 111 = Interru 001 = Interru	: Output Compa pt is priority 7 (h pt is priority 1	re Channel 1 highest priorit		y bits				
bit 10-8	OC1IP<2:0> 111 = Interru	: Output Compa pt is priority 7 (h pt is priority 1 pt source is disa	re Channel 1 highest priority abled		y bits				
bit 10-8	OC1IP<2:0> 111 = Interru	: Output Compa pt is priority 7 (h pt is priority 1 pt source is disa nted: Read as '0	re Channel 1 nighest priority abled	y interrupt)					
	OC1IP<2:0> 111 = Interru 001 = Interru 000 = Interru Unimplemen IC1IP<2:0>:	: Output Compa pt is priority 7 (h pt is priority 1 pt source is disa nted: Read as 'c Input Capture C	re Channel 1 highest priority abled hannel 1 Inte	y interrupt) rrupt Priority bits					
bit 10-8	OC1IP<2:0> 111 = Interru 001 = Interru 000 = Interru Unimplemen IC1IP<2:0>:	: Output Compa pt is priority 7 (h pt is priority 1 pt source is disa nted: Read as '0	re Channel 1 highest priority abled hannel 1 Inte	y interrupt) rrupt Priority bits					
bit 10-8	OC1IP<2:0> 111 = Interru 001 = Interru 000 = Interru Unimplemen IC1IP<2:0>:	: Output Compa pt is priority 7 (h pt is priority 1 pt source is disa nted: Read as 'c Input Capture C	re Channel 1 highest priority abled hannel 1 Inte	y interrupt) rrupt Priority bits					
bit 10-8	OC1IP<2:0> 111 = Interru 001 = Interru 000 = Interru Unimplemen IC1IP<2:0>: 111 = Interru	: Output Compa pt is priority 7 (h pt is priority 1 pt source is disa nted: Read as 'c Input Capture C pt is priority 7 (h	re Channel 1 highest priority abled hannel 1 Inte	y interrupt) rrupt Priority bits					
bit 10-8	OC1IP<2:0> 111 = Interru 001 = Interru 000 = Interru Unimplemen IC1IP<2:0>: 111 = Interru 001 = Interru	: Output Compa pt is priority 7 (h pt is priority 1 pt source is disa nted: Read as '0 Input Capture C pt is priority 7 (h	re Channel 1 highest priority abled hannel 1 Inte highest priority	y interrupt) rrupt Priority bits					
bit 10-8 bit 7 bit 6-4	OC1IP<2:0> 111 = Interru 001 = Interru 000 = Interru Unimplemen IC1IP<2:0>: 111 = Interru 001 = Interru 001 = Interru	: Output Compa pt is priority 7 (h pt is priority 1 pt source is disa nted: Read as 'c Input Capture C pt is priority 7 (h pt is priority 1 pt source is disa	re Channel 1 highest priority abled , hannel 1 Inte highest priority	y interrupt) rrupt Priority bits					
bit 10-8 bit 7 bit 6-4 bit 3	OC1IP<2:0> 111 = Interru 001 = Interru 000 = Interru Unimplemen IC1IP<2:0>: 111 = Interru 001 = Interru 001 = Interru Unimplemen	: Output Compa pt is priority 7 (h pt is priority 1 pt source is disa nted: Read as '0 Input Capture C pt is priority 7 (h pt is priority 1 pt source is disa nted: Read as '0	re Channel 1 highest priority abled hannel 1 Inte highest priority abled	y interrupt) rrupt Priority bits y interrupt)					
bit 10-8 bit 7 bit 6-4 bit 3	OC1IP<2:0> 111 = Interru 001 = Interru 000 = Interru Unimplemen IC1IP<2:0>: 111 = Interru 001 = Interru 001 = Interru Unimplemen INT0IP<2:0>	: Output Compa pt is priority 7 (h pt is priority 1 pt source is disa nted: Read as '0 Input Capture C pt is priority 7 (h pt is priority 1 pt source is disa nted: Read as '0 : External Intern	re Channel 1 highest priority abled hannel 1 Inte highest priority abled	y interrupt) rrupt Priority bits y interrupt)					
bit 10-8 bit 7 bit 6-4 bit 3	OC1IP<2:0> 111 = Interru 001 = Interru 000 = Interru Unimplemen IC1IP<2:0>: 111 = Interru 001 = Interru 001 = Interru Unimplemen INT0IP<2:0>	: Output Compa pt is priority 7 (h pt is priority 1 pt source is disa nted: Read as '0 Input Capture C pt is priority 7 (h pt is priority 1 pt source is disa nted: Read as '0	re Channel 1 highest priority abled hannel 1 Inte highest priority abled	y interrupt) rrupt Priority bits y interrupt)					
bit 10-8	OC1IP<2:0> 111 = Interru 001 = Interru 000 = Interru Unimplemen IC1IP<2:0>: 111 = Interru 001 = Interru 001 = Interru Unimplemen INT0IP<2:0>	: Output Compa pt is priority 7 (h pt is priority 1 pt source is disa nted: Read as '0 Input Capture C pt is priority 7 (h pt is priority 1 pt source is disa nted: Read as '0 : External Intern	re Channel 1 highest priority abled hannel 1 Inte highest priority abled	y interrupt) rrupt Priority bits y interrupt)					
bit 10-8 bit 7 bit 6-4 bit 3	OC1IP<2:0> 111 = Interru 001 = Interru 000 = Interru Unimplemer IC1IP<2:0>: 111 = Interru 001 = Interru 001 = Interru Unimplemer INT0IP<2:0> 111 = Interru	: Output Compa pt is priority 7 (h pt is priority 1 pt source is disa nted: Read as '0 Input Capture C pt is priority 7 (h pt is priority 1 pt source is disa nted: Read as '0 : External Intern	re Channel 1 highest priority abled hannel 1 Inte highest priority abled	y interrupt) rrupt Priority bits y interrupt)					

