

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	53
Program Memory Size	256КВ (85.5К х 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj256ga106-i-pt

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

|--|

Features	PIC24FJ64GA110	PIC24FJ128GA110	PIC24FJ192GA110	PIC24FJ256GA110						
Operating Frequency		DC – 32 MHz								
Program Memory (bytes)	64K	128K	192K	256K						
Program Memory (instructions)	22,016	44,032	67,072	87,552						
Data Memory (bytes)			384	·						
Interrupt Sources (soft vectors/NMI traps)		66 (62/4)								
I/O Ports		Ports A, B,	C, D, E, F, G							
Total I/O Pins		8	35							
Remappable Pins		46 (32 I/O, 1	14 input only)							
Timers:		5	(1)							
32 Bit (from paired 16 bit timers)										
Input Capture Channels										
Output Compare/PWM										
Channels	Ŭ									
Input Change Notification Interrupt	85									
Serial Communications:										
UART		4	(1)							
SPI (3-wire/4-wire)		3	(1)							
I ² C™		:	3							
Parallel Communications (PMP/PSP)		Y	es							
JTAG Boundary Scan		Y	/es							
10-Bit Analog-to-Digital Module (input channels)	16									
Analog Comparators	3									
CTMU Interface	Yes									
Resets (and delays)	POR, BOR, RESET Instruction, MCLR, WDT; Illegal Opcode, REPEAT Instruction, Hardware Traps, Configuration Word Mismatch (PWRT, OST, PLL Lock)									
Instruction Set	76 Bas	e Instructions, Multiple	e Addressing Mode Va	ariations						
Packages	100-Pin TQFP									

Note 1: Peripherals are accessible through remappable pins.

TABLE 4-5: INTERRUPT CONTROLLER REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON1	0080	NSTDIS	—	_	—			—	—	—		_	MATHERR	ADDRERR	STKERR	OSCFAIL		0000
INTCON2	0082	ALTIVT	DISI	_	—	_	_	_	_	_	_	_	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP	0000
IFS0	0084	_	_	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPF1IF	T3IF	T2IF	OC2IF	IC2IF		T1IF	OC1IF	IC1IF	INT0IF	0000
IFS1	0086	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	_	IC8IF	IC7IF	_	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF	0000
IFS2	0088	_	_	PMPIF	OC8IF	OC7IF	OC6IF	OC5IF	IC6IF	IC5IF	IC4IF	IC3IF		_	_	SPI2IF	SPF2IF	0000
IFS3	008A	_	RTCIF		_		_	_	_	_	INT4IF	INT3IF		_	MI2C2IF	SI2C2IF		0000
IFS4	008C	—	—	CTMUIF	—	_	_	—	LVDIF	_	—	—	_	CRCIF	U2ERIF	U1ERIF	-	0000
IFS5	008E	_	_	IC9IF	OC9IF	SPI3IF	SPF3IF	U4TXIF	U4RXIF	U4ERIF		MI2C3IF	SI2C3IF	U3TXIF	U3RXIF	U3ERIF		0000
IEC0	0094	—	—	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPF1IE	T3IE	T2IE	OC2IE	IC2IE	_	T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1	0096	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	—	IC8IE	IC7IE	—	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	0000
IEC2	0098	_	_	PMPIE	OC8IE	OC7IE	OC6IE	OC5IE	IC6IE	IC5IE	IC4IE	IC3IE		_	-	SPI2IE	SPF2IE	0000
IEC3	009A	—	RTCIE	_	—	_	_	—	—	—	INT4IE	INT3IE	_	—	MI2C2IE	SI2C2IE	-	0000
IEC4	009C	—	—	CTMUIE	—	_	_	—	LVDIE	_	—	—	_	CRCIE	U2ERIE	U1ERIE	-	0000
IEC5	009E	—	—	IC9IE	OC9IE	SPI3IE	SPF3IE	U4TXIE	U4RXIE	U4ERIE	_	MI2C3IE	SI2C3IE	U3TXIE	U3RXIE	U3ERIE	-	0000
IPC0	00A4	—	T1IP2	T1IP1	T1IP0	_	OC1IP2	OC1IP1	OC1IP0	—	IC1IP2	IC1IP1	IC1IP0	—	INT0IP2	INT0IP1	INT0IP0	4444
IPC1	00A6	—	T2IP2	T2IP1	T2IP0	_	OC2IP2	OC2IP1	OC2IP0	_	IC2IP2	IC2IP1	IC2IP0	—	—	—	-	4440
IPC2	00A8	—	U1RXIP2	U1RXIP1	U1RXIP0	_	SPI1IP2	SPI1IP1	SPI1IP0	—	SPF1IP2	SPF1IP1	SPF1IP0	—	T3IP2	T3IP1	T3IP0	4444
IPC3	00AA	_	_	_	—	_	_	—	_	_	AD1IP2	AD1IP1	AD1IP0	—	U1TXIP2	U1TXIP1	U1TXIP0	0044
IPC4	00AC	—	CNIP2	CNIP1	CNIP0	_	CMIP2	CMIP1	CMIP0	_	MI2C1IP2	MI2C1IP1	MI2C1IP0	—	SI2C1IP2	SI2C1IP1	SI2C1IP0	4444
IPC5	00AE	_	IC8IP2	IC8IP1	IC8IP0	_	IC7IP2	IC7IP1	IC7IP0	_	_	—	_	—	INT1IP2	INT1IP1	INT1IP0	4404
IPC6	00B0	—	T4IP2	T4IP1	T4IP0	_	OC4IP2	OC4IP1	OC4IP0	_	OC3IP2	OC3IP1	OC3IP0		_	_	_	4440
IPC7	00B2	—	U2TXIP2	U2TXIP1	U2TXIP0	_	U2RXIP2	U2RXIP1	U2RXIP0	_	INT2IP2	INT2IP1	INT2IP0	—	T5IP2	T5IP1	T5IP0	4444
IPC8	00B4	—	—	_	—	_	—	_	—	_	SPI2IP2	SPI2IP1	SPI2IP0		SPF2IP2	SPF2IP1	SPF2IP0	0044
IPC9	00B6	_	IC5IP2	IC5IP1	IC5IP0	_	IC4IP2	IC4IP1	IC4IP0	_	IC3IP2	IC3IP1	IC3IP0	—	—	—	_	4440
IPC10	00B8	—	OC7IP2	OC7IP1	OC7IP0	_	OC6IP2	OC6IP1	OC6IP0	_	OC5IP2	OC5IP1	OC5IP0	—	IC6IP2	IC6IP1	IC6IP0	4444
IPC11	00BA	_	_	_	—	_	_	—	_	_	PMPIP2	PMPIP1	PMPIP0	—	OC8IP2	OC8IP1	OC8IP0	0044
IPC12	00BC	—	—	_	—	_	MI2C2IP2	MI2C2IP1	MI2C2IP0	_	SI2C2IP2	SI2C2IP1	SI2C2IP0		_	_	_	0440
IPC13	00BE	—	—		—	_	INT4IP2	INT4IP1	INT4IP0	_	INT3IP2	INT3IP1	INT3IP0	—	—	—	_	0440
IPC15	00C2	—	—	_	—	_	RTCIP2	RTCIP1	RTCIP0	_	_	_	_		_	_	_	0400
IPC16	00C4	—	CRCIP2	CRCIP1	CRCIP0	_	U2ERIP2	U2ERIP1	U2ERIP0	_	U1ERIP2	U1ERIP1	U1ERIP0		_	_	_	4440
IPC18	00C8	—	—		—		_	—	—	_		—		—	LVDIP2	LVDIP1	LVDIP0	0004
IPC19	00CA	_	_	_	—	_	_	—	_	_	CTMUIP2	CTMUIP1	CTMUIP0	—	—	_	_	0040
IPC20	00CC	_	U3TXIP2	U3TXIP1	U3TXIP0	_	U3RXIP2	U3RXIP1	U3RXIP0	_	U3ERIP2	U3ERIP1	U3ERIP0	—	—	—	_	4440
IPC21	00CE	—	U4ERIP2	U4ERIP1	U4ERIP0	_	_	—	—	_	MI2C3IP2	MI2C3IP1	MI2C3IP0	—	SI2C3IP2	SI2C3IP1	SI2C3IP0	4044
IPC22	00D0	_	SPI3IP2	SPI3IP1	SPI3IP0	_	SPF3IP2	SPF3IP1	SPF3IP0	_	U4TXIP2	U4TXIP1	U4TXIP0	_	U4RXIP2	U4RXIP1	U4RXIP0	4444
IPC23	00D2	_	—	_	_	_	_	_	_	_	IC9IP2	IC9IP1	IC9IP0	_	OC9IP2	OC9IP1	OC9IP0	0044
INTTREG	00E0	CPUIRQ	_	VHOLD	_	ILR3	ILR2	ILR1	ILR0	_	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

