

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	85
Program Memory Size	256KB (85.5K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj256ga110-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

|--|

Features	PIC24FJ64GA110	PIC24FJ128GA110	PIC24FJ192GA110	PIC24FJ256GA110
Operating Frequency		DC – 3	32 MHz	
Program Memory (bytes)	64K	128K	192K	256K
Program Memory (instructions)	22,016	44,032	67,072	87,552
Data Memory (bytes)			384	·
Interrupt Sources (soft vectors/NMI traps)		66 (62/4)	
I/O Ports		Ports A, B,	C, D, E, F, G	
Total I/O Pins		8	35	
Remappable Pins		46 (32 I/O, 1	14 input only)	
Timers:		5	(1)	
32 Bit (from paired 16 bit timers)		0	2	
Input Capture Channels		9	(1)	
Output Compare/PWM		9	(1)	
Channels		Ū		
Input Change Notification Interrupt		8	35	
Serial Communications:				
UART		4	(1)	
SPI (3-wire/4-wire)		3	(1)	
I ² C™		:	3	
Parallel Communications (PMP/PSP)		Y	es	
JTAG Boundary Scan		Y	/es	
10-Bit Analog-to-Digital Module (input channels)		1	16	
Analog Comparators			3	
CTMU Interface		Y	es	
Resets (and delays)	POR, B REPEAT Ins	OR, RESET Instruction struction, Hardware Tra (PWRT, OS	n, MCLR, WDT; Illegal aps, Configuration Wc T, PLL Lock)	Opcode, ord Mismatch
Instruction Set	76 Bas	e Instructions, Multiple	e Addressing Mode Va	ariations
Packages		100-Pi	n TQFP	

Note 1: Peripherals are accessible through remappable pins.

		Pin Number				nnut				
Function	64-Pin TQFP, QFN	80-Pin TQFP	100-Pin TQFP	I/O	Input Buffer	Description				
RPI32	—	_	40	I	ST	Remappable Peripheral (input only).				
RPI33	_	13	18	I	ST					
RPI34	_	14	19	I	ST					
RPI35	_	53	67	I	ST					
RPI36	—	52	66	I	ST					
RPI37	48	60	74	I	ST					
RPI38	_	4	6	I	ST					
RPI39	—		7	I	ST					
RPI40	_	5	8	I	ST					
RPI41	_		9	I	ST					
RPI42	_	64	79	I	ST					
RPI43	_	37	47	I	ST					
RPI44	_	44	54	I	ST					
RPI45	35	45	55	I	ST					
RTCC	42	54	68	0	_	Real-Time Clock Alarm/Seconds Pulse Output.				
SCL1	37	47	57	I/O	l ² C	I2C1 Synchronous Serial Clock Input/Output.				
SCL2	32	52	58	I/O	l ² C	I2C2 Synchronous Serial Clock Input/Output.				
SCL3	2	2	4	I/O	l ² C	I2C3 Synchronous Serial Clock Input/Output.				
SDA1	36	46	56	I/O	l ² C	I2C1 Data Input/Output.				
SDA2	31	53	59	I/O	l ² C	I2C2 Data Input/Output.				
SDA3	3	3	5	I/O	l ² C	I2C3 Data Input/Output.				
SOSCI	47	59	73	I	ANA	Secondary Oscillator/Timer1 Clock Input.				
SOSCO	48	60	74	0	ANA	Secondary Oscillator/Timer1 Clock Output.				
T1CK	48	60	74	I	ST	Timer1 Clock.				
TCK	27	33	38	Ι	ST	JTAG Test Clock Input.				
TDI	28	34	60	I	ST	JTAG Test Data Input.				
TDO	24	14	61	0	—	JTAG Test Data Output.				
TMS	23	13	17	Ι	ST	JTAG Test Mode Select Input.				
VCAP	56	70	85	Р	_	External Filter Capacitor Connection (regulator enabled).				
Vdd	10, 26, 38	12, 32, 48	2, 16, 37, 46, 62	Ρ	—	Positive Supply for Peripheral Digital Logic and I/O Pins.				
VDDCORE	56	70	85	Р	—	Positive Supply for Microcontroller Core Logic (regulator disabled).				
VREF-	15	23	28	Ι	ANA	A/D and Comparator Reference Voltage (low) Input.				
VREF+	16	24	29	Ι	ANA	A/D and Comparator Reference Voltage (high) Input.				
Vss	9, 25, 41	11, 31, 51	15, 36, 45, 65, 75	Р		Ground Reference for Logic and I/O Pins.				

