

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	53
Program Memory Size	256KB (85.5K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj256ga106t-i-pt

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION. QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

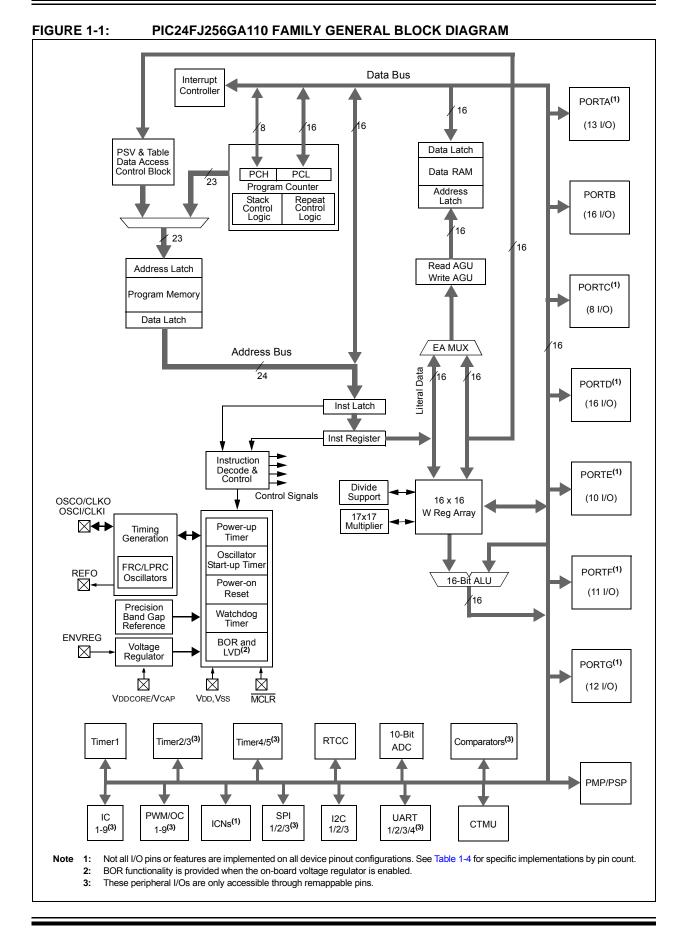
Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.


All other trademarks mentioned herein are property of their respective companies.

© 2010, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 978-1-60932-670-8

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEEL0Q® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

REGISTER 3-2: CORCON: CPU CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	-	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	R/C-0	R/W-0	U-0	U-0

00	00	00	00	1000	10000	00	00
_	—			IPL3 ⁽¹⁾	PSV		—
bit 7							bit 0

Legend:	C = Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-4 Unimplemented: Read as '0'

- bit 3IPL3: CPU Interrupt Priority Level Status bit⁽¹⁾1 = CPU interrupt priority level is greater than 70 = CPU interrupt priority level is 7 or lessbit 2PSV: Program Space Visibility in Data Space Enable bit1 = Program space visible in data space0 = Program space not visible in data spacebit 1-0Unimplemented: Read as '0'
- **Note 1:** User interrupts are disabled when IPL3 = 1.

3.3 Arithmetic Logic Unit (ALU)

The PIC24F ALU is 16 bits wide and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are 2's complement in nature. Depending on the operation, the ALU may affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the SR register. The C and DC Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations.

The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is used. Data for the ALU operation can come from the W register array, or data memory, depending on the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W register array or a data memory location.

The PIC24F CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware for 16-bit divisor division.

3.3.1 MULTIPLIER

The ALU contains a high-speed, 17-bit x 17-bit multiplier. It supports unsigned, signed or mixed sign operation in several multiplication modes:

- 1. 16-bit x 16-bit signed
- 2. 16-bit x 16-bit unsigned
- 3. 16-bit signed x 5-bit (literal) unsigned
- 4. 16-bit unsigned x 16-bit unsigned
- 5. 16-bit unsigned x 5-bit (literal) unsigned
- 6. 16-bit unsigned x 16-bit signed
- 7. 8-bit unsigned x 8-bit unsigned

3.3.2 DIVIDER

The divide block supports signed and unsigned integer divide operations with the following data sizes:

- 1. 32-bit signed/16-bit signed divide
- 2. 32-bit unsigned/16-bit unsigned divide
- 3. 16-bit signed/16-bit signed divide
- 4. 16-bit unsigned/16-bit unsigned divide

The quotient for all divide instructions ends up in W0 and the remainder in W1. Sixteen-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn), and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.

3.3.3 MULTI-BIT SHIFT SUPPORT

The PIC24F ALU supports both single bit and single-cycle, multi-bit arithmetic and logic shifts. Multi-bit shifts are implemented using a shifter block, capable of performing up to a 15-bit arithmetic right shift, or up to a 15-bit left shift, in a single cycle. All multi-bit shift instructions only support Register Direct Addressing for both the operand source and result destination.

A full summary of instructions that use the shift operation is provided below in Table 3-2.

TABLE 3-2: INSTRUCTIONS THAT USE THE SINGLE AND MULTI-BIT SHIFT OPERATION

Instruction	Description
ASR	Arithmetic shift right source register by one or more bits.
SL	Shift left source register by one or more bits.
LSR	Logical shift right source register by one or more bits.