DS39905E-page 41

TABLE 4-30: PROGRAM SPACE ADDRESS CONSTRUCTION

	Access	Program Space Address							
Access Type	Space	<23>	<22:16>	<15>	<14:1>	<0>			
Instruction Access	User	0		PC<22:1>					
(Code Execution)		0xx xxxx xxxx xxxx xxx0							
TBLRD/TBLWT	User	TBLPAG<7:0>		Data EA<15:0>					
(Byte/Word Read/Write)		0:	xxx xxxx	XXXX XXXX XXXX XXXX					
	Configuration	TB	LPAG<7:0>	Data EA<15:0>					
		1:	xxx xxxx	XXXX XXXX XXXX XXXX					
Program Space Visibility (Block Remap/Read)	User	0	0 PSVPAG<7		':0> Data EA<14:0> ⁽¹⁾				
		0	XXXX XXXX		xxx xxxx xxxx xxxx				

Note 1: Data EA<15> is always '1' in this case, but is not used in calculating the program space address. Bit 15 of the address is PSVPAG<0>.

FIGURE 4-5: DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION

- **Note 1:** The LSb of program space addresses is always fixed as '0' in order to maintain word alignment of data in the program and data spaces.
 - **2:** Table operations are not required to be word-aligned. Table read operations are permitted in the configuration memory space.

EXAMPLE 5-2: ERASING A PROGRAM MEMORY BLOCK (C LANGUAGE CODE)

<pre>// C example using MPLAB C30 unsigned long progAddr = 0xXXXXXX; unsigned int offset;</pre>	// Address of row to write
//Set up pointer to the first memory locatio	n to be written
TBLPAG = progAddr>>16;	// Initialize PM Page Boundary SFR
offset = progAddr & 0xFFFF;	// Initialize lower word of address
<pre>builtin_tblwtl(offset, 0x0000);</pre>	<pre>// Set base address of erase block // with dummy latch write</pre>
NVMCON = $0 \times 4042;$	// Initialize NVMCON
asm("DISI #5");	<pre>// Block all interrupts with priority <7 // for next 5 instructions</pre>
builtin_write_NVM();	// C30 function to perform unlock
	// sequence and set WR

EXAMPLE 5-3: LOADING THE WRITE BUFFERS (ASSEMBLY LANGUAGE CODE)