TABLE 1-4: PIC24FJ256GA110 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

Legend: TTL = TTL input buffer ANA = Analog level input/output ST = Schmitt Trigger input buffer $I^2C^{TM} = I^2C/SMBus$ input buffer

DS39905E-page 22

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9 ⁽¹⁾	Bit 8 ⁽¹⁾	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISE	02E0		—	—	—	—	—	TRISE9	TRISE8	TRISE7	TRISE6	TRISE5	TRISE4	TRISE3	TRISE2	TRISE1	TRISE0	03FF
PORTE	02E2	—	—	_	—	—	_	RE9	RE8	RE7	RE6	RE5	RE4	RE3	RE2	RE1	RE0	xxxx
LATE	02E4	—	—	_	—	—	_	LATE9	LATE8	LATE7	LATE6	LATE5	LATE4	LATE3	LATE2	LATE1	LATE0	xxxx
ODCE	02E6	_	_	_	_	_	_	ODE9	ODE8	ODE7	ODE6	ODE5	ODE4	ODE3	ODE2	ODE1	ODE0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Reset values shown are for 100-pin devices.

Note 1: Bits are unimplemented in 64-pin devices; read as '0'.

TABLE 4-17: PORTF REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13 ⁽¹⁾	Bit 12 ⁽¹⁾	Bit 11	Bit 10	Bit 9	Bit 8 ⁽²⁾	Bit 7 ⁽²⁾	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISF	02E8	—		TRISF13	TRISF12		—		TRISF8	TRISF7	TRISF6	TRISF5	TRISF4	TRISF3	TRISF2	TRISF1	TRISF0	31FF
PORTF	02EA	—	—	RF13	RF12	—	—	_	RF8	RF7	RF6	RF5	RF4	RF3	RF2	RF1	RF0	xxxx
LATF	02EC	_	—	LATF13	LATF12	—	—	—	LATF8	LATF7	LATF6	LATF5	LATF4	LATF3	LATF2	LATF1	LATF0	xxxx
ODCF	02EE	_	_	ODF13	ODF12	_	—	-	ODF8	ODF7	ODF6	ODF5	ODF4	ODF3	ODF2	ODF1	ODF0	0000

C24FJ256GA110 FAMILY

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Reset values shown are for 100-pin devices.

Note 1: Bits are unimplemented in 64-pin and 80-pin devices; read as '0'.

2: Bits are unimplemented in 64-pin devices; read as '0'.

TABLE 4-18: PORTG REGISTER MAP

File Name	Addr	Bit 15 ⁽¹⁾	Bit 14 ⁽¹⁾	Bit 13 ⁽¹⁾	Bit 12 ⁽¹⁾	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1 ⁽²⁾	Bit 0 ⁽²⁾	All Resets
TRISG	02F0	TRISG15	TRISG14	TRISG13	TRISG12	-	-	TRISG9	TRISG8	TRISG7	TRISG6	_	_	TRISG3	TRISG2	TRISG1	TRISG0	F3CF
PORTG	02F2	RG15	RG14	RG13	RG12	—	_	RG9	RG8	RG7	RG6	—	—	RG3	RG2	RG1	RG0	xxxx
LATG	02F4	LATG15	LATG14	LATG13	LATG12	—	—	LATG9	LATG8	LATG7	LATG6	—	—	LATG3	LATG2	LATG1	LATG0	xxxx
ODCG	02F6	ODG15	ODG14	ODG13	ODG12	_	_	ODG9	ODG8	ODG7	ODG6	_	_	ODG3	ODG2	ODG1	ODG0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Reset values shown are for 100-pin devices.

Note 1: Bits unimplemented in 64-pin and 80-pin devices; read as '0'.

2: Bits unimplemented in 64-pin devices; read as '0'.