TABLE 4-8:	OUTPUT COMPARE REGISTER MAP (CONTINUED)
------------	---

							•											
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
OC8CON1	01D6	_	—	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	_	-	ENFLT0	—	_	OCFLT0	TRIGMODE	OCM2	OCM1	OCM0	0000
OC8CON2	01D8	FLTMD	FLTOUT	FLTTRIEN	OCINV	-	—	_	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC8RS	01DA		Output Compare 8 Secondary Register 00									0000						
OC8R	01DC		Output Compare 8 Register 0									0000						
OC8TMR	01DE								Timer	Value 8 Reg	gister							xxxx
OC9CON1	01E0	_	_	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	—	—	ENFLT0	—	—	OCFLT0	TRIGMODE	OCM2	OCM1	OCM0	0000
OC9CON2	01E2	FLTMD	FLTOUT	FLTTRIEN	OCINV	-	—	_	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC9RS	01E4		Output Compare 9 Secondary Register								0000							
OC9R	01E6		Output Compare 9 Register 00								0000							
OC9TMR	01E8		Timer Value 9 Register xx								xxxx							

- = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

I²C[~] REGISTER MAP TABLE 4-9:

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
I2C1RCV	0200	_	—	—	—	—	_	_					Receive	Register				0000
I2C1TRN	0202	_	—	_	—	—	_	—	—				Transmit	Register				OOFF
I2C1BRG	0204	_	—	—	—	—	_	—				Baud Rat	te Generato	r Register				0000
I2C1CON	0206	I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C1STAT	0208	ACKSTAT	TRSTAT	_	—	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF	0000
I2C1ADD	020A	_	—	—	—	—	_					Address	Register					0000
I2C1MSK	020C	_	—	—	—	—	_		Address Mask Register						0000			
I2C2RCV	0210	_	_	_	—	—	_	_	Receive Register					0000				
I2C2TRN	0212	_	—	_	—	—	_	—	Transmit Register				00FF					
I2C2BRG	0214	_	—	—	—	—	_	Baud Rate Generator Register						0000				
I2C2CON	0216	I2CEN	—	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C2STAT	0218	ACKSTAT	TRSTAT	_	-	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF	0000
I2C2ADD	021A	_	—	—	—	—	_					Address	Register					0000
I2C2MSK	021C	_	—	—	—	—	_					Address Ma	ask Registe	r				0000
I2C3RCV	0270	—	—	—	—	—	_	—	—				Receive	Register				0000
I2C3TRN	0272	_	—	—	—	—	_	—	—				Transmit	Register				00FF
I2C3BRG	0274	—	_	_	-	—	—	—				Baud Rat	te Generato	r Register				0000
I2C3CON	0276	I2CEN	—	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C3STAT	0278	ACKSTAT	TRSTAT	_	—	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF	0000
I2C3ADD	027A		—	—	—	—					•	Address	Register	•	•	•		0000
I2C3MSK	027C	_	_	_	_	_	_					Address Ma	ask Registe	r				0000

DS39905E-page 45

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

R/SO-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	U-0	U-0	U-0	U-0	U-0	
WR	WREN	WRERR	—	_				
bit 15							bit	
U-0	R/W-0 ⁽¹⁾	U-0	U-0	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	
_	ERASE	NVMOP2 ⁽²⁾	NVMOP1 ⁽²⁾	NVMOP0(2				
bit 7							bit	
Legend:		SO = Set Only	y bit					
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown	
bit 15	cleared b	a Flash memor by hardware one or erase opera	ce the operation	n is complete.	n. The operatio	n is self-timed	and the bit	
bit 14		Enable bit ⁽¹⁾ Iash program/e ash program/er						
bit 13	1 = An impre automati	te Sequence Er oper program cally on any set iram or erase o	or erase seq	e WR bit)	t or terminatio	on has occurr	ed (bit is so	
bit 12-7	Unimplemen	ted: Read as ')'					
bit 6	ERASE: Eras	se/Program Ena	able bit ⁽¹⁾					
		the erase opera the program op					nd	
bit 5-4	Unimplemen	ted: Read as ')'					
bit 3-0	NVMOP<3:0>: NVM Operation Select bits ^(1,2)							
	0011 = Memo 0010 = Memo	ory bulk erase o ory word progra ory page erase ory row progran	m operation (E operation (ER	ERASE = 0) or ASE = 1) or no	no operation (E operation (ER/	ERASE = 1) ASE = 0)		
2: Al	l other combina	nly be reset on I itions of NVMO	P<3:0> are un	•	ing specificatio	-		

REGISTER 5-1: NVMCON: FLASH MEMORY CONTROL REGISTER

3: Available in ICSP[™] mode only. Refer to the device programming specification.

R/W-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0		
ALTIVT	DISI	_	—	—	_	_	_		
bit 15		• •	·				bit 8		
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
_		_	INT4EP	INT3EP	INT2EP	INT1EP	INTOEP		
bit 7							bit (
Legend:									
R = Readab	le bit	W = Writable	bit	U = Unimplem	ented bit, read	d as '0'			
-n = Value at	t POR	'1' = Bit is se	t	'0' = Bit is clea	ared	x = Bit is unkr	iown		
bit 14 bit 13-5 bit 4	0 = Use stand DISI: DISI In 1 = DISI inst 0 = DISI inst Unimplement INT4EP: Exte 1 = Interrupt of		vector table is bit e active 10' 4 Edge Detect F ge	Polarity Select b	it				
bit 3	1 = Interrupt c		ge	Polarity Select b	vit				
bit 2	1 = Interrupt o	rnal Interrupt 2 on negative ed on positive edg	ge	Polarity Select b	vit				
bit 1	1 = Interrupt c	on negative ed	ge	Polarity Select b	vit				
bit 0	1 = Interrupt c	 0 = Interrupt on positive edge INTOEP: External Interrupt 0 Edge Detect Polarity Select bit 1 = Interrupt on negative edge 0 = Interrupt on positive edge 							

REGISTER 7-4: INTCON2: INTERRUPT CONTROL REGISTER 2

10.4.6 PERIPHERAL PIN SELECT REGISTERS

The PIC24FJ256GA110 family of devices implements a total of 37 registers for remappable peripheral configuration:

- Input Remappable Peripheral Registers (21)
- Output Remappable Peripheral Registers (16)

Note: Input and output register values can only be changed if IOLOCK (OSCCON<6>) = 0. See Section 10.4.4.1 "Control Register Lock" for a specific command sequence.