;	Set up NVMCON	I for row programming operatior	ıs	
	MOV	#0x4001, W0	;	
	MOV	W0, NVMCON	;	Initialize NVMCON
;	Set up a poin	ter to the first program memor	ſУ	location to be written
;	program memor	ry selected, and writes enabled	ł	
	MOV	#0x0000, W0	;	
	MOV	W0, TBLPAG	;	Initialize PM Page Boundary SFR
	MOV	#0x6000, W0	;	An example program memory address
;	Perform the I	BLWT instructions to write the	e 1	latches
;	0th_program_w	ord		
	MOV	#LOW_WORD_0, W2	;	
	MOV	<pre>#HIGH_BYTE_0, W3</pre>	;	
	TBLWTL	W2, [W0]	;	Write PM low word into program latch
	TBLWTH	W3, [W0++]	;	Write PM high byte into program latch
;	lst_program_w	vord		
	MOV	#LOW_WORD_1, W2	;	
	MOV	#HIGH_BYTE_1, W3	;	Weite DM les and international let a
	TBLWTL	W2, [W0]	,	Write PM low word into program latch
	Jud program	W3, [W0++]	i	Write PM nigh byte into program latch
'	Znu_program_	HION NODD 2 NO		
	MOV	HLOW_WORD_2, W2	΄.	
	MOV TRIMTI	#niGn_Biik_2, W5		Write DM low word into program latch
	TBLWTH	W2, [W0] W3 [W0++]	;	Write DM high byte into program latch
	•		'	write in high byte into program raten
	•			
	•			
;	63rd program	word		
	MOV	#LOW_WORD_31, W2	;	
	MOV	#HIGH_BYTE_31, W3	;	
	TBLWTL	W2, [W0]	;	Write PM low word into program latch
	TBLWTH	W3, [W0]	;	Write PM high byte into program latch

	Vector		ΑΙντ	Interrupt Bit Locations				
Interrupt Source	Number	IVT Address	Address	Flag	Enable	Priority		
ADC1 Conversion Done	13	00002Eh	00012Eh	IFS0<13>	IEC0<13>	IPC3<6:4>		
Comparator Event	18	000038h	000138h	IFS1<2>	IEC1<2>	IPC4<10:8>		
CRC Generator	67	00009Ah	00019Ah	IFS4<3>	IEC4<3>	IPC16<14:12>		
CTMU Event	77	0000AEh	0001AEh	IFS4<13>	IEC4<13>	IPC19<6:4>		
External Interrupt 0	0	000014h	000114h	IFS0<0>	IEC0<0>	IPC0<2:0>		
External Interrupt 1	20	00003Ch	00013Ch	IFS1<4>	IEC1<4>	IPC5<2:0>		
External Interrupt 2	29	00004Eh	00014Eh	IFS1<13>	IEC1<13>	IPC7<6:4>		
External Interrupt 3	53	00007Eh	00017Eh	IFS3<5>	IEC3<5>	IPC13<6:4>		
External Interrupt 4	54	000080h	000180h	IFS3<6>	IEC3<6>	IPC13<10:8>		
I2C1 Master Event	17	000036h	000136h	IFS1<1>	IEC1<1>	IPC4<6:4>		
I2C1 Slave Event	16	000034h	000134h	IFS1<0>	IEC1<0>	IPC4<2:0>		
I2C2 Master Event	50	000078h	000178h	IFS3<2>	IEC3<2>	IPC12<10:8>		
I2C2 Slave Event	49	000076h	000176h	IFS3<1>	IEC3<1>	IPC12<6:4>		
I2C3 Master Event	85	0000BEh	0001BEh	IFS5<5>	IEC5<5>	IPC21<6:4>		
I2C3 Slave Event	84	0000BCh	0001BCh	IFS5<4>	IEC5<4>	IPC21<2:0>		
Input Capture 1	1	000016h	000116h	IFS0<1>	IEC0<1>	IPC0<6:4>		
Input Capture 2	5	00001Eh	00011Eh	IFS0<5>	IEC0<5>	IPC1<6:4>		
Input Capture 3	37	00005Eh	00015Eh	IFS2<5>	IEC2<5>	IPC9<6:4>		
Input Capture 4	38	000060h	000160h	IFS2<6>	IEC2<6>	IPC9<10:8>		
Input Capture 5	39	000062h	000162h	IFS2<7>	IEC2<7>	IPC9<14:12>		
Input Capture 6	40	000064h	000164h	IFS2<8>	IEC2<8>	IPC10<2:0>		
Input Capture 7	22	000040h	000140h	IFS1<6>	IEC1<6>	IPC5<10:8>		
Input Capture 8	23	000042h	000142h	IFS1<7>	IEC1<7>	IPC5<14:12>		
Input Capture 9	93	0000CEh	0001CEh	IFS5<13>	IEC5<13>	IPC23<6:4>		
Input Change Notification	19	00003Ah	00013Ah	IFS1<3>	IEC1<3>	IPC4<14:12>		
LVD Low-Voltage Detect	72	0000A4h	0001A4h	IFS4<8>	IEC4<8>	IPC18<2:0>		
Output Compare 1	2	000018h	000118h	IFS0<2>	IEC0<2>	IPC0<10:8>		
Output Compare 2	6	000020h	000120h	IFS0<6>	IEC0<6>	IPC1<10:8>		
Output Compare 3	25	000046h	000146h	IFS1<9>	IEC1<9>	IPC6<6:4>		
Output Compare 4	26	000048h	000148h	IFS1<10>	IEC1<10>	IPC6<10:8>		
Output Compare 5	41	000066h	000166h	IFS2<9>	IEC2<9>	IPC10<6:4>		
Output Compare 6	42	000068h	000168h	IFS2<10>	IEC2<10>	IPC10<10:8>		
Output Compare 7	43	00006Ah	00016Ah	IFS2<11>	IEC2<11>	IPC10<14:12>		
Output Compare 8	44	00006Ch	00016Ch	IFS2<12>	IEC2<12>	IPC11<2:0>		
Output Compare 9	92	0000CCh	0001CCh	IFS5<12>	IEC5<12>	IPC23<2:0>		
Parallel Master Port	45	00006Eh	00016Eh	IFS2<13>	IEC2<13>	IPC11<6:4>		
Real-Time Clock/Calendar	62	000090h	000190h	IFS3<14>	IEC3<14>	IPC15<10:8>		
SPI1 Error	9	000026h	000126h	IFS0<9>	IEC0<9>	IPC2<6:4>		
SPI1 Event	10	000028h	000128h	IFS0<10>	IEC0<10>	IPC2<10:8>		
SPI2 Error	32	000054h	000154h	IFS2<0>	IEC2<0>	IPC8<2:0>		
SPI2 Event	33	000056h	000156h	IFS2<1>	IEC2<1>	IPC8<6:4>		
SPI3 Error	90	0000C8h	0001C8h	IFS5<10>	IEC5<10>	IPC22<10:8>		
SPI3 Event	91	0000CAh	0001CAh	IFS5<11>	IEC5<11>	IPC22<14:12>		

