

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	85
Program Memory Size	256КВ (85.5К х 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj256ga110-i-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		Pin Number				
Function	64-Pin TQFP, QFN	80-Pin TQFP	100-Pin TQFP	I/O	Input Buffer	Description
CTED1	28	34	42	I	ANA	CTMU External Edge Input 1.
CTED2	27	33	41	I	ANA	CTMU External Edge Input 2.
CTPLS	29	35	43	0		CTMU Pulse Output.
CVREF	23	29	34	0	_	Comparator Voltage Reference Output.
ENVREG	57	71	86	I	ST	Voltage Regulator Enable.
INT0	35	45	55	I	ST	External Interrupt Input.
MCLR	7	9	13	I	ST	Master Clear (device Reset) Input. This line is brought low to cause a Reset.
OSCI	39	49	63	I	ANA	Main Oscillator Input Connection.
OSCO	40	50	64	0	ANA	Main Oscillator Output Connection.
PGEC1	15	19	24	I/O	ST	In-Circuit Debugger/Emulator/ICSP™ Programming Clock.
PGED1	16	20	25	I/O	ST	In-Circuit Debugger/Emulator/ICSP Programming Data.
PGEC2	17	21	26	I/O	ST	In-Circuit Debugger/Emulator/ICSP Programming Clock.
PGED2	18	22	27	I/O	ST	In-Circuit Debugger/Emulator/ICSP Programming Data.
PGEC3	11	15	20	I/O	ST	In-Circuit Debugger/Emulator/ICSP Programming Clock.
PGED3	12	16	21	I/O	ST	In-Circuit Debugger/Emulator/ICSP Programming Data.
PMA0	30	36	44	I/O	ST	Parallel Master Port Address Bit 0 Input (Buffered Slave modes) and Output (Master modes).
PMA1	29	35	43	I/O	ST	Parallel Master Port Address Bit 1 Input (Buffered Slave modes) and Output (Master modes).
PMA2	8	10	14	0		Parallel Master Port Address (Demultiplexed Master
PMA3	6	8	12	0		modes).
PMA4	5	7	11	0	_	
PMA5	4	6	10	0		
PMA6	16	24	29	0		
PMA7	22	23	28	0		
PMA8	32	40	50	0		
PMA9	31	39	49	0	_	
PMA10	28	34	42	0	_	
PMA11	27	33	41	0	_	
PMA12	24	30	35	0	_	
PMA13	23	29	34	0	_	
PMCS1	45	57	71	I/O	ST/TTL	Parallel Master Port Chip Select 1 Strobe/Address Bit 15.
PMCS2	44	56	70	0	ST	Parallel Master Port Chip Select 2 Strobe/Address Bit 14.
PMBE	51	63	78	0	_	Parallel Master Port Byte Enable Strobe.
PMD0	60	76	93	I/O	ST/TTL	Parallel Master Port Data (Demultiplexed Master mode) or
PMD1	61	77	94	I/O	ST/TTL	Address/Data (Multiplexed Master modes).
PMD2	62	78	98	I/O	ST/TTL	1
PMD3	63	79	99	I/O	ST/TTL	1
PMD4	64	80	100	I/O	ST/TTL	1
PMD5	1	1	3	I/O	ST/TTL	
PMD6	2	2	4	I/O	ST/TTL	
PMD7	3	3	5	I/O	ST/TTL	
PMRD	53	67	82	0	_	Parallel Master Port Read Strobe.
PMWR	52	66	81	0	_	Parallel Master Port Write Strobe.
Legend:	TTL = TTL in			-	ST = 5	Schmitt Trigger input buffer
	ANA = Analog		utput		I ² C™	= I ² C/SMBus input buffer