TABLE 4-19: PAD CONFIGURATION REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PADCFG1	02FC	-		—		-			—	-	1			—	—	RTSECSEL	PMPTTL	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

R/SO-0 ⁽	¹⁾ R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	U-0	U-0	U-0	U-0	U-0
WR	WREN	WRERR	—	—	—	—	—
bit 15		-					bit 8
U-0	R/W-0 ⁽¹⁾	U-0	U-0	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾
	ERASE	—		NVMOP3 ⁽²⁾	NVMOP2 ⁽²⁾	NVMOP1 ⁽²⁾	NVMOP0 ⁽²⁾
bit 7							bit 0
Legend:		SO = Set Onl	y bit				
R = Reada	able bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 15	WR: Write Co	ontrol bit ⁽¹⁾					
	1 = Initiates a	a Flash memoi	ry program or	erase operatior	n. The operation	on is self-timed	and the bit is
	Cleared b	or erase opera	ce the operation	on is complete.			
hit 14	WREN. Write	Enable bit ⁽¹⁾					
Sit 11	1 = Enable F	lash program/e	erase operation	IS			
	0 = Inhibit Fla	ash program/er	ase operations	6			
bit 13	WRERR: Writ	te Sequence E	rror Flag bit ⁽¹⁾				
	1 = An impro	oper program	or erase seq	uence attempt	or terminatio	on has occurre	ed (bit is set
	automatio	cally on any se	t attempt of the	e WR bit)			
bit 12_7		ted: Read as '	n'	leted normally			
bit 6	ERASE: Eras	e/Program En:	o ohle hit(1)				
bit 0	1 = Perform f	the erase oper	ation specified)> on the next '	WR command	
	0 = Perform	the program op	eration specifie	ed by NVMOP<	3:0> on the ne	ext WR comman	nd
bit 5-4	Unimplemen	ted: Read as '	0'				
bit 3-0	NVMOP<3:0>	-: NVM Operat	ion Select bits(1,2)			
	1111 = Mem o	ory bulk erase o	operation (ERA	SE = 1) or no o	operation (ERA	SE = 0) ⁽³⁾	
	0011 = Memo	ory word progra	am operation (E	ERASE = 0 or $ASE = 1$ or $BRASE = 1$	no operation (E	ERASE = 1)	
	0010 = Memory 0001 = Memory 00001 = Memory 000000000000000000000000000000000000	ory page erase	n operation (ER	ASE = 1) of no RASE = 0) or n	operation (ER	ASE = 0	
	-					/	
Note 1:	These bits can or	ily be reset on	POR.				
2:	All other combina	tions of NVMO	P<3:0> are un	implemented.			

REGISTER 5-1: NVMCON: FLASH MEMORY CONTROL REGISTER

3: Available in ICSP[™] mode only. Refer to the device programming specification.

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
_	_		_	_	INT4IP2	INT4IP1	INT4IP0
bit 15				·		•	bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
	INT3IP2	INT3IP1	INT3IP0	_	_	_	_
bit 7			•	·			bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 15-11	Unimplemen	ted: Read as '	כי				
bit 10-8	INT4IP<2:0>:	External Interr	upt 4 Priority b	oits			
	111 = Interru	pt is priority 7 (I	nighest priority	interrupt)			
	•						
	•						
	001 = Interru	pt is priority 1					
	000 = Interru	pt source is dis	abled				
bit 7	Unimplemen	ted: Read as '	כי				
bit 6-4	INT3IP<2:0>:	External Interr	upt 3 Priority b	oits			
	111 = Interru	pt is priority 7 (I	nighest priority	interrupt)			
	•						
	•						
	001 = Interru	pt is priority 1					
	000 = Interru	pt source is dis	abled				
bit 3-0	Unimplemen	ted: Read as '	י)				

REGISTER 7-30: IPC13: INTERRUPT PRIORITY CONTROL REGISTER 13

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER (CONTINUED)