TABLE 7-2:	IMPLEMENTED INTERRUPT VECTORS

NOTES:

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_	—	—	—	—	_		—	
bit 15	·			-			bit 8	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	—	TUN5 ⁽¹⁾	TUN4 ⁽¹⁾	TUN3 ⁽¹⁾	TUN2 ⁽¹⁾	TUN1 ⁽¹⁾	TUN0 ⁽¹⁾	
bit 7	·	·					bit 0	
Legend:								
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, read	1 as '0'		
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown		
bit 15-6	Unimplemer	ted: Read as '	0'					
bit 5-0	TUN<5:0>: F	RC Oscillator T	uning bits ⁽¹⁾					
	011111 = M a	aximum frequer	ncy deviation					
	011110 =							
	•							
	•							
	000001 =							
	000000 = C e	enter frequency,	, oscillator is ru	unning at factor	y calibrated free	quency		
	111111 =							
	•							
	•							
	-							

REGISTER 8-3: OSCTUN: FRC OSCILLATOR TUNE REGISTER

Note 1: Increments or decrements of TUN<5:0> may not change the FRC frequency in equal steps over the FRC tuning range and may not be monotonic.

8.4 Clock Switching Operation

100001 =

With few limitations, applications are free to switch between any of the four clock sources (POSC, SOSC, FRC and LPRC) under software control and at any time. To limit the possible side effects that could result from this flexibility, PIC24F devices have a safeguard lock built into the switching process.

100000 = Minimum frequency deviation

Note:	The Primary Oscillator mode has three different submodes (XT, HS and EC)							
	which are determined by the POSCMDx							
	Configuration bits. While an application							
	can switch to and from Primary Oscillator							
	mode in software, it cannot switch							
	between the different primary submodes							
	without reprogramming the device.							

8.4.1 ENABLING CLOCK SWITCHING

To enable clock switching, the FCKSM1 Configuration bit in CW 2 must be programmed to '0'. (Refer to **Section 25.1 "Configuration Bits"** for further details.) If the FCKSM1 Configuration bit is unprogrammed ('1'), the clock switching function and Fail-Safe Clock Monitor function are disabled; this is the default setting.

The NOSCx control bits (OSCCON<10:8>) do not control the clock selection when clock switching is disabled. However, the COSCx bits (OSCCON<14:12>) will reflect the clock source selected by the FNOSCx Configuration bits.

The OSWEN control bit (OSCCON<0>) has no effect when clock switching is disabled; it is held at '0' at all times.

10.4.2 AVAILABLE PERIPHERALS

The peripherals managed by the Peripheral Pin Select are all digital only peripherals. These include general serial communications (UART and SPI), general purpose timer clock inputs, timer related peripherals (input capture and output compare) and external interrupt inputs. Also included are the outputs of the comparator module, since these are discrete digital signals.

Peripheral Pin Select is not available for I^2C^{TM} , change notification inputs, RTCC alarm outputs or peripherals with analog inputs.

A key difference between pin select and non pin select peripherals is that pin select peripherals are not associated with a default I/O pin. The peripheral must always be assigned to a specific I/O pin before it can be used. In contrast, non pin select peripherals are always available on a default pin, assuming that the peripheral is active and not conflicting with another peripheral.

10.4.2.1 Peripheral Pin Select Function Priority

Pin-selectable peripheral outputs (e.g. OC, UART Transmit) take priority over general purpose digital functions on a pin, such as PMP and port I/O. Specialized digital outputs, such as USB functionality, will take priority over PPS outputs on the same pin. The pin diagrams provided at the beginning of this data sheet list peripheral outputs in order of priority. Refer to them for priority concerns on a particular pin.

Unlike PIC24F devices with fixed peripherals, pin-selectable peripheral inputs never take ownership of a pin. The pin's output buffer is controlled by the TRISx setting or by a fixed peripheral on the pin. If the pin is configured in Digital mode, the PPS input will operate correctly. If an analog function is enabled on the pin, the PPS input will be disabled.

10.4.3 CONTROLLING PERIPHERAL PIN SELECT

Peripheral Pin Select features are controlled through two sets of Special Function Registers: one to map peripheral inputs and one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.

The association of a peripheral to a peripheral-selectable pin is handled in two different ways, depending on if an input or an output is being mapped.

10.4.3.1 Input Mapping

The inputs of the Peripheral Pin Select options are mapped on the basis of the peripheral; that is, a control register associated with a peripheral dictates the pin it will be mapped to. The RPINRx registers are used to configure peripheral input mapping (see Register 10-1 through Register 10-21). Each register contains two sets of 6-bit fields, with each set associated with one of the pin-selectable peripherals. Programming a given peripheral's bit field with an appropriate 6-bit value maps the RPn pin with that value to that peripheral. For any given device, the valid range of values for any of the bit fields corresponds to the maximum number of Peripheral Pin Select options supported by the device.

10.4.3.2 Output Mapping

In contrast to inputs, the outputs of the Peripheral Pin Select options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPORx registers are used to control output mapping. Each register contains two 6-bit fields, with each field being associated with one RPn pin (see Register 10-22 through Register 10-37). The value of the bit field corresponds to one of the peripherals and that peripheral's output is mapped to the pin (see Table 10-3).

Because of the mapping technique, the list of peripherals for output mapping also includes a null value of '000000'. This permits any given pin to remain disconnected from the output of any of the pin-selectable peripherals.