REGISTER 7-27: IPC10: INTERRUPT PRIORITY CONTROL REGISTER 10

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
	OC7IP2	OC7IP1	OC7IP0	—	OC6IP2	OC6IP1	OC6IP0				
bit 15							bit 8				
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
	OC5IP2	OC5IP1	OC5IP0		IC6IP2	IC6IP1	IC6IP0				
bit 7							bit (
Legend:											
R = Readabl	le bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'					
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown				
bit 15	Unimplemen	ted: Read as '	0'								
bit 14-12	-			Interrupt Priority	y bits						
		pt is priority 7 (l									
	•										
	•										
	• 001 = Interrupt is priority 1										
		pt source is dis	abled								
bit 11	Unimplemen	ted: Read as '	0'								
h:+ 40 0	•										
8-01 זונ	0061P<2:0>:	Output Compa	are Channel 6	Interrupt Priority	y bits						
DIT 10-8		Output Compa pt is priority 7 (I			y bits						
8-טר זוט					y bits						
bit 10-8					y bits						
טונ זע-8	111 = Interru • •	pt is priority 7 (I			y bits						
טונ 10-8	111 = Interru • • 001 = Interru	pt is priority 7 (I pt is priority 1	highest priority		y bits						
	111 = Interru • • 001 = Interru 000 = Interru	pt is priority 7 (l pt is priority 1 pt source is dis	highest priority abled		y bits						
bit 7	<pre>111 = Interru</pre>	pt is priority 7 (l pt is priority 1 pt source is dis i ted: Read as 'd	highest priority abled 0'	/ interrupt)							
bit 7	111 = Interru • • 001 = Interru 000 = Interru Unimplemen OC5IP<2:0>:	pt is priority 7 (l pt is priority 1 pt source is dis t ed: Read as 'd Output Compa	highest priority abled 0' are Channel 5	/ interrupt)							
bit 7	111 = Interru • • 001 = Interru 000 = Interru Unimplemen OC5IP<2:0>:	pt is priority 7 (l pt is priority 1 pt source is dis i ted: Read as 'd	highest priority abled 0' are Channel 5	/ interrupt)							
bit 7	111 = Interru • • 001 = Interru 000 = Interru Unimplemen OC5IP<2:0>:	pt is priority 7 (l pt is priority 1 pt source is dis t ed: Read as 'd Output Compa	highest priority abled 0' are Channel 5	/ interrupt)							
bit 7	111 = Interru 001 = Interru 000 = Interru Unimplemen OC5IP<2:0>: 111 = Interru	pt is priority 7 (l pt is priority 1 pt source is dis I ted: Read as 'i Output Compa pt is priority 7 (l	highest priority abled 0' are Channel 5	/ interrupt)							
bit 7	111 = Interru 001 = Interru 000 = Interru Unimplemen OC5IP<2:0>: 111 = Interru 001 = Interru	pt is priority 7 (l pt is priority 1 pt source is dis i ted: Read as 'i Output Compa pt is priority 7 (l pt is priority 1	highest priority abled o' are Channel 5 highest priority	/ interrupt)							
bit 7 bit 6-4	<pre>111 = Interru</pre>	pt is priority 7 (f pt is priority 1 pt source is dis t ed: Read as 'f Output Compa pt is priority 7 (f pt is priority 1 pt source is dis	abled ^{0'} are Channel 5 highest priority abled	/ interrupt)							
bit 7 bit 6-4 bit 3	<pre>111 = Interru</pre>	pt is priority 7 (f pt is priority 1 pt source is dis ated: Read as 'f Output Compa pt is priority 7 (f pt is priority 1 pt source is dis ated: Read as 'f	abled ^{0'} are Channel 5 highest priority abled	/ interrupt) Interrupt Priority / interrupt)	y bits						
