

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	69
Program Memory Size	256KB (85.5K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj256ga108t-i-pt

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.2 Other Special Features

- Peripheral Pin Select: The Peripheral Pin Select (PPS) feature allows most digital peripherals to be mapped over a fixed set of digital I/O pins. Users may independently map the input and/or output of any one of the many digital peripherals to any one of the I/O pins.
- Communications: The PIC24FJ256GA110 family incorporates a range of serial communication peripherals to handle a range of application requirements. There are three independent I²C[™] modules that support both Master and Slave modes of operation. Devices also have, through the Peripheral Pin Select (PPS) feature, four independent UARTs with built-in IrDA[®] encoder/decoders and three SPI modules.
- Analog Features: All members of the PIC24FJ256GA110 family include a 10-bit A/D Converter module and a triple comparator module. The A/D module incorporates programmable acquisition time, allowing for a channel to be selected and a conversion to be initiated without waiting for a sampling period, as well as faster sampling speeds. The comparator module includes three analog comparators that are configurable for a wide range of operations.
- **CTMU Interface:** In addition to their other analog features, members of the PIC24FJ256GA110 family include the brand new CTMU interface module. This provides a convenient method for precision time measurement and pulse generation, and can serve as an interface for capacitive sensors.
- **Parallel Master Port:** One of the general purpose I/O ports can be reconfigured for enhanced parallel data communications. In this mode, the port can be configured for both master and slave operations, and supports 8-bit transfers with up to 16 external address lines in Master modes.
- Real-Time Clock/Calendar: This module implements a full-featured clock and calendar with alarm functions in hardware, freeing up the timer resources and program memory space for the use of the core application.

1.3 Details on Individual Family Members

Devices in the PIC24FJ256GA110 family are available in 64-pin, 80-pin and 100-pin packages. The general block diagram for all devices is shown in Figure 1-1.

The devices are differentiated from each other in four ways:

- Flash program memory (64 Kbytes for PIC24FJ64GA1 devices, 128 Kbytes for PIC24FJ128GA1 devices, 192 Kbytes for PIC24FJ192GA1 devices and 256 Kbytes for PIC24FJ256GA1 devices).
- Available I/O pins and ports (53 pins on 6 ports for 64-pin devices, 69 pins on 7 ports for 80-pin devices and 85 pins on 7 ports for 100-pin devices).
- 3. Available Interrupt-on-Change Notification (ICN) inputs (same as the number of available I/O pins for all devices).
- 4. Available remappable pins (31 pins on 64-pin devices, 42 pins on 80-pin devices and 46 pins on 100-pin devices)

All other features for devices in this family are identical. These are summarized in Table 1-1.

A list of the pin features available on the PIC24FJ256GA110 family devices, sorted by function, is shown in Table 1-4. Note that this table shows the pin location of individual peripheral features and not how they are multiplexed on the same pin. This information is provided in the pinout diagrams in the beginning of this data sheet. Multiplexed features are sorted by the priority given to a feature, with the highest priority peripheral being listed first.

TABLE 4-27: SYSTEM REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RCON	0740	TRAPR	IOPUWR	—	_		—	СМ	PMSLP	EXTR	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR	Note 1
OSCCON	0742	—	COSC2	COSC1	COSC0	—	NOSC2	NOSC1	NOSC0	CLKLOCK	IOLOCK	LOCK	—	CF	POSCEN	SOSCEN	OSWEN	Note 2
CLKDIV	0744	ROI	DOZE2	DOZE1	DOZE0	DOZEN	RCDIV2	RCDIV1	RCDIV0	—	—	—		—	_	_	—	0100
OSCTUN	0748	—	—	—	-	—	—	—	—	—	—	TUN5	TUN4	TUN3	TUN2	TUN1	TUN0	0000
REFOCON	074E	ROEN		ROSSLP	ROSEL	RODIV3	RODIV2	RODIV1	RODIV0		-	—	_	-	_	_	-	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: The Reset value of the RCON register is dependent on the type of Reset event. See Section 6.0 "Resets" for more information.