10.4.3.3 Alternate Fixed Pin Mapping

To provide a migration option from earlier high pin count PIC24F devices, PIC24FJ256GA110 family devices implement an additional option for mapping the clock output (SCK) of SPI1. This option permits users to map SCK10UT specifically to the fixed pin function, ASCK1. The SCK1CM bit (ALTRP<0>) controls this mapping; setting the bit maps SCK10UT to ASCK1.

The SCK1CM bit must be set (= 1) before enabling the SPI module. It must remain set while transactions using SPI1 are in progress, in order to prevent transmission errors; when the module is disabled, the bit must be cleared. Additionally, no other RPOUT register should be configured to output the SCK1OUT function while SCK1CM is set.

10.4.3.4 Mapping Limitations

The control schema of the Peripheral Pin Select is extremely flexible. Other than systematic blocks that prevent signal contention caused by two physical pins being configured as the same functional input or two functional outputs configured as the same pin, there are no hardware enforced lock outs. The flexibility extends to the point of allowing a single input to drive multiple peripherals or a single functional output to drive multiple output pins.

10.4.3.5 Mapping Exceptions for PIC24FJ256GA110 Family Devices

Although the PPS registers theoretically allow for up to 64 remappable I/O pins, not all of these are implemented in all devices. For PIC24FJ256GA110 family devices, the maximum number of remappable pins available are 46, which includes 14 input only pins. In addition, some pins in the RPn and RPIn sequences are unimplemented in lower pin count devices. The differences in available remappable pins are summarized in Table 10-4.

When developing applications that use remappable pins, users should also keep these things in mind:

- For the RPINRx registers, bit combinations corresponding to an unimplemented pin for a particular device are treated as invalid; the corresponding module will not have an input mapped to it. For all PIC24FJ256GA110 family devices, this includes all values greater than 45 ('101101').
- For RPORx registers, the bit fields corresponding to an unimplemented pin will also be unimplemented. Writing to these fields will have no effect.

10.4.4 CONTROLLING CONFIGURATION CHANGES

Because peripheral remapping can be changed during run time, some restrictions on peripheral remapping are needed to prevent accidental configuration changes. PIC24F devices include three features to prevent alterations to the peripheral map:

- Control register lock sequence
- Continuous state monitoring
- Configuration bit remapping lock

10.4.4.1 Control Register Lock

Under normal operation, writes to the RPINRx and RPORx registers are not allowed. Attempted writes will appear to execute normally, but the contents of the registers will remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the IOLOCK bit (OSCCON<6>). Setting IOLOCK prevents writes to the control registers; clearing IOLOCK allows writes.

To set or clear IOLOCK, a specific command sequence must be executed:

- 1. Write 46h to OSCCON<7:0>.
- 2. Write 57h to OSCCON<7:0>.
- 3. Clear (or set) IOLOCK as a single operation.

Unlike the similar sequence with the oscillator's LOCK bit, IOLOCK remains in one state until changed. This allows all of the Peripheral Pin Selects to be configured with a single unlock sequence, followed by an update to all control registers, then locked with a second lock sequence.

10.4.4.2 Continuous State Monitoring

In addition to being protected from direct writes, the contents of the RPINRx and RPORx registers are constantly monitored in hardware by shadow registers. If an unexpected change in any of the registers occurs (such as cell disturbances caused by ESD or other external events), a Configuration Mismatch Reset will be triggered.

10.4.4.3 Configuration Bit Pin Select Lock

As an additional level of safety, the device can be configured to prevent more than one write session to the RPINRx and RPORx registers. The IOL1WAY (CW2<4>) Configuration bit blocks the IOLOCK bit from being cleared after it has been set once. If IOLOCK remains set, the register unlock procedure will not execute and the Peripheral Pin Select Control registers cannot be written to. The only way to clear the bit and re-enable peripheral remapping is to perform a device Reset.

In the default (unprogrammed) state, IOL1WAY is set, restricting users to one write session. Programming IOL1WAY allows users unlimited access (with the proper use of the unlock sequence) to the Peripheral Pin Select registers.

TABLE 10-4: REMAPPABLE PIN EXCEPTIONS FOR PIC24FJ256GA110 FAMILY DEVICES

Dovice Pin Count		RP Pins (I/O)	RPI Pins			
Device Fill Coulit	Total	Unimplemented	Total	Unimplemented		
64-pin	29	RP5, RP15, RP31	2	RPI32-36, RPI38-44		
80-pin	31	RP31	11	RPI32, RPI39, RPI41		
100-pin	32	_	14	—		

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP5R5 ⁽¹⁾	RP5R4 ⁽¹⁾	RP5R3 ⁽¹⁾	RP5R2 ⁽¹⁾	RP5R1 ⁽¹⁾	RP5R0 ⁽¹⁾
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP4R5	RP4R4	RP4R3	RP4R2	RP4R1	RP4R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP5R<5:0>: RP5 Output Pin Mapping bits ⁽¹⁾

Peripheral output number n is assigned to pin, RP5 (see Table 10-3 for peripheral function numbers).bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP4R<5:0>:** RP4 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP4 (see Table 10-3 for peripheral function numbers).

Note 1: Unimplemented in 64-pin devices; read as '0'.

REGISTER 10-25: RPOR3: PERIPHERAL PIN SELECT OUTPUT REGISTER 3

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP7R5	RP7R4	RP7R3	RP7R2	RP7R1	RP7R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	RP6R5	RP6R4	RP6R3	RP6R2	RP6R1	RP6R0

bit 7

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP7R<5:0>:** RP7 Output Pin Mapping bits

Peripheral output number n is assigned to pin, RP7 (see Table 10-3 for peripheral function numbers).