bit 7 bit 6-4 bit 3	111 = Interru 001 = Interru 000 = Interru Unimplemen OC5IP<2:0>: 111 = Interru 001 = Interru 000 = Interru Unimplemen IC6IP<2:0>:	pt is priority 7 (f pt is priority 1 pt source is dis ited: Read as 'f Output Compa pt is priority 7 (f pt is priority 1 pt source is dis ited: Read as 'f Input Capture C	abled o' are Channel 5 highest priority abled o' Channel 6 Inter	<pre>/ interrupt) Interrupt Priority / interrupt) rrupt Priority bits</pre>	y bits						
bit 7 bit 6-4 bit 3	111 = Interru 001 = Interru 000 = Interru Unimplemen OC5IP<2:0>: 111 = Interru 001 = Interru 000 = Interru Unimplemen IC6IP<2:0>:	pt is priority 7 (f pt is priority 1 pt source is dis ated: Read as 'f Output Compa pt is priority 7 (f pt is priority 1 pt source is dis ated: Read as 'f	abled o' are Channel 5 highest priority abled o' Channel 6 Inter	<pre>/ interrupt) Interrupt Priority / interrupt) rrupt Priority bits</pre>	y bits						
bit 7 bit 6-4 bit 3	111 = Interru 001 = Interru 000 = Interru Unimplemen OC5IP<2:0>: 111 = Interru 001 = Interru 000 = Interru Unimplemen IC6IP<2:0>:	pt is priority 7 (f pt is priority 1 pt source is dis ited: Read as 'f Output Compa pt is priority 7 (f pt is priority 1 pt source is dis ited: Read as 'f Input Capture C	abled o' are Channel 5 highest priority abled o' Channel 6 Inter	<pre>/ interrupt) Interrupt Priority / interrupt) rrupt Priority bits</pre>	y bits						
bit 7 bit 6-4 bit 3 bit 2-0	<pre>111 = Interru</pre>	pt is priority 7 (f pt is priority 1 pt source is dis ited: Read as 'f Output Compa pt is priority 7 (f pt is priority 7 (f pt source is dis ited: Read as 'f Input Capture C pt is priority 7 (f	abled o' are Channel 5 highest priority abled o' Channel 6 Inter	<pre>/ interrupt) Interrupt Priority / interrupt) rrupt Priority bits</pre>	y bits						
bit 7 bit 6-4 bit 3	<pre>111 = Interru</pre>	pt is priority 7 (f pt is priority 1 pt source is dis ited: Read as 'f Output Compa pt is priority 7 (f pt is priority 7 (f pt source is dis ited: Read as 'f Input Capture C pt is priority 7 (f	highest priority abled o' are Channel 5 highest priority abled o' Channel 6 Inter highest priority	<pre>/ interrupt) Interrupt Priority / interrupt) rrupt Priority bits</pre>	y bits						

Output Function Number ⁽¹⁾	Function	Output Name
0	NULL ⁽²⁾	Null
1	C1OUT	Comparator 1 Output
2	C2OUT	Comparator 2 Output
3	U1TX	UART1 Transmit
4	U1RTS ⁽³⁾	UART1 Request To Send
5	U2TX	UART2 Transmit
6	U2RTS ⁽³⁾	UART2 Request To Send
7	SDO1	SPI1 Data Output
8	SCK1OUT ⁽⁴⁾	SPI1 Clock Output
9	SS1OUT	SPI1 Slave Select Output
10	SDO2	SPI2 Data Output
11	SCK2OUT	SPI2 Clock Output
12	SS2OUT	SPI2 Slave Select Output
18	OC1	Output Compare 1
19	OC2	Output Compare 2
20	OC3	Output Compare 3
21	OC4	Output Compare 4
22	OC5	Output Compare 5
23	OC6	Output Compare 6
24	OC7	Output Compare 7
25	OC8	Output Compare 8
28	U3TX	UART3 Transmit
29	U3RTS ⁽³⁾	UART3 Request To Send
30	U4TX	UART4 Transmit
31	U4RTS ⁽³⁾	UART4 Request To Send
32	SDO3	SPI3 Data Output
33	SCK3OUT	SPI3 Clock Output
34	SS3OUT	SPI3 Slave Select Output
35	OC9	Output Compare 9
36	C3OUT	Comparator 3 Output
37-63	(unused)	NC