2: The Reset value of the OSCCON register is dependent on both the type of Reset event and the device configuration. See Section 8.0 "Oscillator Configuration" for more information.

TABLE 4-28: NVM REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
NVMCON	0760	WR	WREN	WRERR		_		_	_		ERASE			NVMOP3	NVMOP2	NVMOP1	NVMOP0	₀₀₀₀ (1)
NVMKEY	0766	-	—	_		_	_	_	_				NVMK	EY<7:0>				0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: Reset value shown is for POR only. Value on other Reset states is dependent on the state of memory write or erase operations at the time of Reset.

TABLE 4-29: PMD REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770	T5MD	T4MD	T3MD	T2MD	T1MD	-	—	—	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	_		ADC1MD	0000
PMD2	0772	IC8MD	IC7MD	IC6MD	IC5MD	IC4MD	IC3MD	IC2MD	IC1MD	OC8MD	OC7MD	OC6MD	OC5MD	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0774	_	—	_	—	—	CMPMD	RTCCMD	PMPMD	CRCMD	—	—	—	U3MD	I2C3MD	I2C2MD	—	0000
PMD4	0776	_	_	_	_	—	—	_	_	_	_	U4MD	_	REFOMD	CTMUMD	LVDMD	_	0000
PMD5	0778	_	—	—	—	—	—	—	IC9MD	—	—	—	—	—	—	_	OC9MD	0000
PMD6	077A	_	—	_	-	-	-	_	—	-		_	_	_	_	_	SPI3MD	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

NOTES:

REGISTER 7-12: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1 (CONTINUED)

bit 1	MI2C1IE: Master I2C1 Event Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled
bit 0	SI2C1IE: Slave I2C1 Event Interrupt Enable bit 1 = Interrupt request enabled
	0 = Interrupt request not enabled

Note 1: If an external interrupt is enabled, the interrupt input must also be configured to an available RPn or RPIn pin. See **Section 10.4 "Peripheral Pin Select"** for more information.

REGISTER 7-13: IEC2: INTERRUPT ENABLE CONTROL REGISTER 2

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	PMPIE	OC8IE	OC7IE	OC6IE	OC5IE	IC6IE
bit 15				•			bit 8
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
IC5IE	IC4IE	IC3IE	0-0	0-0	0-0	SPI2IE	SPF2IE
bit 7	IC4IE	ICJIE			_	JF121L	bit (
Legend:							
R = Readable		W = Writable	bit	•	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-14	Unimpleme	ented: Read as ')'				
bit 13	PMPIE: Par	allel Master Port	Interrupt Enal	ole bit			
		t request enabled t request not ena					
bit 12	OC8IE: Out	put Compare Ch	annel 8 Interru	upt Enable bit			
		t request enabled					
	0 = Interrup	t request not ena	bled				
bit 11	-	put Compare Ch		upt Enable bit			
		t request enabled t request not ena					
bit 10	OC6IE: Out	put Compare Ch	annel 6 Interru	upt Enable bit			
		t request enabled t request not ena					
bit 9	OC5IE: Out	put Compare Ch	annel 5 Interru	upt Enable bit			
	•	t request enabled t request not ena					
bit 8	IC6IE: Input	Capture Channe	el 6 Interrupt E	nable bit			
		t request enable t request not ena					
bit 7	IC5IE: Input	Capture Channe	el 5 Interrupt E	nable bit			
		t request enabled t request not ena					
bit 6	IC4IE: Input	Capture Channe	el 4 Interrupt E	nable bit			
		t request enable t request not ena					
bit 5	-	Capture Channe		nable bit			
	1 = Interrupt	t request enable	ł				
	0 = Interrupt	t request not ena	bled				
bit 4-2	Unimpleme	nted: Read as ')'				
bit 1		2 Event Interrup					
		t request enable					
-:+ O	-	t request not ena					
bit 0	SPF2IE: SP	t request not ena l2 Fault Interrup t request enable	Enable bit				