REGISTER 10-1: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
	_	INT1R5	INT1R4	INT1R3	INT1R2	INT1R1	INT1R0		
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	—	—	—	—	—	—	—		
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'					
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown					

bit 15-14	Unimplemented: Read as '0'
-----------	----------------------------

bit 13-8 INT1R<5:0>: Assign External Interrupt 1 (INT1) to Corresponding RPn or RPIn Pin bits

bit 7-0 Unimplemented: Read as '0'

REGISTER 10-2: RPINR1: PERIPHERAL PIN SELECT INPUT REGISTER 1

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—		INT3R5	INT3R4	INT3R3	INT3R2	INT3R1	INT3R0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	INT2R5	INT2R4	INT2R3	INT2R2	INT2R1	INT2R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	INT3R<5:0>: Assign External Interrupt 3 (INT3) to Corresponding RPn or RPIn Pin bits
bit 7-6	Unimplemented: Read as '0'
bit 5-0	INT2R<5:0>: Assign External Interrupt 2 (INT2) to Corresponding RPn or RPIn Pin bits

REGISTER 10-13: RPINR18: PERIPHERAL PIN SELECT INPUT REGISTER 18

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	U1CTSR5	U1CTSR4	U1CTSR3	U1CTSR2	U1CTSR1	U1CTSR0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	U1RXR5	U1RXR4	U1RXR3	U1RXR2	U1RXR1	U1RXR0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	U1CTSR<5:0:> Assign UART1 Clear to Send (U1CTS) to Corresponding RPn or RPIn Pin bits
bit 7-6	Unimplemented: Read as '0'
bit 5-0	U1RXR<5:0>: Assign UART1 Receive (U1RX) to Corresponding RPn or RPIn Pin bits

REGISTER 10-14: RPINR19: PERIPHERAL PIN SELECT INPUT REGISTER 19

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	U2CTSR5	U2CTSR4	U2CTSR3	U2CTSR2	U2CTSR1	U2CTSR0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	U2RXR5	U2RXR4	U2RXR3	U2RXR2	U2RXR1	U2RXR0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 U2CTSR<5:0>: Assign UART2 Clear to Send (U2CTS) to Corresponding RPn or RPIn Pin bits

bit 7-6 Unimplemented: Read as '0'

bit 5-0 U2RXR<5:0>: Assign UART2 Receive (U2RX) to Corresponding RPn or RPIn Pin bits

REGISTER 10-34: RPOR12: PERIPHERAL PIN SELECT OUTPUT REGISTER 12

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	RP25R5	RP25R4	RP25R3	RP25R2	RP25R1	RP25R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	_	RP24R5	RP24R4	RP24R3	RP24R2	RP24R1	RP24R0
bit 7			•		•		bit 0
Legend:							

Legena.				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-14 Unimplemented: Read as '0'

- bit 13-8
 RP25R<5:0>: RP25 Output Pin Mapping bits

 Peripheral output number n is assigned to pin, RP25 (see Table 10-3 for peripheral function numbers).

 bit 7-6
 Unimplemented: Read as '0'
- bit 5-0 **RP24R<5:0>:** RP24 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP24 (see Table 10-3 for peripheral function numbers).

REGISTER 10-35: RPOR13: PERIPHERAL PIN SELECT OUTPUT REGISTER 13

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP27R5	RP27R4	RP27R3	RP27R2	RP27R1	RP27R0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP26R5	RP26R4	RP26R3	RP26R2	RP26R1	RP26R0
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP27R<5:0>:** RP27 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP27 (see Table 10-3 for peripheral function numbers).

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP26R<5:0>:** RP26 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP26 (see Table 10-3 for peripheral function numbers).

12.0 TIMER2/3 AND TIMER4/5

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"PIC24F Family Reference Manual"*, Section 14. "Timers" (DS39704).

The Timer2/3 and Timer4/5 modules are 32-bit timers, which can also be configured as four independent 16-bit timers with selectable operating modes.

As 32-bit timers, Timer2/3 and Timer4/5 can each operate in three modes:

- Two independent 16-bit timers with all 16-bit operating modes (except Asynchronous Counter mode)
- Single 32-bit timer
- Single 32-bit synchronous counter

They also support these features:

- Timer Gate Operation
- Selectable Prescaler Settings
- · Timer Operation during Idle and Sleep modes
- · Interrupt on a 32-Bit Period Register Match
- ADC Event Trigger (Timer2/3 only)

Individually, all four of the 16-bit timers can function as synchronous timers or counters. They also offer the features listed above, except for the ADC event trigger; this is implemented only with Timer3. The operating modes and enabled features are determined by setting the appropriate bit(s) in the T2CON, T3CON, T4CON and T5CON registers. T2CON and T4CON are shown in generic form in Register 12-1; T3CON and T5CON are shown in Register 12-2.