bit 7	CLKLOCK: Clock Selection Lock Enabled bit
	If FSCM is enabled (FCKSM1 = 1):
	1 = Clock and PLL selections are locked
	0 = Clock and PLL selections are not locked and may be modified by setting the OSWEN bit
	<u>If FSCM is disabled (FCKSM1 = 0):</u>
	Clock and PLL selections are never locked and may be modified by setting the OSWEN bit.
bit 6	IOLOCK: I/O Lock Enable bit ⁽²⁾
	1 = I/O lock is active
	0 = I/O lock is not active
bit 5	LOCK: PLL Lock Status bit ⁽³⁾
	1 = PLL module is in lock or PLL module start-up timer is satisfied
	0 = PLL module is out of lock, PLL start-up timer is running or PLL is disabled
bit 4	Unimplemented: Read as '0'
bit 3	CF: Clock Fail Detect bit
	1 = FSCM has detected a clock failure
	0 = No clock failure has been detected
bit 2	POSCEN: Primary Oscillator Sleep Enable bit
	1 = Primary Oscillator continues to operate during Sleep mode
	0 = Primary Oscillator disabled during Sleep mode
bit 1	SOSCEN: 32 kHz Secondary Oscillator (SOSC) Enable bit
	1 = Enable Secondary Oscillator
	0 = Disable Secondary Oscillator
bit 0	OSWEN: Oscillator Switch Enable bit
	1 = Initiate an oscillator switch to clock source specified by NOSC<2:0> bits
	0 = Oscillator switch is complete
Note 1.	Departurely on far theory hits are determined by the ENOCO Configuration hits

- **Note 1:** Reset values for these bits are determined by the FNOSC Configuration bits.
 - 2: The state of the IOLOCK bit can only be changed once an unlocking sequence has been executed. In addition, if the IOL1WAY Configuration bit is '1' once the IOLOCK bit is set, it cannot be cleared.
 - **3:** Also, resets to '0' during any valid clock switch or whenever a non-PLL Clock mode is selected.

REGISTER 10-38: ALTRP: ALTERNATE PERIPHERAL PIN MAPPING REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	—	—	—		—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
		—	—	—	—	—	SCK1CM
bit 7			•	•			bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-1 Unimplemented: Read as '0'

bit 0

SCK1CM: SCK1 Output Mapping Select bit

1 = SCK1 output function is mapped to ASCK1 pin only

0 = SCK1 output function is mapped according to RPORn registers

For 32-bit cascaded operation, these steps are also necessary:

- 1. Set the OC32 bits for both registers (OCyCON2<8> and (OCxCON2<8>). Enable the even-numbered module first to ensure the modules will start functioning in unison.
- Clear the OCTRIG bit of the even module (OCyCON2<7>), so the module will run in Synchronous mode.
- 3. Configure the desired output and Fault settings for OCyCON2.
- 4. Force the output pin for OCx to the output state by clearing the OCTRIS bit.
- If Trigger mode operation is required, configure the trigger options in OCx by using the OCTRIG (OCxCON2<7>), TRIGSTAT (OCxCON2<6>) and SYNCSEL (OCxCON2<4:0>) bits.
- Configure the desired Compare or PWM mode of operation (OCM<2:0>) for OCyCON1 first, then for OCxCON1.

Depending on the output mode selected, the module holds the OCx pin in its default state and forces a transition to the opposite state when OCxR matches the timer. In Double Compare modes, OCx is forced back to its default state when a match with OCxRS occurs. The OCxIF interrupt flag is set after an OCxR match in Single Compare modes, and after each OCxRS match in Double Compare modes.

Single-shot pulse events only occur once, but may be repeated by simply rewriting the value of the OCxCON1 register. Continuous pulse events continue indefinitely until terminated.

14.3 Pulse-Width Modulation (PWM) Mode

In PWM mode, the enhanced output compare module can be configured for edge-aligned or center-aligned pulse waveform generation. All PWM operations are double-buffered (buffer registers are internal to the module and are not mapped into SFR space).

To set up the module for PWM operations:

- 1. Configure the OCx output for one of the available Peripheral Pin Select pins.
- 2. Calculate the desired duty cycles and load them into the OCxR register.
- 3. Calculate the desired period and load it into the OCxRS register.
- Select the current OCx as the synchronization source by writing 0x1F to SYNCSEL<4:0> (OCxCON2<4:0>) and clearing OCTRIG (OCxCON2<7>).
- 5. Select a clock source by writing to the OCTSEL2<2:0> (OCxCON<12:10>) bits.
- 6. Enable interrupts, if required, for the timer and output compare modules. The output compare interrupt is required for PWM Fault pin utilization.
- 7. Select the desired PWM mode in the OCM<2:0> (OCxCON1<2:0>) bits.
- If a timer is selected as a clock source, set the TMRy prescale value and enable the time base by setting the TON (TxCON<15>) bit.
- Note: This peripheral contains input and output functions that may need to be configured by the Peripheral Pin Select. See Section 10.4 "Peripheral Pin Select" for more information.