REGISTER	7-18: IPC1:	INTERRUPT	PRIORITY		EGISTER 1		
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—	T2IP2	T2IP1	T2IP0	—	OC2IP2	OC2IP1	OC2IP0
bit 15							bit
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
_	IC2IP2	IC2IP1	IC2IP0	—	_		_
bit 7							bit
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimpler	nented bit, read	1 as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 14-12 bit 11 bit 10-8	111 = Interru • • 001 = Interru 000 = Interru Unimplemen OC2IP<2:0>:	pt source is dis ited: Read as '(: Output Compa pt is priority 7 (I	abled o' re Channel 2	Interrupt Priorit	y bits		
bit 7 bit 6-4	Unimplemen IC2IP<2:0>:	pt is priority 7 (I)' Channel 2 Inte	rrupt Priority bit / interrupt)	5		
bit 3-0		pt source is dis nted: Read as 'o					

REGISTER 7-18: IPC1: INTERRUPT PRIORITY CONTROL REGISTER 1

8.1 CPU Clocking Scheme

The system clock source can be provided by one of four sources:

- Primary Oscillator (POSC) on the OSCI and OSCO pins
- Secondary Oscillator (SOSC) on the SOSCI and SOSCO pins
- Fast Internal RC (FRC) Oscillator
- · Low-Power Internal RC (LPRC) Oscillator

The Primary Oscillator and FRC sources have the option of using the internal 4x PLL. The frequency of the FRC clock source can optionally be reduced by the programmable clock divider. The selected clock source generates the processor and peripheral clock sources.

The processor clock source is divided by two to produce the internal instruction cycle clock, FCY. In this document, the instruction cycle clock is also denoted by FOSC/2. The internal instruction cycle clock, FOSC/2, can be provided on the OSCO I/O pin for some operating modes of the Primary Oscillator.

8.2 Initial Configuration on POR

The oscillator source (and operating mode) that is used at a device Power-on Reset event is selected using Configuration bit settings. The oscillator Configuration bit settings are located in the Configuration registers in the program memory (refer to Section 25.1 "Configuration Bits" for further details). The Primary Configuration bits, POSCMD<1:0> Oscillator (Configuration Word 2<1:0>), and the Initial Oscillator Select Configuration bits. FNOSC<2:0> (Configuration Word 2<10:8>), select the oscillator source that is used at a Power-on Reset. The FRC Primary Oscillator with Postscaler (FRCDIV) is the default (unprogrammed) selection. The Secondary Oscillator, or one of the internal oscillators, may be chosen by programming these bit locations.

The Configuration bits allow users to choose between the various clock modes, shown in Table 8-1.

8.2.1 CLOCK SWITCHING MODE CONFIGURATION BITS

The FCKSM Configuration bits (Configuration Word 2<7:6>) are used to jointly configure device clock switching and the Fail-Safe Clock Monitor (FSCM). Clock switching is enabled only when FCKSM1 is programmed ('0'). The FSCM is enabled only when FCKSM<1:0> are both programmed ('00').

Oscillator Mode	Oscillator Source	POSCMD<1:0>	FNOSC<2:0>	Note
Fast RC Oscillator with Postscaler (FRCDIV)	Internal	11	111	1, 2
(Reserved)	Internal	xx	110	1
Low-Power RC Oscillator (LPRC)	Internal	11	101	1
Secondary (Timer1) Oscillator (SOSC)	Secondary	11	100	1
Primary Oscillator (XT) with PLL Module (XTPLL)	Primary	01	011	
Primary Oscillator (EC) with PLL Module (ECPLL)	Primary	00	011	
Primary Oscillator (HS)	Primary	10	010	
Primary Oscillator (XT)	Primary	01	010	
Primary Oscillator (EC)	Primary	00	010	
Fast RC Oscillator with PLL Module (FRCPLL)	Internal	11	001	1
Fast RC Oscillator (FRC)	Internal	11	000	1

TABLE 8-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION

Note 1: OSCO pin function is determined by the OSCIOFCN Configuration bit.

2: This is the default oscillator mode for an unprogrammed (erased) device.