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP6R<5:0>:** RP6 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP6 (see Table 10-3 for peripheral function numbers).

bit 0

TyCON: TIMER3 AND TIMER5 CONTROL REGISTER⁽³⁾ **REGISTER 12-2:** R/W-0 U-0 R/W-0 U-0 U-0 U-0 U-0 U-0 TON⁽¹⁾ TSIDL⁽¹⁾ ___ ____ bit 15 bit 8 U-0 R/W-0 R/W-0 R/W-0 U-0 U-0 R/W-0 U-0 TGATE⁽¹⁾ TCKPS1⁽¹⁾ TCKPS0⁽¹⁾ TCS^(1,2) bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' '0' = Bit is cleared -n = Value at POR '1' = Bit is set x = Bit is unknown bit 15 TON: Timery On bit⁽¹⁾ 1 = Starts 16-bit Timery 0 = Stops 16-bit Timery Unimplemented: Read as '0' bit 14 TSIDL: Stop in Idle Mode bit⁽¹⁾ bit 13 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode bit 12-7 Unimplemented: Read as '0' TGATE: Timery Gated Time Accumulation Enable bit⁽¹⁾ bit 6 When TCS = 1: This bit is ignored. When TCS = 0: 1 = Gated time accumulation enabled 0 = Gated time accumulation disabled bit 5-4 TCKPS<1:0>: Timery Input Clock Prescale Select bits⁽¹⁾ 11 = 1:256 10 = 1:64 01 = 1:8 00 = 1:1 bit 3-2 Unimplemented: Read as '0' TCS: Timery Clock Source Select bit^(1,2) bit 1 1 = External clock from pin TyCK (on the rising edge) 0 = Internal clock (Fosc/2) bit 0 Unimplemented: Read as '0' **Note 1:** When 32-bit operation is enabled (T2CON<3> or T4CON<3> = 1), these bits have no effect on Timery operation; all timer functions are set through T2CON and T4CON.

- 2: If TCS = 1, RPINRx (TyCK) must be configured to an available RPn pin. See Section 10.4 "Peripheral **Pin Select**" for more information.
- **3:** Changing the value of TyCON while the timer is running (TON = 1) causes the timer prescale counter to reset and is not recommended.

14.0 OUTPUT COMPARE WITH DEDICATED TIMER

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"PIC24F Family Reference Manual"*, Section 35. "Output Compare with Dedicated Timer" (DS39723)

Devices in the PIC24FJ256GA110 family all feature 9 independent enhanced output compare modules. Each of these modules offers a wide range of configuration and operating options for generating pulse trains on internal device events, and can produce Pulse-Width Modulated (PWM) waveforms for driving power applications.

Key features of the enhanced output compare module include:

- Hardware-configurable for 32-bit operation in all modes by cascading two adjacent modules
- Synchronous and Trigger modes of output compare operation, with up to 30 user-selectable trigger/sync sources available
- Two separate Period registers (a main register, OCxR, and a secondary register, OCxRS) for greater flexibility in generating pulses of varying widths
- Configurable for single pulse or continuous pulse generation on an output event, or continuous PWM waveform generation
- Up to 6 clock sources available for each module, driving a separate internal 16-bit counter

14.1 General Operating Modes

14.1.1 SYNCHRONOUS AND TRIGGER MODES

By default, the enhanced output compare module operates in a free-running mode. The internal, 16-bit counter, OCxTMR, counts up continuously, wrapping around from FFFFh to 0000h on each overflow, with its period synchronized to the selected external clock source. Compare or PWM events are generated each time a match between the internal counter and one of the Period registers occurs. In Synchronous mode, the module begins performing its compare or PWM operation as soon as its selected clock source is enabled. Whenever an event occurs on the selected sync source, the module's internal counter is reset. In Trigger mode, the module waits for a sync event from another internal module to occur before allowing the counter to run.

Free-running mode is selected by default, or any time that the SYNCSEL bits (OCxCON2<4:0>) are set to '00000'. Synchronous or Trigger modes are selected any time the SYNCSEL bits are set to any value except '00000'. The OCTRIG bit (OCxCON2<7>) selects either Synchronous or Trigger mode; setting the bit selects Trigger mode operation. In both modes, the SYNCSEL bits determine the sync/trigger source.

14.1.2 CASCADED (32-BIT) MODE

By default, each module operates independently with its own set of 16-Bit Timer and Duty Cycle registers. To increase resolution, adjacent even and odd modules can be configured to function as a single 32-bit module. (For example, modules 1 and 2 are paired, as are modules 3 and 4, and so on.) The odd-numbered module (OCx) provides the Least Significant 16 bits of the 32-bit register pairs, and the even module (OCy) provides the Most Significant 16 bits. Wraparounds of the OCx registers cause an increment of their corresponding OCy registers.

Cascaded operation is configured in hardware by setting the OC32 bits (OCxCON2<8>) for both modules.

REGISTER 17-1: UXMODE: UARTX MODE REGISTER (CONTINUED)

bit 4	RXINV: Receive Polarity Inversion bit 1 = UxRX Idle state is '0' 0 = UxRX Idle state is '1'
bit 3	BRGH: High Baud Rate Enable bit
	1 = High-Speed mode (baud clock generated from FcY/4)0 = Standard mode (baud clock generated from FcY/16)
bit 2-1	PDSEL<1:0>: Parity and Data Selection bits
	 11 = 9-bit data, no parity 10 = 8-bit data, odd parity 01 = 8-bit data, even parity 00 = 8-bit data, no parity
bit 0	STSEL: Stop Bit Selection bit
	1 = Two Stop bits0 = One Stop bit

- **Note 1:** If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn pin. See **Section 10.4 "Peripheral Pin Select"** for more information.
 - 2: This feature is only available for the 16x BRG mode (BRGH = 0).