18.0 PARALLEL MASTER PORT (PMP)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "PIC24F Family Reference Manual", Section 13. "Parallel Master Port (PMP)" (DS39713).

The Parallel Master Port (PMP) module is a parallel, 8-bit I/O module, specifically designed to communicate with a wide variety of parallel devices, such as communication peripherals, LCDs, external memory devices and microcontrollers. Because the interface to parallel peripherals varies significantly, the PMP is highly configurable. Key features of the PMP module include:

- Up to 16 Programmable Address Lines
- · Up to 2 Chip Select Lines
- Programmable Strobe Options:
 - Individual Read and Write Strobes or;
 - Read/Write Strobe with Enable Strobe
- Address Auto-Increment/Auto-Decrement
- Programmable Address/Data Multiplexing
- Programmable Polarity on Control Signals
- Legacy Parallel Slave Port Support
- Enhanced Parallel Slave Support:
 - Address Support
 - 4-Byte Deep Auto-Incrementing Buffer
- Programmable Wait States
- · Selectable Input Voltage Levels

FIGURE 18-1: PMP MODULE OVERVIEW

REGISTER 18-5: PMSTAT: PARALLEL MASTER PORT STATUS REGISTER

R-0	R/W-0, HS	U-0	U-0	R-0	R-0	R-0	R-0		
IBF	IBOV	—	_	IB3F	IB2F	IB1F	IB0F		
bit 15 bit 8									
R-1	R/W-0, HS	U-0	U-0	R-1	R-1	R-1	R-1		
OBE	OBUF	—	—	OB3E	OB2E	OB1E	OB0E		
bit 7		•		•			bit 0		
Legend:		HS = Hardwar	re Settable bit						
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown		
bit 15	IBF: Input But	ffer Full Status	bit						
	1 = All writab	le input buffer r	egisters are ful	II • •					
	0 = Some or	all of the writab	le input buffer	registers are ei	mpty				
bit 14	IBOV: Input B	Suffer Overflow	Status bit			(
	1 = A write at 0 = No overfloor	tempt to a full i	nput byte regis	ster occurred (n	nust be cleared	in soπware)			
bit 13-12	Unimplement	ted: Read as '()'						
bit 11-8	IB3F-IB0F Input Buffer x Status Full bits								
	1 = Input buffer contains data that has not been read (reading buffer will clear this bit)								
	0 = Input buffer does not contain any unread data								
bit 7	OBE: Output	Buffer Empty S	tatus bit						
	1 = All readable output buffer registers are empty								
	0 = Some or all of the readable output buffer registers are full								
bit 6	OBUF: Output Buffer Underflow Status bit								
	 1 = A read occurred from an empty output byte register (must be cleared in software) 0 = No underflow occurred 								
bit 5-4	Unimplement	ted: Read as 'd)'						
bit 3-0	OB3E:OB0E	Output Buffer x	Status Empty	bits					
	1 = Output buffer is empty (writing data to the buffer will clear this bit)								
	0 = Output buffer contains data that has not been transmitted								

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
CH0NB	—	_	CH0SB4 ⁽¹⁾	CH0SB3 ⁽¹⁾	CH0SB2 ⁽¹⁾	CH0SB1 ⁽¹⁾	CH0SB0 ⁽¹⁾		
bit 15						bit 8			
R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
CH0NA	—		CH0SA4	CH0SA3	CH0SA2	CH0SA1	CH0SA0		
bit 7	bit 7								
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown		
bit 15 bit 14-13	CHONB: Cha 1 = Channel (0 = Channel (Unimplement	nnel 0 Negative 0 negative inpu 0 negative inpu 1 ted: Read as '0	e Input Select f t is AN1 t is VR- o'	or MUX B Multi	iplexer Setting	bit			
bit 12-8	CH0SB<4:0>	: Channel 0 Po	sitive Input Se	lect for MUX B	Multiplexer Set	tting bits ⁽¹⁾			
	t 12-8 CH0SB<4:0>: Channel 0 Positive Input Select for MUX B Multiplexer Setting bits ⁽¹⁾ 10001 = Channel 0 positive input is internal band gap reference (VBG) 10000 = Channel 0 positive input is VBG/2 01111 = Channel 0 positive input is AN15 01100 = Channel 0 positive input is AN14 01011 = Channel 0 positive input is AN13 01000 = Channel 0 positive input is AN12 01011 = Channel 0 positive input is AN11 01010 = Channel 0 positive input is AN10 01010 = Channel 0 positive input is AN10 01001 = Channel 0 positive input is AN10 01001 = Channel 0 positive input is AN10 01001 = Channel 0 positive input is AN8 00111 = Channel 0 positive input is AN8 00111 = Channel 0 positive input is AN7 00100 = Channel 0 positive input is AN6 00101 = Channel 0 positive input is AN5 00100 = Channel 0 positive input is AN4 00011 = Channel 0 positive input is AN3 00102 = Channel 0 positive input is AN3 00103 = Channel 0 positive input is AN2 00011 = Channel 0 positive input is AN2 00011 = Channel 0 positive input is AN2 00011 = Channel 0 positive input is AN2 00001 = Channel 0 positive input is AN2 000011 = Channel 0 positive input is AN2								
bit 7	CH0NA: Channel 0 Negative Input Select for MUX A Multiplexer Setting bit 1 = Channel 0 negative input is AN1 0 = Channel 0 negative input is VR-								
bit 6-5	Unimplemen	ted: Read as '	כ'						
bit 4-0	CH0SA<4:0>: Channel 0 Positive Input Select for MUX A Multiplexer Setting bits Implemented combinations are identical to those for CHOSB<4:0> (above).								