TABLE 10-3: SELECTABLE OUTPUT SOURCES (MAPS FUNCTION TO OUTPUT)

Note 1: Setting the RPORx register with the listed value assigns that output function to the associated RPn pin.

2: The NULL function is assigned to all RPn outputs at device Reset and disables the RPn output function.

3: IrDA[®] BCLK functionality uses this output.

4: SCK1OUT can also be specifically mapped to the ASCK1 pin by setting the SCK1CM bit (ALTRP<0>). See Section 10.4.3.3 "Alternate Fixed Pin Mapping" for more information.

REGISTER 10-17: RPINR22: PERIPHERAL PIN SELECT INPUT REGISTER 22

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—		SCK2R5	SCK2R4	SCK2R3	SCK2R2	SCK2R1	SCK2R0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	SDI2R5	SDI2R4	SDI2R3	SDI2R2	SDI2R1	SDI2R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	SCK2R<5:0>: Assign SPI2 Clock Input (SCK2IN) to Corresponding RPn or RPIn Pin bits
bit 7-6	Unimplemented: Read as '0'
bit 5-0	SDI2R<5:0>: Assign SPI2 Data Input (SDI2) to Corresponding RPn or RPIn Pin bits

REGISTER 10-18: RPINR23: PERIPHERAL PIN SELECT INPUT REGISTER 23

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	—	SS2R5	SS2R4	SS2R3	SS2R2	SS2R1	SS2R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-6 Unimplemented: Read as '0'

bit 5-0 SS2R<5:0>: Assign SPI2 Slave Select Input (SS2IN) to Corresponding RPn or RPIn Pin bits

	• • • • • • •						
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	U4CTSR5	U4CTSR4	U4CTSR3	U4CTSR2	U4CTSR1	U4CTSR0
bit 15							bit 8

REGISTER 10-19: RPINR27: PERIPHERAL PIN SELECT INPUT REGISTER 27

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	U4RXR5	U4RXR4	U4RXR3	U4RXR2	U4RXR1	U4RXR0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	U4CTSR<5:0>: Assign UART4 Clear to Send (U4CTS) to Corresponding RPn or RPIn Pin bits
bit 7-6	Unimplemented: Read as '0'
bit 5-0	U4RXR<5:0>: Assign UART4 Receive (U4RX) to Corresponding RPn or RPIn Pin bits

REGISTER 10-20: RPINR28: PERIPHERAL PIN SELECT INPUT REGISTER 28

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	SCK3R5	SCK3R4	SCK3R3	SCK3R2	SCK3R1	SCK3R0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	SDI3R5	SDI3R4	SDI3R3	SDI3R2	SDI3R1	SDI3R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 SCK3R<5:0>: Assign SPI3 Data Input (SCK3IN) to Corresponding RPn or RPIn Pin bits

bit 7-6 Unimplemented: Read as '0'

bit 5-0 SDI3R<5:0>: Assign SPI3 Data Input (SDI3) to Corresponding RPn or RPIn Pin bits

12.0 TIMER2/3 AND TIMER4/5

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"PIC24F Family Reference Manual"*, Section 14. "Timers" (DS39704).

The Timer2/3 and Timer4/5 modules are 32-bit timers, which can also be configured as four independent 16-bit timers with selectable operating modes.

As 32-bit timers, Timer2/3 and Timer4/5 can each operate in three modes:

- Two independent 16-bit timers with all 16-bit operating modes (except Asynchronous Counter mode)
- Single 32-bit timer
- Single 32-bit synchronous counter

They also support these features:

- Timer Gate Operation
- Selectable Prescaler Settings
- Timer Operation during Idle and Sleep modes
- · Interrupt on a 32-Bit Period Register Match
- ADC Event Trigger (Timer2/3 only)

Individually, all four of the 16-bit timers can function as synchronous timers or counters. They also offer the features listed above, except for the ADC event trigger; this is implemented only with Timer3. The operating modes and enabled features are determined by setting the appropriate bit(s) in the T2CON, T3CON, T4CON and T5CON registers. T2CON and T4CON are shown in generic form in Register 12-1; T3CON and T5CON are shown in Register 12-2.