REGISTER 10-36: RPOR14: PERIPHERAL PIN SELECT OUTPUT REGISTER 14

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
bit 15	RP29R0	RP29R1	RP29R2	RP29R3	RP29R4	RP29R5	—	—
	bit 8							bit 15

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP28R5	RP28R4	RP28R3	RP28R2	RP28R1	RP28R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP29R<5:0>: RP29 Output Pin Mapping bits
	Peripheral output number n is assigned to pin, RP29 (see Table 10-3 for peripheral function numbers).
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP28R<5:0>: RP28 Output Pin Mapping bits
	Peripheral output number n is assigned to pin, RP28 (see Table 10-3 for peripheral function numbers).

REGISTER 10-37: RPOR15: PERIPHERAL PIN SELECT OUTPUT REGISTER 15

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP31R5 ⁽¹⁾	RP31R4 ⁽¹⁾	RP31R3 ⁽¹⁾	RP31R2 ⁽¹⁾	RP31R1 ⁽¹⁾	RP31R0 ⁽¹⁾
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP30R5	RP30R4	RP30R3	RP30R2	RP30R1	RP30R0
bit 7	•						bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8**RP31R<5:0>:** RP31 Output Pin Mapping bits⁽¹⁾
Peripheral output number n is assigned to pin, RP31 (see Table 10-3 for peripheral function numbers).bit 7-6**Unimplemented:** Read as '0'

bit 5-0 **RP30R<5:0>:** RP30 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP30 (see Table 10-3 for peripheral function numbers).

Note 1: Unimplemented in 64-pin and 80-pin devices; read as '0'.

REGISTER 10-38: ALTRP: ALTERNATE PERIPHERAL PIN MAPPING REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
—	—	—	—	—	—	—	—			
bit 15	bit 15									
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0			
—	—	—	—	—	—	—	SCK1CM			
bit 7							bit 0			

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-1 Unimplemented: Read as '0'

bit 0

SCK1CM: SCK1 Output Mapping Select bit

1 = SCK1 output function is mapped to ASCK1 pin only

0 = SCK1 output function is mapped according to RPORn registers

REGISTER 14-2: OCxCON2: OUTPUT COMPARE x CONTROL 2 REGISTER (CONTINUED)

bit 4-0 SYNCSEL<4:0>: Trigger/Synchronization Source Selection bits

11111 = This OC module⁽¹⁾ 11110 = Input Capture 9⁽²⁾ 11101 = Input Capture 6⁽²⁾ 11100 = CTMU⁽²⁾ 11011 = A/D⁽²⁾ 11010 = Comparator 3⁽²⁾ 11001 = Comparator 2⁽²⁾ 11000 = Comparator 1⁽²⁾ 10111 = Input Capture 4⁽²⁾ 10110 = Input Capture 3⁽²⁾ 10101 = Input Capture 2⁽²⁾ 10100 = Input Capture 1⁽²⁾ 10011 = Input Capture 8⁽²⁾ 10010 = Input Capture 7⁽²⁾ 1000x = reserved 01111 = Timer5 01110 = Timer4 01101 = Timer3 01100 = Timer2 01011 = Timer1 01010 = Input Capture 5⁽²⁾ 01001 = Output Compare 9⁽¹⁾ 01000 = Output Compare 8⁽¹⁾ 00111 = Output Compare 7⁽¹⁾ 00110 = Output Compare 6⁽¹⁾ 00101 = Output Compare 5⁽¹⁾ 00100 = Output Compare 4⁽¹⁾ 00011 = Output Compare 3⁽¹⁾ 00010 = Output Compare 2⁽¹⁾ 00001 = Output Compare 1⁽¹⁾ 00000 = Not synchronized to any other module

- **Note 1:** Never use an OC module as its own trigger source, either by selecting this mode or another equivalent SYNCSEL setting.
 - **2:** Use these inputs as trigger sources only and never as sync sources.