REGISTER 21-4: AD1CHS: A/D INPUT SELECT REGISTER

Note 1: Combinations, '10010' through '11111', are unimplemented; do not use.

25.2 On-Chip Voltage Regulator

All PIC24FJ256GA110 family devices power their core digital logic at a nominal 2.5V. This may create an issue for designs that are required to operate at a higher typical voltage, such as 3.3V. To simplify system design, all devices in the PIC24FJ256GA110 family incorporate an on-chip regulator that allows the device to run its core logic from VDD.

The regulator is controlled by the ENVREG pin. Tying VDD to the pin enables the regulator, which in turn, provides power to the core from the other VDD pins. When the regulator is enabled, a low-ESR capacitor (such as ceramic) must be connected to the VDDCORE/VCAP pin (Figure 25-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor (CEFC) is provided in **Section 28.1 "DC Characteristics"**.

If ENVREG is tied to Vss, the regulator is disabled. In this case, separate power for the core logic at a nominal 2.5V must be supplied to the device on the VDDCORE/VCAP pin to run the I/O pins at higher voltage levels, typically 3.3V. Alternatively, the VDDCORE/VCAP and VDD pins can be tied together to operate at a lower nominal voltage. Refer to Figure 25-1 for possible configurations.

25.2.1 VOLTAGE REGULATOR TRACKING MODE AND LOW-VOLTAGE DETECTION

When it is enabled, the on-chip regulator provides a constant voltage of 2.5V nominal to the digital core logic.

The regulator can provide this level from a VDD of about 2.5V, all the way up to the device's VDDMAX. It does not have the capability to boost VDD levels below 2.5V. In order to prevent "brown-out" conditions when the voltage drops too low for the regulator, the regulator enters Tracking mode. In Tracking mode, the regulator output follows VDD with a typical voltage drop of 100 mV.

When the device enters Tracking mode, it is no longer possible to operate at full speed. To provide information about when the device enters Tracking mode, the on-chip regulator includes a simple, Low-Voltage Detect circuit. When VDD drops below full-speed operating voltage, the circuit sets the Low-Voltage Detect Interrupt Flag, LVDIF (IFS4<8>). This can be used to generate an interrupt and put the application into a Low-Power Operational mode or trigger an orderly shutdown.

Low-Voltage Detection is only available when the regulator is enabled.

FIGURE 25-1: CONNECTIONS FOR THE ON-CHIP REGULATOR

25.5 JTAG Interface

PIC24FJ256GA110 family devices implement a JTAG interface, which supports boundary scan device testing.

25.6 In-Circuit Serial Programming

PIC24FJ256GA110 family microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock (PGECx) and data (PGEDx), and three other lines for power, ground and the programming voltage. This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

25.7 In-Circuit Debugger

When MPLAB[®] ICD 2 is selected as a debugger, the in-circuit debugging functionality is enabled. This function allows simple debugging functions when used with MPLAB IDE. Debugging functionality is controlled through the PGECx (Emulation/Debug Clock) and PGEDx (Emulation/Debug Data) pins.