For 32-bit timer/counter operation, Timer2 and Timer4 are the least significant word; Timer3 and Timer4 are the most significant word of the 32-bit timers.

Note:	For 32-bit operation, T3CON and T5CON
	control bits are ignored. Only T2CON and
	T4CON control bits are used for setup and
	control. Timer2 and Timer4 clock and gate
	inputs are utilized for the 32-bit timer
	modules, but an interrupt is generated
	with the Timer3 or Timer5 interrupt flags.

To configure Timer2/3 or Timer4/5 for 32-bit operation:

- 1. Set the T32 bit (T2CON<3> or T4CON<3> = 1).
- 2. Select the prescaler ratio for Timer2 or Timer4 using the TCKPS<1:0> bits.
- Set the Clock and Gating modes using the TCS and TGATE bits. If TCS is set to external clock, RPINRx (TxCK) must be configured to an available RPn pin. See Section 10.4 "Peripheral Pin Select" for more information.
- 4. Load the timer period value. PR3 (or PR5) will contain the most significant word of the value while PR2 (or PR4) contains the least significant word.
- 5. If interrupts are required, set the interrupt enable bit, T3IE or T5IE; use the priority bits, T3IP<2:0> or T5IP<2:0>, to set the interrupt priority. Note that while Timer2 or Timer4 controls the timer, the interrupt appears as a Timer3 or Timer5 interrupt.
- 6. Set the TON bit (= 1).

The timer value, at any point, is stored in the register pair: TMR3:TMR2 (or TMR5:TMR4). TMR3 (TMR5) always contains the most significant word of the count, while TMR2 (TMR4) contains the least significant word.

To configure any of the timers for individual 16-bit operation:

- Clear the T32 bit corresponding to that timer (T2CON<3> for Timer2 and Timer3 or T4CON<3> for Timer4 and Timer5).
- 2. Select the timer prescaler ratio using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits. See Section 10.4 "Peripheral Pin Select" for more information.
- 4. Load the timer period value into the PRx register.
- 5. If interrupts are required, set the interrupt enable bit, TxIE; use the priority bits, TxIP<2:0>, to set the interrupt priority.
- 6. Set the TON bit (TxCON<15> = 1).

13.0 INPUT CAPTURE WITH DEDICATED TIMER

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"PIC24F Family Reference Manual"*, Section 34. *"Input Capture with* Dedicated Timer" (DS39722)

Devices in the PIC24FJ256GA110 family all feature 9 independent enhanced input capture modules. Each of the modules offers a wide range of configuration and operating options for capturing external pulse events and generating interrupts.

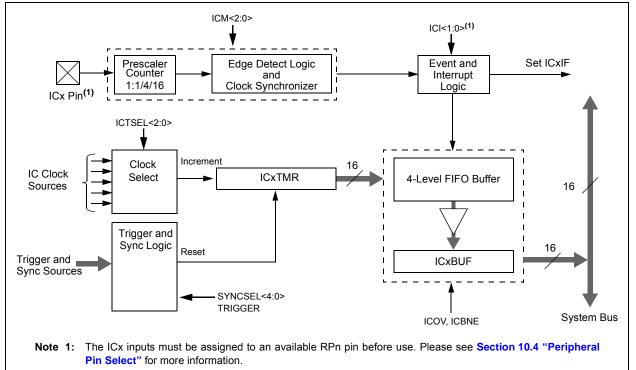
Key features of the enhanced output module include:

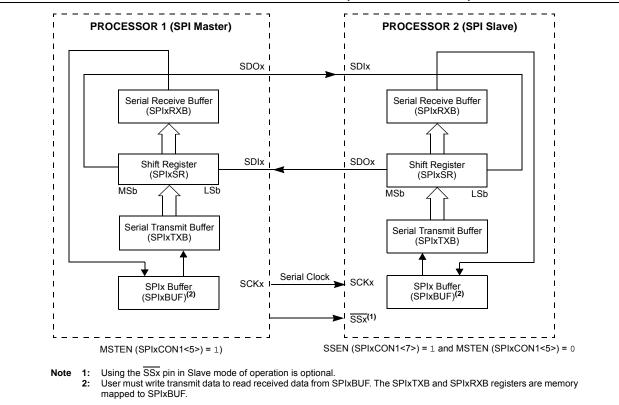
- Hardware-configurable for 32-bit operation in all modes by cascading two adjacent modules
- Synchronous and Trigger modes of output compare operation, with up to 30 user-selectable trigger/sync sources available
- A 4-level FIFO buffer for capturing and holding timer values for several events
- Configurable interrupt generation
- Up to 6 clock sources available for each module, driving a separate internal 16-bit counter

The module is controlled through two registers: ICxCON1 (Register 13-1) and ICxCON2 (Register 13-2). A general block diagram of the module is shown in Figure 13-1.

13.1 General Operating Modes

13.1.1 SYNCHRONOUS AND TRIGGER MODES


By default, the enhanced input capture module operates in a free-running mode. The internal 16-bit counter ICxTMR counts up continuously, wrapping around from FFFFh to 0000h on each overflow, with its period synchronized to the selected external clock source. When a capture event occurs, the current 16-bit value of the internal counter is written to the FIFO buffer.


In Synchronous mode, the module begins capturing events on the ICx pin as soon as its selected clock source is enabled. Whenever an event occurs on the selected sync source, the internal counter is reset. In Trigger mode, the module waits for a Sync event from another internal module to occur before allowing the internal counter to run.