For 32-bit timer/counter operation, Timer2 and Timer4 are the least significant word; Timer3 and Timer4 are the most significant word of the 32-bit timers.

Note:	For 32-bit operation, T3CON and T5CON
	control bits are ignored. Only T2CON and
	T4CON control bits are used for setup and
	control. Timer2 and Timer4 clock and gate
	inputs are utilized for the 32-bit timer
	modules, but an interrupt is generated
	with the Timer3 or Timer5 interrupt flags.

To configure Timer2/3 or Timer4/5 for 32-bit operation:

- 1. Set the T32 bit (T2CON<3> or T4CON<3> = 1).
- 2. Select the prescaler ratio for Timer2 or Timer4 using the TCKPS<1:0> bits.
- Set the Clock and Gating modes using the TCS and TGATE bits. If TCS is set to external clock, RPINRx (TxCK) must be configured to an available RPn pin. See Section 10.4 "Peripheral Pin Select" for more information.
- 4. Load the timer period value. PR3 (or PR5) will contain the most significant word of the value while PR2 (or PR4) contains the least significant word.
- 5. If interrupts are required, set the interrupt enable bit, T3IE or T5IE; use the priority bits, T3IP<2:0> or T5IP<2:0>, to set the interrupt priority. Note that while Timer2 or Timer4 controls the timer, the interrupt appears as a Timer3 or Timer5 interrupt.
- 6. Set the TON bit (= 1).

The timer value, at any point, is stored in the register pair: TMR3:TMR2 (or TMR5:TMR4). TMR3 (TMR5) always contains the most significant word of the count, while TMR2 (TMR4) contains the least significant word.

To configure any of the timers for individual 16-bit operation:

- Clear the T32 bit corresponding to that timer (T2CON<3> for Timer2 and Timer3 or T4CON<3> for Timer4 and Timer5).
- 2. Select the timer prescaler ratio using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits. See Section 10.4 "Peripheral Pin Select" for more information.
- 4. Load the timer period value into the PRx register.
- 5. If interrupts are required, set the interrupt enable bit, TxIE; use the priority bits, TxIP<2:0>, to set the interrupt priority.
- 6. Set the TON bit (TxCON<15> = 1).

REGISTER 21-5: AD1PCFGL: A/D PORT CONFIGURATION REGISTER (LOW)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PCFG15	PCFG14	PCFG13	PCFG12	PCFG11	PCFG10	PCFG9	PCFG8
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| PCFG7 | PCFG6 | PCFG5 | PCFG4 | PCFG3 | PCFG2 | PCFG1 | PCFG0 |
| bit 7 | • | | • | | | | bit 0 |

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15-0 PCFG<15:0>: Analog Input Pin Configuration Control bits

1 = Pin for corresponding analog channel is configured in Digital mode; I/O port read enabled

0 = Pin configured in Analog mode; I/O port read disabled, A/D samples pin voltage

REGISTER 21-6: AD1PCFGH: A/D PORT CONFIGURATION REGISTER (HIGH)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	_	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
_	—	—	—	—	—	PCFG17	PCFG16
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-2 Unimplemented: Read as '0'

bit 1

PCFG17: A/D Input Band Gap Scan Enable bit

- 1 = Analog channel disabled from input scan
 - 0 = Internal band gap (VBG) channel enabled for input scan

bit 0 PCFG16: A/D Input Half Band Gap Scan Enable bit

1 = Analog channel disabled from input scan

0 = Internal VBG/2 channel enabled for input scan

24.0 CHARGE TIME MEASUREMENT UNIT (CTMU)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "PIC24F Family Reference Manual", Section 11. "Charge Time Measurement Unit (CTMU)" (DS39724).