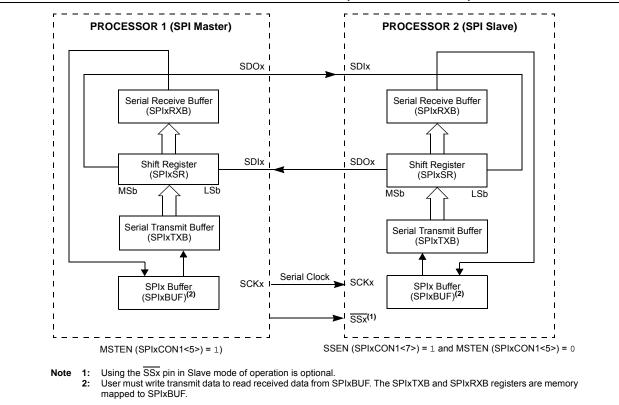
15.0 SERIAL PERIPHERAL INTERFACE (SPI)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "PIC24F Family Reference Manual", Section 23. "Serial Peripheral Interface (SPI)" (DS39699).

The Serial Peripheral Interface (SPI) module is a synchronous serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, display drivers, A/D Converters, etc. The SPI module is compatible with Motorola's SPI and SIOP interfaces. All devices of the PIC24FJ256GA110 family include three SPI modules

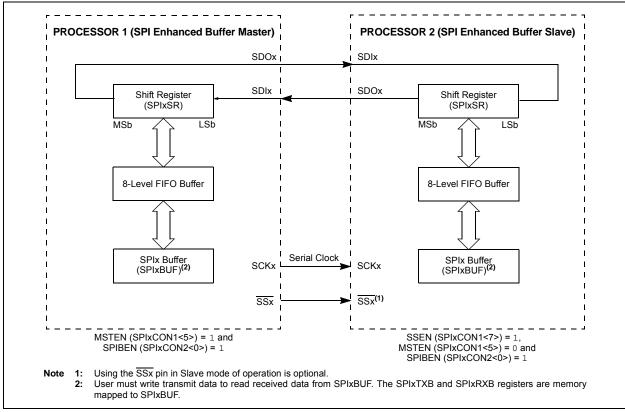
The module supports operation in two buffer modes. In Standard mode, data is shifted through a single serial buffer. In Enhanced Buffer mode, data is shifted through an 8-level FIFO buffer.

Note: Do not perform read-modify-write operations (such as bit-oriented instructions) on the SPIxBUF register in either Standard or Enhanced Buffer mode.


The module also supports a basic framed SPI protocol while operating in either Master or Slave mode. A total of four framed SPI configurations are supported. The SPI serial interface consists of four pins:

- SDIx: Serial Data Input
- SDOx: Serial Data Output
- SCKx: Shift Clock Input or Output
- SSx: Active-Low Slave Select or Frame Synchronization I/O Pulse

The SPI module can be configured to operate using 2, 3 or 4 pins. In the 3-pin mode, SSx is not used. In the 2-pin mode, both SDOx and SSx are not used.


Block diagrams of the module in Standard and Enhanced modes are shown in Figure 15-1 and Figure 15-2.

Note: In this section, the SPI modules are referred to together as SPIx or separately as SPI1, SPI2 or SPI3. Special Function Registers will follow a similar notation. For example, SPIxCON1 and SPIxCON2 refer to the control registers for any of the 3 SPI modules.

FIGURE 15-3: SPI MASTER/SLAVE CONNECTION (STANDARD MODE)

FIGURE 15-4: SPI MASTER/SLAVE CONNECTION (ENHANCED BUFFER MODES)

REGISTER 17-1: UXMODE: UARTX MODE REGISTER (CONTINUED)

bit 4	RXINV: Receive Polarity Inversion bit 1 = UxRX Idle state is '0' 0 = UxRX Idle state is '1'
bit 3	BRGH: High Baud Rate Enable bit
	1 = High-Speed mode (baud clock generated from FcY/4)0 = Standard mode (baud clock generated from FcY/16)
bit 2-1	PDSEL<1:0>: Parity and Data Selection bits
	 11 = 9-bit data, no parity 10 = 8-bit data, odd parity 01 = 8-bit data, even parity 00 = 8-bit data, no parity
bit 0	STSEL: Stop Bit Selection bit
	1 = Two Stop bits0 = One Stop bit

- **Note 1:** If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn pin. See **Section 10.4 "Peripheral Pin Select"** for more information.
 - 2: This feature is only available for the 16x BRG mode (BRGH = 0).