To use the in-circuit debugger function of the device, the design must implement ICSP connections to \overline{MCLR} , VDD, VSS and the PGECx/PGEDx pin pair designated by the ICS Configuration bits. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins.

Assembly Mnemonic	Assembly Syntax Description		# of Words	# of Cycles	Status Flags Affected	
GOTO	GOTO	Expr	Go to Address	2	2	None
	GOTO	Wn	Go to Indirect	1	2	None
INC	INC	f	f = f + 1	1	1	C, DC, N, OV, Z
	INC	f,WREG	WREG = f + 1	1	1	C, DC, N, OV, Z
	INC	Ws,Wd	Wd = Ws + 1	1	1	C, DC, N, OV, Z
INC2	INC2	f	f = f + 2	1	1	C, DC, N, OV, Z
	INC2	f,WREG	WREG = f + 2	1	1	C, DC, N, OV, Z
	INC2	Ws,Wd	Wd = Ws + 2	1	1	C, DC, N, OV, Z
IOR	IOR	£	f = f .IOR. WREG	1	1	N, Z
	IOR	f,WREG	WREG = f .IOR. WREG	1	1	N, Z
	IOR	#lit10,Wn	Wd = lit10 .IOR. Wd	1	1	N, Z
	IOR	Wb,Ws,Wd	Wd = Wb .IOR. Ws	1	1	N, Z
	IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N, Z
LNK	LNK	#lit14	Link Frame Pointer	1	1	None
LSR	LSR	f	f = Logical Right Shift f	1	1	C, N, OV, Z
	LSR	f,WREG	WREG = Logical Right Shift f	1	1	C, N, OV, Z
	LSR	Ws,Wd	Wd = Logical Right Shift Ws	1	1	C, N, OV, Z
	LSR	Wb,Wns,Wnd	Wnd = Logical Right Shift Wb by Wns	1	1	N, Z
	LSR	Wb,#lit5,Wnd	Wnd = Logical Right Shift Wb by lit5	1	1	N, Z
MOV	MOV	f,Wn	Move f to Wn	1	1	None
	MOV	[Wns+Slit10],Wnd	Move [Wns+Slit10] to Wnd	1	1	None
	MOV	f	Move f to f	1	1	N, Z
	MOV	f,WREG	Move f to WREG	1	1	N, Z
	MOV	#litl6,Wn	Move 16-bit Literal to Wn	1	1	None
	MOV.b	#lit8,Wn	Move 8-bit Literal to Wn	1	1	None
	MOV	Wn,f	Move Wn to f	1	1	None
	MOV	Wns,[Wns+Slit10]	Move Wns to [Wns+Slit10]	1	1	
	MOV	Wso,Wdo	Move Ws to Wd	1	1	None
	MOV	WREG,f	Move WREG to f	1	1	N, Z
	MOV.D	Wns,Wd	Move Double from W(ns):W(ns + 1) to Wd	1	2	None
	MOV.D	Ws,Wnd	Move Double from Ws to W(nd + 1):W(nd)	1	2	None
MUL	MUL.SS	Wb,Ws,Wnd	{Wnd + 1, Wnd} = Signed(Wb) * Signed(Ws)	1	1	None
	MUL.SU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = Signed(Wb) * Unsigned(Ws)	1	1	None
	MUL.US	Wb,Ws,Wnd	{Wnd + 1, Wnd} = Unsigned(Wb) * Signed(Ws)	1	1	None
	MUL.UU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = Unsigned(Wb) * Unsigned(Ws)	1	1	None
	MUL.SU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = Signed(Wb) * Unsigned(lit5)	1	1	None
	MUL.UU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = Unsigned(Wb) * Unsigned(lit5)	1	1	None
	MUL	£	W3:W2 = f * WREG	1	1	None
NEG	NEG	f	$f = \overline{f} + 1$	1	1	C, DC, N, OV, Z
	NEG	f,WREG	WREG = \overline{f} + 1	1	1	C, DC, N, OV, Z
	NEG	Ws,Wd	Wd = Ws + 1	1	1	C, DC, N, OV, Z
NOP	NOP		No Operation	1	1	None
	NOPR		No Operation	1	1	None
POP	POP	£	Pop f from Top-of-Stack (TOS)	1	1	None
	POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
	POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd + 1)	1	2	None
	POP.S		Pop Shadow Registers	1	1	All
PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
	PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
	PUSH.D	Wns	Push W(ns):W(ns + 1) to Top-of-Stack (TOS)	1	2	None
	PUSH.S		Push Shadow Registers	1	1	None