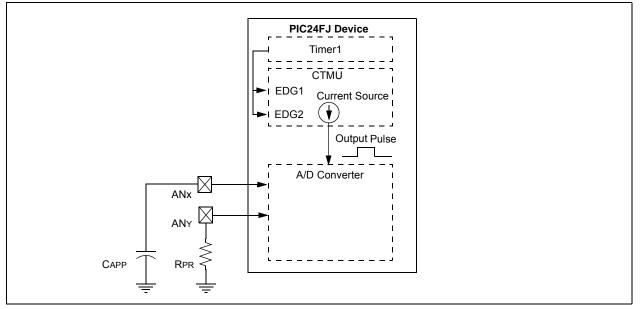
The Charge Time Measurement Unit is a flexible analog module that provides accurate differential time measurement between pulse sources, as well as asynchronous pulse generation. Its key features include:

- · Four edge input trigger sources
- Polarity control for each edge source
- · Control of edge sequence
- · Control of response to edges
- · Time measurement resolution of 1 nanosecond
- Accurate current source suitable for capacitive measurement

Together with other on-chip analog modules, the CTMU can be used to precisely measure time, measure capacitance, measure relative changes in capacitance or generate output pulses that are independent of the system clock. The CTMU module is ideal for interfacing with capacitive-based sensors.

The CTMU is controlled through two registers: CTMUCON and CTMUICON. CTMUCON enables the module and controls edge source selection, edge source polarity selection, and edge sequencing. The CTMUICON register controls the selection and trim of the current source.

24.1 Measuring Capacitance


The CTMU module measures capacitance by generating an output pulse, with a width equal to the time, between edge events on two separate input channels. The pulse edge events to both input channels can be selected from four sources: two internal peripheral modules (OC1 and Timer1) and two external pins (CTEDG1 and CTEDG2). This pulse is used with the module's precision current source to calculate capacitance according to the relationship

$$\mathbf{I} = \mathbf{C} \bullet \frac{\mathrm{d}\mathbf{V}}{\mathrm{d}\mathbf{T}}$$

For capacitance measurements, the A/D Converter samples an external capacitor (CAPP) on one of its input channels after the CTMU output's pulse. A Precision Resistor (RPR) provides current source calibration on a second A/D channel. After the pulse ends, the converter determines the voltage on the capacitor. The actual calculation of capacitance is performed in software by the application.

Figure 24-1 shows the external connections used for capacitance measurements, and how the CTMU and A/D modules are related in this application. This example also shows the edge events coming from Timer1, but other configurations using external edge sources are possible. A detailed discussion on measuring capacitance and time with the CTMU module is provided in the *"PIC24F Family Reference Manual"*.

FIGURE 24-1: TYPICAL CONNECTIONS AND INTERNAL CONFIGURATION FOR CAPACITANCE MEASUREMENT

REGISTER 25-1: CW1: FLASH CONFIGURATION WORD 1

| R/PO-1 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| — | — | — | — | — | — | — | — |
| bit 23 | | | | | | | bit 16 |

r-x	R/PO-1	R/PO-1	R/PO-1	R/PO-1	r-1	R/PO-1	R/PO-1
r	JTAGEN	GCP	GWRP	DEBUG	r	ICS1	ICS0
bit 15							bit 8

| R/PO-1 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| FWDTEN | WINDIS | — | FWPSA | WDTPS3 | WDTPS2 | WDTPS1 | WDTPS0 |
| bit 7 | | | | | | | bit 0 |

Legend:	r = Reserved bit			
R = Readable bit	PO = Program Once bit U = Unimplemented bit, read as '0'			
-n = Value when device is u	nprogrammed	'1' = Bit is set	'0' = Bit is cleared	

bit 23-16	Reserved
bit 15	Reserved: The value is unknown; program as '0'
bit 14	JTAGEN: JTAG Port Enable bit
	1 = JTAG port is enabled0 = JTAG port is disabled
bit 13	GCP: General Segment Program Memory Code Protection bit
	 1 = Code protection is disabled 0 = Code protection is enabled for the entire program memory space
bit 12	GWRP: General Segment Code Flash Write Protection bit
	1 = Writes to program memory are allowed0 = Writes to program memory are disabled
bit 11	DEBUG: Background Debugger Enable bit
	1 = Device resets into Operational mode0 = Device resets into Debug mode
bit 10	Reserved: Always maintain as '1'
bit 9-8	ICS<1:0>: Emulator Pin Placement Select bits
	 11 = Emulator functions are shared with PGEC1/PGED1 10 = Emulator functions are shared with PGEC2/PGED2 01 = Emulator functions are shared with PGEC3/PGED3 00 = Reserved; do not use
bit 7	FWDTEN: Watchdog Timer Enable bit
	1 = Watchdog Timer is enabled0 = Watchdog Timer is disabled
bit 6	WINDIS: Windowed Watchdog Timer Disable bit
	 1 = Standard Watchdog Timer enabled 0 = Windowed Watchdog Timer enabled; FWDTEN must be '1'
bit 5	Reserved
bit 4	FWPSA: WDT Prescaler Ratio Select bit 1 = Prescaler ratio of 1:128 0 = Prescaler ratio of 1:32