REGISTER 19-1: RCFGCAL: RTCC CALIBRATION AND CONFIGURATION REGISTER⁽¹⁾ (CONTINUED)

bit 7-0 CAL<7:0>: RTC Drift Calibration bits

...

011111111 = Maximum positive adjustment; adds 508 RTC clock pulses every one minute

00000001 = Minimum positive adjustment; adds 4 RTC clock pulses every one minute

00000000 = No adjustment

11111111 = Minimum negative adjustment; subtracts 4 RTC clock pulses every one minute

10000000 = Maximum negative adjustment; subtracts 512 RTC clock pulses every one minute

- **Note 1:** The RCFGCAL register is only affected by a POR.
 - **2:** A write to the RTCEN bit is only allowed when RTCWREN = 1.
 - **3:** This bit is read-only; it is cleared to '0' on a write to the lower half of the MINSEC register.

REGISTER 19-2: PADCFG1: PAD CONFIGURATION CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	_	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	—	—	—	RTSECSEL ⁽¹⁾	PMPTTL
bit 7							bit 0
Legend:							
R = Readabl	le bit	W = Writable I	oit	U = Unimplem	nented bit, rea	ad as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			
bit 15-2	Unimplemen	ted: Read as '0)'				
bit 1	RTSECSEL:	RTCC Seconds	Clock Output	Select bit ⁽¹⁾			
	1 = RTCC se	conds clock is	selected for the	e RTCC pin			
	0 = RTCC ala	arm pulse is sel	ected for the F	RTCC pin			
bit 0	PMPTTL: PM	IP Module TTL	Input Buffer Se	elect bit			
	1 = PMP mo	dule inputs (PM	Dx, PMCS1) u	ise TTL input bi	uffers		

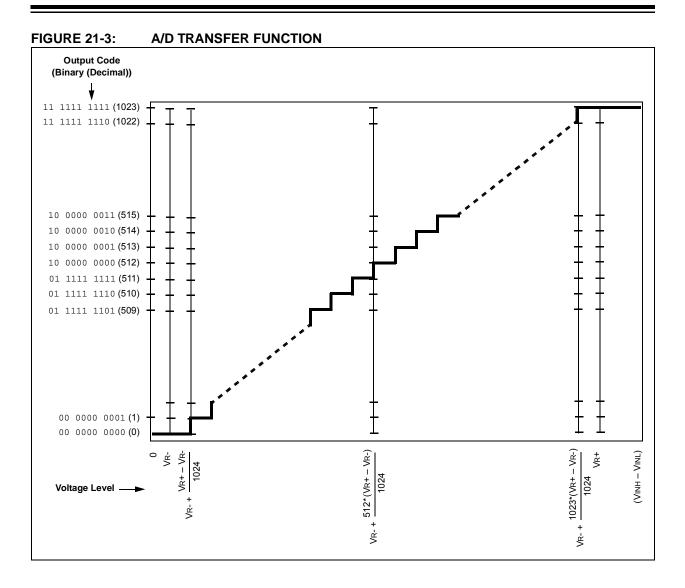
0 = PMP module inputs use Schmitt Trigger input buffers

Note 1: To enable the actual RTCC output, the RTCOE (RCFGCAL<10>) bit must also be set.

20.3 Registers

There are four registers used to control programmable CRC operation:

- CRCCON
- CRCXOR
- CRCDAT
- CRCWDAT


REGISTER 20-1: CRCCON: CRC CONTROL REGISTER

U-0	U-0	R/W-0	R-0	R-0	R-0	R-0	R-0
—	—	CSIDL	VWORD4	VWORD3	VWORD2	VWORD1	VWORD0
bit 15							bit 8

R-0	R-1	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CRCFUL	CRCMPT	—	CRCGO	PLEN3	PLEN2	PLEN1	PLEN0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