Standard, free-running operation is selected by setting the SYNCSEL bits to '00000' and clearing the ICTRIG bit (ICxCON2<7>). Synchronous and Trigger modes are selected any time the SYNCSEL bits are set to any value except '00000'. The ICTRIG bit selects either Synchronous or Trigger mode; setting the bit selects Trigger mode operation. In both modes, the SYNCSEL bits determine the sync/trigger source.

When the SYNCSEL bits are set to '00000' and ICTRIG is set, the module operates in Software Trigger mode. In this case, capture operations are started by manually setting the TRIGSTAT bit (ICxCON2<6>).

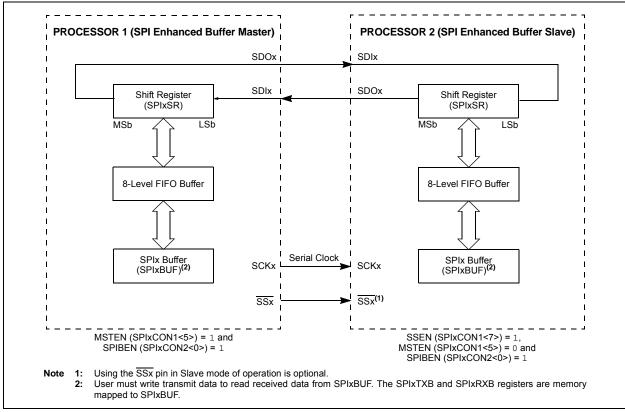


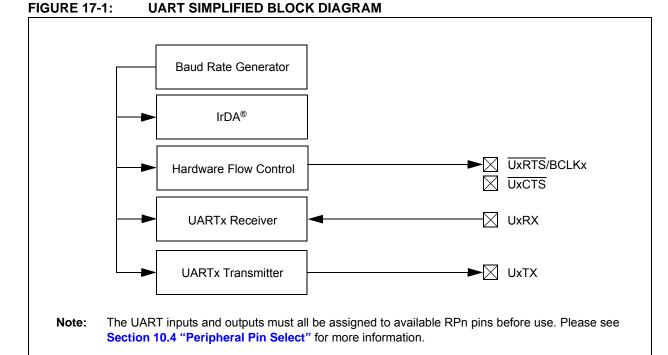
FIGURE 15-3: SPI MASTER/SLAVE CONNECTION (STANDARD MODE)

FIGURE 15-4: SPI MASTER/SLAVE CONNECTION (ENHANCED BUFFER MODES)

17.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

Note:	This data sheet summarizes the features of						
	this group of PIC24F devices. It is not						
	intended to be a comprehensive reference						
	source. For more information, refer to the						
	"PIC24F Family Reference Manual",						
	Section 21. "UART" (DS39708).						

The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in the PIC24F device family. The UART is a full-duplex asynchronous system that can communicate with peripheral devices, such as personal computers, LIN, RS-232 and RS-485 interfaces. The module also supports a hardware flow control option with the UxCTS and UxRTS pins, and also includes an IrDA[®] encoder and decoder.


The primary features of the UART module are:

- Full-Duplex, 8 or 9-Bit Data Transmission through the UxTX and UxRX Pins
- Even, Odd or No Parity Options (for 8-bit data)
- · One or Two Stop bits
- Hardware Flow Control Option with UxCTS and UxRTS Pins

- Fully Integrated Baud Rate Generator with 16-Bit Prescaler
- Baud Rates Ranging from 1 Mbps to 15 bps at 16 MIPS
- 4-Deep, First-In-First-Out (FIFO) Transmit Data Buffer
- 4-Deep FIFO Receive Data Buffer
- Parity, Framing and Buffer Overrun Error Detection
- Support for 9-Bit mode with Address Detect (9th bit = 1)
- · Transmit and Receive Interrupts
- Loopback mode for Diagnostic Support
- · Support for Sync and Break Characters
- Supports Automatic Baud Rate Detection
- · IrDA Encoder and Decoder Logic
- 16x Baud Clock Output for IrDA Support

A simplified block diagram of the UART is shown in Figure 17-1. The UART module consists of these key important hardware elements:

- · Baud Rate Generator
- Asynchronous Transmitter
- Asynchronous Receiver

REGISTER 21-2: AD1CON2: A/D CONTROL REGISTER 2

R/W-0	R/W-0	R/W-0	r-0	U-0	R/W-0	U-0	U-0
VCFG2	VCFG1	VCFG0	r	—	CSCNA	—	—
bit 15							bit 8

R-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
BUFS	—	SMPI3	SMPI2	SMPI1	SMPI0	BUFM	ALTS
bit 7							bit 0

Legend:	r = Reserved bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13

VCFG<2:0>: Voltage Reference Configuration bits

VCFG<2:0>	VR+	VR-
000	AVDD	AVss
001	External VREF+ pin	AVss
010	AVDD	External VREF- pin
011	External VREF+ pin	External VREF- pin
lxx	AVDD	AVss