REGISTER 25-4: DEVID: DEVICE ID REGISTER

U	U	U	U	U	U	U	U		
—	—	—	—	—	—	—	—		
bit 23							bit 16		
U	U	R	R	R	R	R	R		
_	—	FAMID7	FAMID6	FAMID5	FAMID4	FAMID3	FAMID2		
bit 15							bit 8		
R	R	R	R	R	R	R	R		
FAMID1	FAMID0	DEV5	DEV4	DEV3	DEV2	DEV1	DEV0		
bit 7						1	bit 0		
Legend: R	= Read-Only bit	t		U = Unimplen	nented bit				
bit 23-14	Unimplement	ted: Read as '	1'						
bit 13-6	FAMID<7:0>: Device Family Identifier bits								
	01000000 = PIC24FJ256GA110 family								
bit 5-0	DEV<5:0>: In	dividual Device	e Identifier bits						
	000000 = PIC	24FJ64GA10	5						
	000010 = PIC	24FJ64GA108	3						
	000110 = PIC	24FJ64GA110)						
	001000 = PIC24FJ128GA106								
	001010 = PIC24FJ128GA108								
		24FJ128GA1							
		24FJ192GA1							
010010 = PIC24FJ192GA108									

- 010110 = PIC24FJ192GA110
- 011000 = PIC24FJ256GA106
- 011010 = PIC24FJ256GA108
- 011110 = PIC24FJ256GA110

REGISTER 25-5: DEVREV: DEVICE REVISION REGISTER

U	U	U	U	U	U	U	U		
_	—		—	—	—	—	—		
bit 23							bit 16		
U	U	U	U	U	U	U	R		
—	—	—		—	_		MAJRV2		
bit 15							bit 8		
R	R	U	U	U	R	R	R		
MAJRV1	MAJRV0	—	—	—	DOT2	DOT1	DOT0		
bit 7							bit 0		
Legend: R =	Read-Only bit			U = Unimpler	mented bit				
bit 23-9	Unimplemented: Read as '0'								
bit 8-6	MAJRV<2:0>	: Major Revisio	on Identifier bit	s					
bit 5-3	Unimplemented: Read as '0'								

bit 2-0 DOT<2:0>: Minor Revision Identifier bits

27.11 PICkit 2 Development Programmer/Debugger and PICkit 2 Debug Express

The PICkit[™] 2 Development Programmer/Debugger is a low-cost development tool with an easy to use interface for programming and debugging Microchip's Flash families of microcontrollers. The full featured Windows[®] programming interface supports baseline (PIC10F, PIC12F5xx, PIC16F5xx), midrange (PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30, dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit microcontrollers, and many Microchip Serial EEPROM products. With Microchip's powerful MPLAB Integrated Development Environment (IDE) the PICkit[™] 2 enables in-circuit debugging on most PIC[®] microcontrollers. In-Circuit-Debugging runs, halts and single steps the program while the PIC microcontroller is embedded in the application. When halted at a breakpoint, the file registers can be examined and modified.

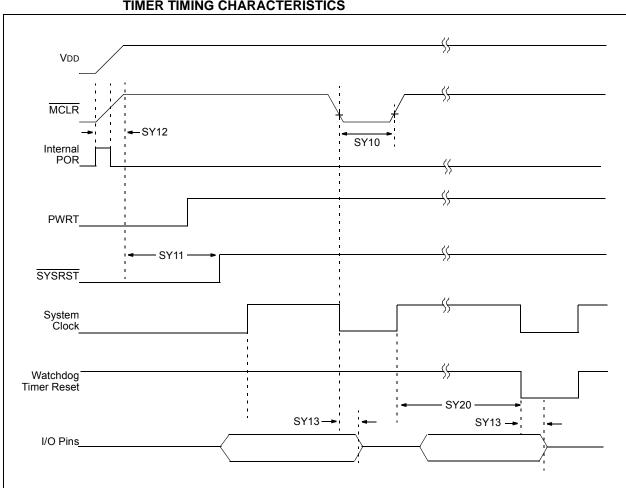
The PICkit 2 Debug Express include the PICkit 2, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

27.12 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an MMC card for file storage and data applications.