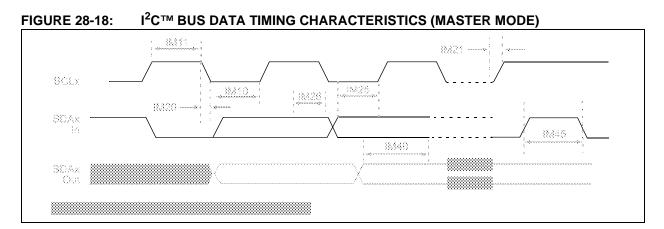
bit 15-14	Unimplemented: Read as '0'
bit 13	CSIDL: CRC Stop in Idle Mode bit
	 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode
bit 12-8	VWORD<4:0>: Pointer Value bits
	Indicates the number of valid words in the FIFO. Has a maximum value of 8 when PLEN<3:0> > 7 or 16 when PLEN<3:0> \leq 7.
bit 7	CRCFUL: FIFO Full bit
	1 = FIFO is full
	0 = FIFO is not full
bit 6	CRCMPT: FIFO Empty Bit
	1 = FIFO is empty
	0 = FIFO is not empty
bit 5	Unimplemented: Read as '0'
bit 4	CRCGO: Start CRC bit
	1 = Start CRC serial shifter
	0 = CRC serial shifter turned off
bit 3-0	PLEN<3:0>: Polynomial Length bits
	Denotes the length of the polynomial to be generated minus 1.

REGISTER 25-1: CW1: FLASH CONFIGURATION WORD 1 (CONTINUED)

bit 3-0 **WDTPS<3:0>:** Watchdog Timer Postscaler Select bits

1111 = 1:32,768 1110 = 1:16,384 1101 = 1:8,192 1100 = 1:4,096 1011 **= 1:2,048** 1010 = 1:1,024 1001 **= 1:512** 1000 **= 1:256** 0111 = 1:128 0110 **= 1:64** 0101 = 1:32 0100 = 1:16 0011 = 1:8 0010 = 1:4 0001 = 1:2 0000 = 1:1

REGISTER 25-4: DEVID: DEVICE ID REGISTER

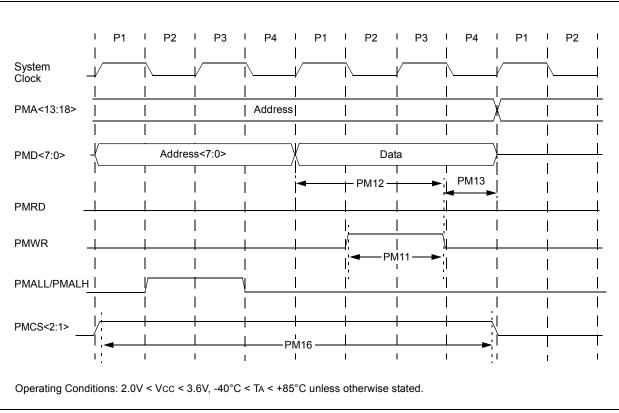

U	U	U	U	U	U	U	U
—	—	—	—	—	—	—	—
bit 23							bit 16
U	U	R	R	R	R	R	R
_	—	FAMID7	FAMID6	FAMID5	FAMID4	FAMID3	FAMID2
bit 15							bit 8
R	R	R	R	R	R	R	R
FAMID1	FAMIDO	DEV5	DEV4	DEV3	DEV2	DEV1	DEV0
bit 7						1	bit 0
Legend: R	= Read-Only bit	t		U = Unimplen	nented bit		
bit 23-14	Unimplement	ted: Read as '	1'				
bit 13-6	FAMID<7:0>:	Device Family	ldentifier bits				
	01000000 = 	PIC24FJ256G	A110 family				
bit 5-0	DEV<5:0>: In	dividual Device	e Identifier bits				
	000000 = PIC	24FJ64GA10	5				
	000010 = PIC	24FJ64GA108	3				
	000110 = PIC	24FJ64GA110)				
	001000 = PIC	24FJ128GA1)6				
		24FJ128GA1					
		24FJ128GA1					
		24FJ192GA1					
		24FJ192GA1					