- bit 12 Reserved: Maintain as '0'
- bit 11 Unimplemented: Read as '0'
- bit 10 **CSCNA:** Scan Input Selections for S/H Positive Input for MUX A Input Multiplexer Setting bit 1 = Scan inputs 0 = Do not scan inputs
- bit 9-8 Unimplemented: Read as '0'
- bit 7 **BUFS:** Buffer Fill Status bit (valid only when BUFM = 1)
 - 1 = A/D is currently filling buffer 08-0F, user should access data in 00-07
 - 0 = A/D is currently filling buffer 00-07, user should access data in 08-0F
- bit 6 Unimplemented: Read as '0'
- bit 5-2 SMPI<3:0>: Sample/Convert Sequences Per Interrupt Selection bits
 - 1111 = Interrupts at the completion of conversion for each 16th sample/convert sequence
 - 1110 = Interrupts at the completion of conversion for each 15th sample/convert sequence
 - 0001 = Interrupts at the completion of conversion for each 2nd sample/convert sequence
 0000 = Interrupts at the completion of conversion for each sample/convert sequence
- bit 1 BUFM: Buffer Mode Select bit
 - 1 = Buffer configured as two 8-word buffers (ADC1BUFn<15:8> and ADC1BUFn<7:0>)
 - 0 = Buffer configured as one 16-word buffer (ADC1BUFn<15:0>)
- bit 0 ALTS: Alternate Input Sample Mode Select bit
 - 1 = Uses MUX A input multiplexer settings for first sample, then alternates between MUX B and MUX A input multiplexer settings for all subsequent samples
 - 0 = Always uses MUX A input multiplexer settings

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
CH0NB	_		CH0SB4 ⁽¹⁾	CH0SB3 ⁽¹⁾	CH0SB2 ⁽¹⁾	CH0SB1 ⁽¹⁾	CH0SB0 ⁽¹⁾			
oit 15		÷					bit 8			
	U-0	U-0					R/W-0			
R/W-0 CH0NA	0-0	0-0	R/W-0 CH0SA4	R/W-0 CH0SA3	R/W-0 CH0SA2	R/W-0 CH0SA1	CH0SA0			
bit 7		_	CH05A4	CHUSAS	CHUSAZ	CHUSAT	bit			
							bit			
Legend:										
R = Readab	le bit	W = Writable	e bit	U = Unimplem	nented bit, read	l as '0'				
-n = Value a	t POR	'1' = Bit is se	t	'0' = Bit is clea	ared	x = Bit is unkn	iown			
bit 15	CH0NB: Ch	annel 0 Negativ	ve Input Select fo	or MUX B Multi	plexer Setting	bit				
	1 = Channel	0 negative inp 0 negative inp	ut is AN1							
bit 14-13		nted: Read as								
bit 12-8	•			lect for MUX B	Multiplexer Set	ting hits(1)				
511 12 0		CH0SB<4:0>: Channel 0 Positive Input Select for MUX B Multiplexer Setting bits ⁽¹⁾								
			e input is VBG/2	i bana gap reie						
		annel 0 positive								
		annel 0 positive								
		annel 0 positive								
		annel 0 positive								
		annel 0 positive								
		annel 0 positive								
	01001 = Ch	annel 0 positive	e input is AN9							
		annel 0 positive								
		annel 0 positive								
		annel 0 positive								
			00101 = Channel 0 positive input is AN5							
00101 = Channel 0 positive input is AN4										
	00100 = Channel 0 positive input is AN4 00011 = Channel 0 positive input is AN3									
		annel 0 positive	e input is AN3							
	00010 = Ch	annel 0 positive annel 0 positive	e input is AN3 e input is AN2							
	00010 = Ch 00001 = Ch	annel 0 positive annel 0 positive annel 0 positive	e input is AN3 e input is AN2 e input is AN1							
bit 7	00010 = Ch 00001 = Ch 00000 = Ch	annel 0 positive annel 0 positive annel 0 positive annel 0 positive	e input is AN3 e input is AN2 e input is AN1 e input is AN0	or MUX A Multi	plexer Setting	bit				
bit 7	00010 = Ch 00001 = Ch 00000 = Ch CH0NA: Ch	annel 0 positive annel 0 positive annel 0 positive annel 0 positive annel 0 Negative	e input is AN3 e input is AN2 e input is AN1 e input is AN0 ve Input Select fo	or MUX A Multi	plexer Setting	bit				
bit 7	00010 = Ch 00001 = Ch 00000 = Ch CH0NA: Ch 1 = Channel	annel 0 positive annel 0 positive annel 0 positive annel 0 positive	e input is AN3 e input is AN2 e input is AN1 e input is AN0 ve Input Select fo ut is AN1	or MUX A Multi	plexer Setting	bit				
bit 7 bit 6-5	00010 = Ch 00001 = Ch 00000 = Ch CH0NA: Ch 1 = Channel 0 = Channel	annel 0 positive annel 0 positive annel 0 positive annel 0 positive annel 0 Negative 0 negative input	e input is AN3 e input is AN2 e input is AN1 e input is AN0 ve Input Select fo ut is AN1 ut is VR-	or MUX A Multi	plexer Setting	bit				
	00010 = Ch 00001 = Ch 00000 = Ch CH0NA: Ch 1 = Channel 0 = Channel Unimpleme	annel 0 positive annel 0 positive annel 0 positive annel 0 positive annel 0 Negative 0 negative inp 0 negative inp nted: Read as	e input is AN3 e input is AN2 e input is AN1 e input is AN0 ve Input Select fo ut is AN1 ut is VR-							

REGISTER 21-4: AD1CHS: A/D INPUT SELECT REGISTER

Note 1: Combinations, '10010' through '11111', are unimplemented; do not use.