27.13 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.


The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

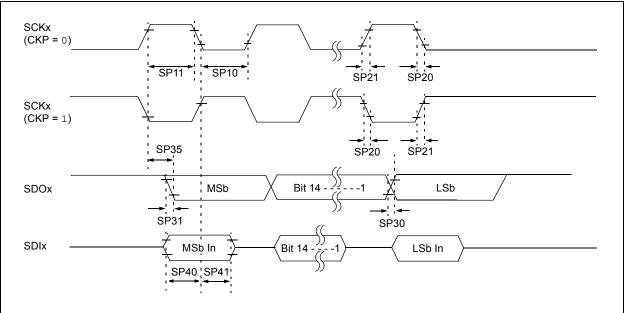

FIGURE 28-7: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING CHARACTERISTICS

TABLE 28-21:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER
AND BROWN-OUT RESET TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industr} \end{array}$				
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
SY10	TmcL	MCLR Pulse Width (low)	2	_		μS	
SY11	TPWRT	Power-up Timer Period		64	_	ms	
SY12	TPOR	Power-on Reset Delay	1	5	10	μS	
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	—	—	100	ns	
SY20	Twdt	Watchdog Timer Time-out Period	0.85	1.0	1.15	ms	1:32 prescaler
			3.4	4.0	4.6	ms	1:128 prescaler
SY25	TBOR	Brown-out Reset Pulse Width	1	_		μS	VDD ≤ VBOR, voltage regulator disabled

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

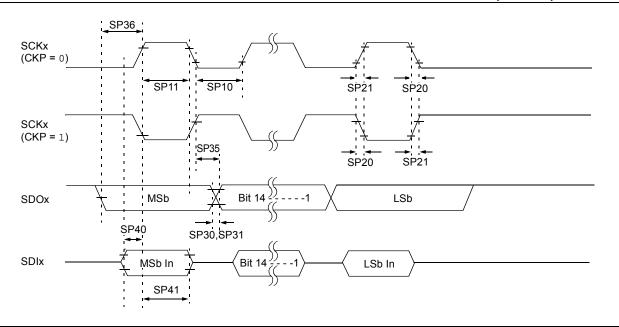

AC CHARACTERISTICS			Standard Operating Conditions: 2.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial						
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions		
SP10	TscL	SCKx Output Low Time ⁽²⁾	Tcy/2	_	_	ns			
SP11	TscH	SCKx Output High Time ⁽²⁾	Tcy/2			ns			
SP20	TscF	SCKx Output Fall Time ⁽³⁾	_	10	25	ns			
SP21	TscR	SCKx Output Rise Time ⁽³⁾	_	10	25	ns			
SP30	TdoF	SDOx Data Output Fall Time ⁽³⁾	_	10	25	ns			
SP31	TdoR	SDOx Data Output Rise Time ⁽³⁾	_	10	25	ns			
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_	—	30	ns			
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	20	—	_	ns			
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	20	—	—	ns			

TABLE 28-24: SPIX MASTER MODE TIMING REQUIREMENTS (CKE = 0)

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: The minimum clock period for SCKx is 100 ns; therefore, the clock generated in Master mode must not violate this specification.

3: Assumes 50 pF load on all SPIx pins.

FIGURE 28-12: SPIX MODULE MASTER MODE TIMING CHARACTERISTICS (CKE = 1)

TABLE 28-25: SPIX MODULE MASTER MODE TIMING REQUIREMENTS (CKE = 1)

AC CHARACTERISTICS			Standard Operating Conditions: 2.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial						
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions		
SP10	TscL	SCKx Output Low Time ⁽²⁾	Tcy/2	_	_	ns			
SP11	TscH	SCKx Output High Time ⁽²⁾	Tcy/2	_	_	ns			
SP20	TscF	SCKx Output Fall Time ⁽³⁾	_	10	25	ns			
SP21	TscR	SCKx Output Rise Time ⁽³⁾	_	10	25	ns			
SP30	TdoF	SDOx Data Output Fall Time ⁽³⁾	_	10	25	ns			
SP31	TdoR	SDOx Data Output Rise Time ⁽³⁾	_	10	25	ns			
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_	—	30	ns			
SP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	_	ns			
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	20	—	—	ns			
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	20	—	—	ns			

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: The minimum clock period for SCKx is 100 ns. Therefore, the clock generated in Master mode must not violate this specification.

3: Assumes 50 pF load on all SPIx pins.