REGISTER 18-3: PMADDR: PARALLEL MASTER PORT ADDRESS REGISTER	REGISTER 18-3:	PMADDR: PARALLEL MASTER PORT ADDRESS REGISTER
--	----------------	---

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CS2	CS1	ADDR13	ADDR12	ADDR11	ADDR10	ADDR9	ADDR8
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| ADDR7 | ADDR6 | ADDR5 | ADDR4 | ADDR3 | ADDR2 | ADDR1 | ADDR0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	CS2: Chip Select 2 bit
	1 = Chip Select 2 is active
	0 = Chip Select 2 is inactive
bit 14	CS1: Chip Select 1 bit
	1 = Chip Select 1 is active
	0 = Chip Select 1 is inactive
bit 13-0	ADDR<13:0>: Parallel Port Destination Address bits

REGISTER 18-4: PMAEN: PARALLEL MASTER PORT ENABLE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PTEN15	PTEN14	PTEN13	PTEN12	PTEN11	PTEN10	PTEN9	PTEN8
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| PTEN7 | PTEN6 | PTEN5 | PTEN4 | PTEN3 | PTEN2 | PTEN1 | PTEN0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	PTEN<15:14>: PMCSx Strobe Enable bits
	 1 = PMA15 and PMA14 function as either PMA<15:14> or PMCS2 and PMCS1 0 = PMA15 and PMA14 function as port I/O
bit 13-2	PTEN<13:2>: PMP Address Port Enable bits
	1 = PMA<13:2> function as PMP address lines0 = PMA<13:2> function as port I/O
bit 1-0	PTEN<1:0>: PMALH/PMALL Strobe Enable bits
	 1 = PMA1 and PMA0 function as either PMA<1:0> or PMALH and PMALL 0 = PMA1 and PMA0 pads functions as port I/O

21.0 10-BIT HIGH-SPEED A/D CONVERTER

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "PIC24F Family Reference Manual", Section 17. "10-Bit A/D Converter" (DS39705).

The 10-bit A/D Converter has the following key features:

- Successive Approximation (SAR) Conversion
- Conversion Speeds of up to 500 ksps
- 16 Analog Input pins
- External Voltage Reference Input pins
- Internal Band Gap Reference Inputs
- · Automatic Channel Scan mode
- Selectable Conversion Trigger Source
- 16-Word Conversion Result Buffer
- Selectable Buffer Fill modes
- Four Result Alignment Options
- Operation during CPU Sleep and Idle modes

On all PIC24FJ256GA110 family devices, the 10-bit A/D Converter has 16 analog input pins, designated AN0 through AN15. In addition, there are two analog input pins for external voltage reference connections (VREF+ and VREF-). These voltage reference inputs may be shared with other analog input pins.

A block diagram of the A/D Converter is shown in Figure 21-1.

To perform an A/D conversion:

- 1. Configure the A/D module:
 - Configure port pins as analog inputs and/or select band gap reference input (AD1PCFGL<15:0> and AD1PCFGH<1:0>).
 - b) Select voltage reference source to match expected range on analog inputs (AD1CON2<15:13>).
 - c) Select the analog conversion clock to match the desired data rate with the processor clock (AD1CON3<7:0>).
 - d) Select the appropriate sample/conversion sequence (AD1CON1<7:5> and AD1CON3<12:8>).
 - e) Select how conversion results are presented in the buffer (AD1CON1<9:8>).
 - f) Select interrupt rate (AD1CON2<5:2>).
 - g) Turn on A/D module (AD1CON1<15>).
- 2. Configure the A/D interrupt (if required):
 - a) Clear the AD1IF bit.
 - b) Select A/D interrupt priority.

REGISTER 25-4: DEVID: DEVICE ID REGISTER

U	U	U	U	U	U	U	U			
—	—	—	—	—	_	—	—			
bit 23							bit 16			
										
U	U	R	R	R	R	R	R			
		FAMID7	FAMID6	FAMID5	FAMID4	FAMID3	FAMID2			
bit 15							bit 8			
	D	P		D	P	P				
R	K									
FAMID1	FAMIDU	DEV5	DEV4	DEV3	DEV2	DEV1	DEVO			
bit 7							bit 0			
Logond: P	- Road Only bit	+			pontod bit					
Legend. IX	- Read-Only bi									
bit 23-14	Unimplement	ted: Read as 'i	1'							
bit 13-6	FAMID<7:0>:	Device Family	Identifier bits							
	01000000 = 	PIC24FJ256GA	A110 family							
bit 5-0	DEV<5:0>: In	dividual Device	e Identifier bits							
	000000 = PIC	24FJ64GA106	5							
	000010 = PIC24FJ64GA108									
	000110 = PIC24FJ64GA110									
	001000 = PIC24FJ128GA106									
	001010 = PIC24FJ128GA108									
	001110 = PIC	24FJ128GA11	10							
	010000 = PIC	24FJ192GA10	06							
	010010 = PIC	24FJ192GA10)8							

- 010110 = PIC24FJ192GA110
- 011000 = PIC24FJ256GA106
- 011010 = PIC24FJ256GA108
- 011110 = PIC24FJ256GA110

REGISTER 25-5: DEVREV: DEVICE REVISION REGISTER

U	U	U	U	U	U	U	U			
—	—	—	—	—	—	—	—			
bit 23							bit 16			
U	U	U	U	U	U	U	R			
—	—	—	—	—	—	—	MAJRV2			
bit 15	•			•			bit 8			
R	R	U	U	U	R	R	R			
MAJRV1	MAJRV0	—	—	—	DOT2	DOT1	DOT0			
bit 7							bit 0			
Legend: R =	R = Read-Only bit U = Unimplemented bit									
bit 23-9	it 23-9 Unimplemented: Read as '0'									
bit 8-6	bit 8-6 MAJRV<2:0>: Major Revision Identifier bits									
bit 5-3	-3 Unimplemented: Read as '0'									