R = Readable	POR	CTMUSIDL R/W-0 EDG2SEL0 W = Writable I '1' = Bit is set	TGEN R/W-0 EDG1POL	EDGEN R/W-0 EDG1SEL1 U = Unimplen '0' = Bit is clea	EDGSEQEN R/W-0 EDG1SEL0	IDISSEN R/W-0 EDG2STAT	CTTRIG bit 8 R/W-0 EDG1STAT bit 0
R/W-0 EDG2POL bit 7 Legend: R = Readable	EDG2SEL1 bit POR CTMUEN: CT 1 = Module is	EDG2SEL0 W = Writable H '1' = Bit is set	EDG1POL	EDG1SEL1	EDG1SEL0	EDG2STAT	R/W-0 EDG1STAT
EDG2POL bit 7 Legend: R = Readable	EDG2SEL1 bit POR CTMUEN: CT 1 = Module is	EDG2SEL0 W = Writable H '1' = Bit is set	EDG1POL	EDG1SEL1	EDG1SEL0	EDG2STAT	EDG1STAT
EDG2POL bit 7 Legend: R = Readable	EDG2SEL1 bit POR CTMUEN: CT 1 = Module is	EDG2SEL0 W = Writable H '1' = Bit is set	EDG1POL	EDG1SEL1	EDG1SEL0	EDG2STAT	EDG1STAT
	bit POR CTMUEN: CT 1 = Module is	W = Writable I '1' = Bit is set		U = Unimplen			
Legend: R = Readable	CTMUEN: CT	'1' = Bit is set	Dit	•	nented bit read	(0)	bit (
R = Readable	CTMUEN: CT	'1' = Bit is set	Dit	•	nented bit read		
R = Readable	CTMUEN: CT	'1' = Bit is set	Dit	•	nented bit read	(0)	
	CTMUEN: CT	'1' = Bit is set	pit	•	nented bit read	(0)	
-n = Value at F	CTMUEN: CT 1 = Module is			(0)' = Dit is also		as 0	
	1 = Module is	MU Enable bit			ared	x = Bit is unkn	own
=	1 = Module is	MU Enable bit					
bit 15							
bit 14		ted: Read as '0	,				
	-	Stop in Idle Mod					
		-		evice enters Idl	e mode		
		module operat					
bit 12	TGEN: Time (Generation Ena	ble bit ⁽¹⁾				
		edge delay gen					
		edge delay ger	eration				
bit 11	EDGEN: Edge						
	1 = Edges are 0 = Edges are						
bit 10	•	Edge Sequence	e Enable hit				
				2 event can oc	cur		
		sequence is ne					
bit 9	IDISSEN: Ana	alog Current So	urce Control b	bit			
		urrent source of					
	-	urrent source of	utput is not gro	ounded			
bit 8	-	ger Control bit					
		utput is enabled utput is disable					
bit 7		dge 2 Polarity S					
		rogrammed for		ie response			
		rogrammed for					
bit 6-5	EDG2SEL<1:	0>: Edge 2 Sou	urce Select bit	S			
	11 = CTED1						
	10 = CTED2						
	01 = OC1 mo 00 = Timer1 n						
bit 4		dge 1 Polarity S	Select hit				
		rogrammed for		le response			
		rogrammed for					
Note 1: If T	GEN = 1 the (CTEDGx inputs	and CTDI S a	utoute must be	assigned to av	ailahla PDn nin	

REGISTER 24-1: CTMUCON: CTMU CONTROL REGISTER

Note 1: If TGEN = 1, the CTEDGx inputs and CTPLS outputs must be assigned to available RPn pins before use. See Section 10.4 "Peripheral Pin Select" for more information.

TABLE 28-14: PLL CLOCK TIMING SPECIFICATIONS (VDD = 2.0V TO 3.6V)

AC CHARACTERISTICS			$ \begin{array}{llllllllllllllllllllllllllllllllllll$						
Param No.	Sym Characteristic ¹⁷		Min	Typ ⁽²⁾	Max	Units	Conditions		
OS50	Fplli	PLL Input Frequency Range ⁽²⁾	4	_	8	MHz	ECPLL, HSPLL, XTPLL modes		
OS51	Fsys	PLL Output Frequency Range	16	—	32	MHz			
OS52	TLOCK	PLL Start-up Time (Lock Time)	-	—	2	ms			
OS53	DCLK	CLKO Stability (Jitter)	-2	1	+2	%			

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

TABLE 28-15: INTERNAL RC OSCILLATOR SPECIFICATIONS

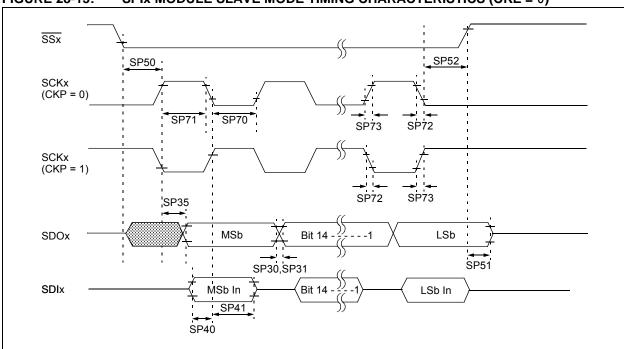

AC CHARACTERISTICS			$ \begin{array}{ll} \mbox{Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array} $					
Param No.	Sym	Characteristic	Min	Тур	Max	Units	Conditions	
	TFRC	FRC Start-up Time	—	15	-	μS		
	TLPRC	LPRC Start-up Time		40		μS		

TABLE 28-16: INTERNAL RC OSCILLATOR ACCURACY

AC CHARACTERISTICS		$ \begin{array}{ll} \mbox{Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array} $					
Param No.	Characteristic		Тур	Max	Units	Conditions	
F20	FRC Accuracy @ 8 MHz ⁽¹⁾	-2		2	%	+25°C, $3.0V \le VDD \le 3.6V$	
		-5		5	%	$\begin{array}{l} -40^{\circ}C \leq TA \leq +85^{\circ}C, \\ 3.0V \leq VDD \leq 3.6V \end{array}$	
F21	LPRC Accuracy @ 31 kHz ⁽²⁾	-20		20	%	$\begin{array}{l} -40^{\circ}C \leq \text{Ta} \leq +85^{\circ}C, \\ 3.0V \leq \text{VDD} \leq 3.6V \end{array}$	

Note 1: Frequency calibrated at 25°C and 3.3V. OSCTUN bits can be used to compensate for temperature drift.