- 010110 = PIC24FJ192GA110
- 011000 = PIC24FJ256GA106
- 011010 = PIC24FJ256GA108
- 011110 = PIC24FJ256GA110

REGISTER 25-5: DEVREV: DEVICE REVISION REGISTER

U	U	U	U	U	U	U	U		
_	—		—	—	—	—	—		
bit 23							bit 16		
U	U	U	U	U	U	U	R		
—	—	—		—	_		MAJRV2		
bit 15							bit 8		
R	R	U	U	U	R	R	R		
MAJRV1	MAJRV0	—	—	—	DOT2	DOT1	DOT0		
bit 7							bit 0		
Legend: R = Read-Only bit U = Unimplemented bit									
bit 23-9	Unimplement	ed: Read as ')'						
bit 8-6	MAJRV<2:0>: Major Revision Identifier bits								
bit 5-3	it 5-3 Unimplemented: Read as '0'								

bit 2-0 DOT<2:0>: Minor Revision Identifier bits


TABLE 28-31: I²C[™] BUS DATA TIMING REQUIREMENTS (MASTER MODE)

AC CHARACTERISTICS				$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param No. Symbol		Charac	teristic	Min ⁽¹⁾	Max	Units	Conditions	
IM10	TLO:SCL	Clock Low Time	100 kHz mode	Tcy/2 (BRG + 1)	_	μs	_	
			400 kHz mode	Tcy/2 (BRG + 1)	_	μS	—	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μs	—	
IM11 THI:SCL		Clock High Time	100 kHz mode	Tcy/2 (BRG + 1)	_	μs	_	
			400 kHz mode	Tcy/2 (BRG + 1)	_	μs	—	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μs	—	
IM20 T	TF:SCL	SDAx and SCLx Fall Time	100 kHz mode	—	300	ns	CB is specified to be	
			400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF	
			1 MHz mode ⁽²⁾	—	100	ns	-	
IM21 Ti	TR:SCL	SDAx and SCLx Rise Time	100 kHz mode	—	1000	ns	CB is specified to be	
			400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF	
			1 MHz mode ⁽²⁾	—	300	ns	-	
IM25 TSU:DAT	Data Input	100 kHz mode	250	_	ns	—		
		Setup Time	400 kHz mode	100	_	ns	-	
			1 MHz mode ⁽²⁾	TBD	_	ns		
IM26 THD:DAT	THD:DAT	Data Input	100 kHz mode	0	_	ns	—	
		Hold Time	400 kHz mode	0	0.9	μS		
			1 MHz mode ⁽²⁾	TBD		ns		
IM40	TAA:SCL	Output Valid From Clock	100 kHz mode	—	3500	ns	_	
			400 kHz mode		1000	ns		
			1 MHz mode ⁽²⁾	_		ns	_	
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	_	μs	Time the bus must be free before a new	
			400 kHz mode	1.3	_	μS		
			1 MHz mode ⁽²⁾	TBD	_	μs	transmission can start	
IM50	CB Bus Capacitive Loading			_	400	pF	_	

Legend: TBD = To Be Determined

Note 1: BRG is the value of the I²C Baud Rate Generator. Refer to **Section 16.3 "Setting Baud Rate When Operating as a Bus Master"** for details.

2: Maximum pin capacitance = 10 pF for all I²C pins (for 1 MHz mode only).

FIGURE 28-23: PARALLEL MASTER PORT WRITE TIMING DIAGRAM

TABLE 28-36: PARALLEL MASTER PORT WRITE TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param. No	Symbol	Characteristics ⁽¹⁾	Min	Тур	Max	Units	Conditions
PM11		PMWR Pulse Width	—	0.5 TCY		ns	
PM12		Data Out Valid before PMWR or PMENB goes Inactive (data setup time)	—	0.75 TCY	_	ns	
PM13		PMWR or PMEMB Invalid to Data Out Invalid (data hold time)	—	0.25 TCY	_	ns	
PM16		PMCSx Pulse Width	TCY – 5	_	_	ns	

Note 1: Wait states disabled for all cases.