TABLE 26-2: INSTRUCTION SET OVERVIEW (CONTINUED)

TABLE 28-13: EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHARACTERISTICS		$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions
OS10	Fosc	External CLKI Frequency (external clocks allowed only in EC mode)	DC 4		32 8	MHz MHz	EC ECPLL
		Oscillator Frequency	3 4 10 31	 	10 8 32 33	MHz MHz MHz kHz	XT XTPLL HS SOSC
OS20	Tosc	Tosc = 1/Fosc	—			—	See Parameter OS10 for Fosc value
OS25	Тсү	Instruction Cycle Time ⁽²⁾	62.5		DC	ns	
OS30	TosL, TosH	External Clock in (OSCI) High or Low Time	0.45 x Tosc	—	—	ns	EC
OS31	TosR, TosF	External Clock in (OSCI) Rise or Fall Time	—	—	20	ns	EC
OS40	TckR	CLKO Rise Time ⁽³⁾		6	10	ns	
OS41	TckF	CLKO Fall Time ⁽³⁾		6	10	ns	

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

- 2: Instruction cycle period (Tcr) equals two times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "Min." values with an external clock applied to the OSCI/CLKI pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.
- **3:** Measurements are taken in EC mode. The CLKO signal is measured on the OSCO pin. CLKO is low for the Q1-Q2 period (1/2 TCY) and high for the Q3-Q4 period (1/2 TCY).

FIGURE 28-21: PARALLEL SLAVE PORT TIMING

TABLE 28-34: PARALLEL SLAVE PORT REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated) Operating temperature -40°C \leq TA \leq +85°C for Industrial				
Param. No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions
PS1	TdtV2wrH	Data In Valid before WR or CS Inactive (setup time)	20	_	_	ns	
PS2	TwrH2dtl	\overline{WR} or \overline{CS} Inactive to Data–In Invalid (hold time)	20	_	_	ns	
PS3	TrdL2dtV	RD and CS Active to Data–Out Valid		_	80	ns	
PS4	TrdH2dtl	RD Active or CS Inactive to Data–Out Invalid	10		30	ns	

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 0.40 mm Contact Length

	MILLIMETERS			
Dimensio	n Limits	MIN	NOM	MAX
Contact Pitch	Е	0.50 BSC		
Optional Center Pad Width	W2			7.35
Optional Center Pad Length	T2			7.35
Contact Pad Spacing	C1		8.90	
Contact Pad Spacing	C2		8.90	
Contact Pad Width (X64)	X1			0.30
Contact Pad Length (X64)	Y1			0.85
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2149A

80-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

Mold Draft Angle Top

Mold Draft Angle Bottom

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

α

β

11°

11°

12°

12°

- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-092B

13°

13°

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Microchip Trader Architecture — Flash Memory Fa Program Memory Product Group Pin Count — Tape and Reel Fl Temperature Rar Package — Pattern —	PIC 24 FJ 256 GA1 10 T - I / PT - XXX markamily y Size (KB) ag (if applicable)	 Examples: a) PIC24FJ128GA106-I/PT: General purpose PIC24F, 128-Kbyte program memory, 64-pin, Industrial temp.,TQFP package. b) PIC24FJ256GA110-I/PT: General purpose PIC24F, 256-Kbyte program memory, 100-pin, Industrial temp.,TQFP package.
Architecture	24 = 16-bit modified Harvard without DSP	
Flash Memory Family	FJ = Flash program memory	
Product Group	GA1 = General purpose microcontrollers	
Pin Count	06 = 64-pin 08 = 80-pin 10 = 100-pin	
Temperature Range	I = -40° C to $+85^{\circ}$ C (Industrial)	
Package	PF = 100-lead (14x14x1mm) TQFP (Thin Quad Flatpack) PT = 64-lead, 80-lead, 100-lead (12x12x1 mm) TQFP (Thin Quad Flatpack) MR = 64-lead (9x9x0.9 mm) QFN (Quad Flatpack No Leads)	
Pattern	Three-digit QTP, SQTP, Code or Special Requirements (blank otherwise) ES = Engineering Sample	