2: Change of LPRC frequency as VDD changes.

FIGURE 28-13: SPIX MODULE SLAVE MODE TIMING CHARACTERISTICS (CKE = 0)

TABLE 28-26: SPIX MODULE SLAVE MODE TIMING REQUIREMENTS (CKE = 0)

AC CHAF	RACTERISTI	cs	$\begin{array}{l} \mbox{Standard Operating Conditions: 2.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \end{array}$					
Param No.	Symbol	Characteristic	Min	Тур ⁽¹⁾	Max	Units	Conditions	
SP70	TscL	SCKx Input Low Time	30	—	_	ns		
SP71	TscH	SCKx Input High Time	30			ns		
SP72	TscF	SCKx Input Fall Time ⁽²⁾	_	10	25	ns		
SP73	TscR	SCKx Input Rise Time ⁽²⁾	—	10	25	ns		
SP30	TdoF	SDOx Data Output Fall Time ⁽²⁾	—	10	25	ns		
SP31	TdoR	SDOx Data Output Rise Time ⁽²⁾	_	10	25	ns		
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	—	30	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	20	—	—	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	20	—	—	ns		
SP50	TssL2scH, TssL2scL	SSx to SCKx ↑ or SCKx Input	120	—	_	ns		
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance ⁽³⁾	10	_	50	ns		
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 Tcy + 40	—	—	ns		

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Assumes 50 pF load on all SPIx pins.

APPENDIX A: REVISION HISTORY

Revision A (December 2007)

Original data sheet for the PIC24FJ256GA110 family of devices.

Revision B (February 2008)

Updates to **Section 28.0** "Electrical Characteristics" and minor edits to text throughout document.

Revision C (April 2009)

Updates to all Pin Diagrams to reflect the correct order of priority for multiplexed peripherals and adds the ASCK1 pin function.

Adds packaging information for the new 64-pin QFN package to **Section 29.0** "**Packaging Information**" and the Product Information System.

Updates **Section 5.0 "Flash Program Memory"** with revised code examples in assembler and new code examples in C.

Updates **Section 6.2** "**Device Reset Times**" with revised information, particularly Table 6-3.

Adds the INTTREG register to Section 4.0 "Memory Organization" and Section 7.0 "Interrupt Controller".

Makes several additions and changes to **Section 10.0 "I/O Ports"**, including:

- revision of Section 10.4.2.1 "Peripheral Pin Select Function Priority"
- addition of Section 10.4.3.3 "Alternate Fixed Pin Mapping"
- revisions to Table 10-3, "Selectable Output Sources"
- addition of the ALTRP register (and in Section 4.0 "Memory Organization")

Updates Section 15.0 "Serial Peripheral Interface (SPI)" to include references to the ASCK1 pin function.

Updates Section 20.0 "Programmable Cyclic Redundancy Check (CRC) Generator" with new illustrations and a revised Section 20.1 "User Interface".

Updates Section 21.0 "10-Bit High-Speed A/D Converter" by changing all references to AD1CHS0 to AD1CHS (as well as other locations in the document). Also revises bit field descriptions in registers: AD1CON3 (bits 7:0) and AD1CHS (bits 12:8).

Makes minor text edits to bit descriptions in Section 22.0 "Triple Comparator Module" (Register 22-1) and Section 24.0 "Charge Time Measurement Unit (CTMU)" (Register 24-1).

Updates **Section 25.2 "On-Chip Voltage Regulator"** with revised text on the operation of the regulator during POR and Standby mode.

Updates **Section 25.5 "JTAG Interface**" to remove references to programming via the interface.

Makes multiple additions and changes to **Section 28.0** "Electrical Characteristics", including:

- DC current characteristics for extended temperature operation (125°C)
- New DC characteristics of VBOR, VBG, TBG and ICNPD
- Addition of new VPEW specification for VDDCORE
- New AC characteristics for internal oscillator start-up time (TLPRC)
- Combination of all Internal RC Accuracy information into a single table

Makes other minor typographic corrections throughout the text.

Revision D (December 2009)

Updates Section 2.0 "Guidelines for Getting Started with 16-bit Microcontrollers" with the most current version.

Corrects annotations to the CN70 pin function in Table 4-4 of Section 4.2.4 "SFR Space".

Corrects annotations to remappable output function 30 in Register 10-37 of **Section 10.4** "**Peripheral Pin Select**".

Corrects the definitions for the WPEND and WPFP<7:0> Configuration bits in Register 25-3 of **Section 25.1 "Configuration Bits**".

Updates **Section 28.0** "Electrical Characteristics" with additional data for IDD at 60°C. Also corrects occurrences of "DISVREG" throughout the chapter, replacing them with "ENVREG" and the proper VDD/Vss connection information.

Makes other minor typographic corrections throughout the text.

Revision E (November 2010)

Updated Section 2.0 "Guidelines for Getting Started with 16-bit Microcontrollers" with the most current version.

Updates to **Section 28.0** "Electrical Characteristics" with tables being added and replaced from the FRM chapters.