bit 2-0 DOT<2:0>: Minor Revision Identifier bits

TABLE 26-1: SYMBOLS USED IN OPCODE DESCRIPTIONS

Field	Description						
#text	Means literal defined by "text"						
(text)	Means "content of text"						
[text]	Means "the location addressed by text"						
{ }	Optional field or operation						
<n:m></n:m>	Register bit field						
.b	Byte mode selection						
.d	Double-Word mode selection						
.S	Shadow register select						
.w	Word mode selection (default)						
bit4	4-bit bit selection field (used in word addressed instructions) $\in \{015\}$						
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero						
Expr	Absolute address, label or expression (resolved by the linker)						
f	File register address ∈ {0000h1FFFh}						
lit1	1-bit unsigned literal $\in \{0,1\}$						
lit4	4-bit unsigned literal $\in \{015\}$						
lit5	5-bit unsigned literal $\in \{031\}$						
lit8	8-bit unsigned literal $\in \{0255\}$						
lit10	10-bit unsigned literal \in {0255} for Byte mode, {0:1023} for Word mode						
lit14	14-bit unsigned literal $\in \{016384\}$						
lit16	16-bit unsigned literal $\in \{065535\}$						
lit23	23-bit unsigned literal \in {08388608}; LSB must be '0'						
None	Field does not require an entry, may be blank						
PC	Program Counter						
Slit10	10-bit signed literal \in {-512511}						
Slit16	16-bit signed literal ∈ {-3276832767}						
Slit6	6-bit signed literal \in {-1616}						
Wb	Base W register ∈ {W0W15}						
Wd	Destination W register ∈ { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }						
Wdo	Destination W register ∈ { Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] }						
Wm,Wn	Dividend, Divisor working register pair (direct addressing)						
Wn	One of 16 working registers ∈ {W0W15}						
Wnd	One of 16 destination working registers ∈ {W0W15}						
Wns	One of 16 source working registers ∈ {W0W15}						
WREG	W0 (working register used in file register instructions)						
Ws	Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }						
Wso	Source W register \in { Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }						

TABLE 28-6: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

DC CHARACT	ERISTICS		Standard Op Operating ter	erating Condi	tions: 2.0V to -40°C ≤ TA ≤ -40°C ≤ TA ≤	3.6V (unless otherwise stated) +85°C for Industrial +125°C for Extended	
Parameter No.	Typical ⁽¹⁾	Мах	Units			Conditions	
Power-Down C	Current (IPD): F	PMD Bits are	Set, PMSLP	Bit is '0' ⁽²⁾			
DC60	0.1	1.0	μA	-40°C			
DC60a	0.15	1.0	μΑ	+25°C			
DC60m	2.25	11	μA	+60°C	2.0V ⁽³⁾		
DC60b	3.7	18.0	μΑ	+85°C			
DC60j	18.0	85.0	μΑ	+125°C			
DC60c	0.2	1.4	μΑ	-40°C	_		
DC60d	0.25	1.4	μΑ	+25°C	2.5∨ (3)		
DC60n	2.6	16.5	μΑ	+60°C		Base Power-Down Current ⁽⁵⁾	
DC60e	4.2	27	μΑ	+85°C	_		
DC60k	20.0	110	μΑ	+125°C			
DC60f	3.6	10.0	μΑ	-40°C	_		
DC60g	4.0	10	μΑ	+25°C	_		
DC60p	8.1	25.2	μΑ	+60°C	3.3∨ ⁽⁴⁾		
DC60h	11.0	36	μΑ	+85°C	_		
DC60I	36.0	120	μΑ	+125°C			
DC61	1.75	3	μA	-40°C	_		
DC61a	1.75	3	μA	+25°C	_		
DC61m	1.75	3	μΑ	+60°C	2.0V ⁽³⁾		
DC61b	1.75	3	μΑ	+85°C	_		
DC61j	3.5	6	μΑ	+125°C			
DC61c	2.4	4	μΑ	-40°C	_		
DC61d	2.4	4	μA	+25°C	_		
DC61n	2.4	4	μA	+60°C	2.5V ⁽³⁾	Watchdog Timer Current: △IwDT ⁽⁵⁾	
DC61e	2.4	4	μA	+85°C	_		
DC61k	4.8	8	μA	+125°C			
DC61f	2.8	5	μA	-40°C	_		
DC61g	2.8	5	μA	+25°C			
DC61p	2.8	5	μA	+60°C	3.3∨ ⁽⁴⁾		
DC61h	2.8	5	μA	+85°C			
DC61I	5.6	10	μA	+125°C			

Note 1: Data in the Typical column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and pulled high. WDT, etc., are all switched off.

3: On-chip voltage regulator disabled (ENVREG tied to Vss).

4: On-chip voltage regulator enabled (ENVREG tied to VDD).

5: The Δ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.

TABLE 28-30: I²C[™] BUS START/STOP BIT TIMING REQUIREMENTS (MASTER MODE)

AC CHA	RACTER	ISTICS		Standard Operating Conditions: 2.0V to 3.6V(unless otherwise stated)Operating temperature-40°C \leq TA \leq +85°C (Industrial)				
Param No.	Symbol	Charac	teristic	Min ⁽¹⁾	Max	Units	Conditions	
IM30	TSU:STA	Start Condition	100 kHz mode	Tcy/2 (BRG + 1)	_	μs	Only relevant for	
		Setup Time	400 kHz mode	Tcy/2 (BRG + 1)	_	μS	Repeated Start	
			1 MHz mode ⁽²⁾	TCY/2 (BRG + 1)	_	μS	condition	
IM31	THD:STA	Start Condition Hold Time	100 kHz mode	Tcy/2 (BRG + 1)	_	μs	After this period, the	
			400 kHz mode	Tcy/2 (BRG + 1)	_	μS	first clock pulse is	
			1 MHz mode ⁽²⁾	TCY/2 (BRG + 1)	_	μS	generated	
IM33	Tsu:sto	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)	_	μS	—	
		Setup Time	400 kHz mode	Tcy/2 (BRG + 1)	_	μS		
			1 MHz mode ⁽²⁾	TCY/2 (BRG + 1)	_	μS		
IM34	THD:STO	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)	_	ns	—	
		Hold Time	400 kHz mode	Tcy/2 (BRG + 1)	_	ns		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	ns		

Note 1: BRG is the value of the I²C[™] Baud Rate Generator. Refer to Section 16.3 "Setting Baud Rate When Operating as a Bus Master" for details

2: Maximum pin capacitance = 10 pF for all I²C pins (for 1 MHz mode only).

100-Lead TQFP (12x12x1 mm)

100-Lead TQFP (14x14x1 mm)

Example