TABLE 1-4: PIC24FJ256GA110 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

TABLE 4-4: ICN REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNPD1	0054	CN15PDE	CN14PDE	CN13PDE	CN12PDE	CN11PDE	CN10PDE	CN9PDE	CN8PDE	CN7PDE	CN6PDE	CN5PDE	CN4PDE	CN3PDE	CN2PDE	CN1PDE	CN0PDE	0000
CNPD2	0056	CN31PDE	CN30PDE	CN29PDE	CN28PDE	CN27PDE	CN26PDE	CN25PDE	CN24PDE	CN23PDE	CN22PDE	CN21PDE ⁽¹⁾	CN20PDE ⁽¹⁾	CN19PDE ⁽¹⁾	CN18PDE	CN17PDE	CN16PDE	0000
CNPD3	0058	CN47PDE(1)	CN46PDE ⁽²⁾	CN45PDE ⁽¹⁾	CN44PDE ⁽¹⁾	CN43PDE ⁽¹⁾	CN42PDE ⁽¹⁾	CN41PDE ⁽¹⁾	CN40PDE(2)	CN39PDE ⁽²⁾	CN38PDE(2)	CN37PDE ⁽²⁾	CN36PDE ⁽²⁾	CN35PDE ⁽²⁾	CN34PDE ⁽²⁾	CN33PDE ⁽²⁾	CN32PDE	0000
CNPD4	005A	CN63PDE	CN62PDE	CN61PDE	CN60PDE	CN59PDE	CN58PDE	CN57PDE ⁽¹⁾	CN56PDE	CN55PDE	CN54PDE	CN53PDE	CN52PDE	CN51PDE	CN50PDE	CN49PDE	CN48PDE ⁽²⁾	0000
CNPD5	005C	CN79PDE(2)	CN78PDE ⁽¹⁾	CN77PDE ⁽¹⁾	CN76PDE ⁽²⁾	CN75PDE ⁽²⁾	CN74PDE ⁽¹⁾	CN73PDE ⁽¹⁾	CN72PDE	CN71PDE	CN70PDE	CN69PDE	CN68PDE	CN67PDE ⁽¹⁾	CN66PDE ⁽¹⁾	CN65PDE	CN64PDE	0000
CNPD6	005E	_	_	_	-	_	_	_	_	_	_	_	CN84PDE	CN83PDE	CN82PDE ⁽²⁾	CN81PDE(2)	CN80PDE(2)	0000
CNEN1	0060	CN15IE	CN14IE	CN13IE	CN12IE	CN11IE	CN10IE	CN9IE	CN8IE	CN7IE	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
CNEN2	0062	CN31IE	CN30IE	CN29IE	CN28IE	CN27IE	CN26IE	CN25IE	CN24IE	CN23IE	CN22IE	CN21IE ⁽¹⁾	CN20IE ⁽¹⁾	CN19IE ⁽¹⁾	CN18IE	CN17IE	CN16IE	0000
CNEN3	0064	CN47IE ⁽¹⁾	CN46IE ⁽²⁾	CN45IE ⁽¹⁾	CN44IE ⁽¹⁾	CN43IE ⁽¹⁾	CN42IE ⁽¹⁾	CN41IE ⁽¹⁾	CN40IE ⁽²⁾	CN39IE ⁽²⁾	CN38IE ⁽²⁾	CN37IE ⁽²⁾	CN36IE ⁽²⁾	CN35IE ⁽²⁾	CN34IE ⁽²⁾	CN33IE ⁽²⁾	CN32IE	0000
CNEN4	0066	CN63IE	CN62IE	CN61IE	CN60IE	CN59IE	CN58IE	CN57IE ⁽¹⁾	CN56IE	CN55IE	CN54IE	CN53IE	CN52IE	CN51IE	CN50IE	CN49IE	CN48IE ⁽²⁾	0000
CNEN5	0068	CN79IE ⁽²⁾	CN78IE ⁽¹⁾	CN77IE ⁽¹⁾	CN76IE ⁽²⁾	CN75IE ⁽²⁾	CN74IE ⁽¹⁾	CN73IE ⁽¹⁾	CN72IE	CN71IE	CN70IE	CN69IE	CN68IE	CN67IE ⁽¹⁾	CN66IE ⁽¹⁾	CN65IE	CN64IE	0000
CNEN6	006A	_	_	_	_	_	—	_	_	—	_	_	CN84IE	CN83IE	CN82IE ⁽²⁾	CN81IE ⁽²⁾	CN80IE ⁽²⁾	0000
CNPU1	006C	CN15PUE	CN14PUE	CN13PUE	CN12PUE	CN11PUE	CN10PUE	CN9PUE	CN8PUE	CN7PUE	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000
CNPU2	006E	CN31PUE	CN30PUE	CN29PUE	CN28PUE	CN27PUE	CN26PUE	CN25PUE	CN24PUE	CN23PUE	CN22PUE	CN21PUE ⁽¹⁾	CN20PUE ⁽¹⁾	CN19PUE ⁽¹⁾	CN18PUE	CN17PUE	CN16PUE	0000
CNPU3	0070	CN47PUE ⁽¹⁾	CN46PUE ⁽²⁾	CN45PUE ⁽¹⁾	CN44PUE ⁽¹⁾	CN43PUE ⁽¹⁾	CN42PUE ⁽¹⁾	CN41PUE ⁽¹⁾	CN40PUE(2)	CN39PUE ⁽²⁾	CN38PUE(2)	CN37PUE ⁽²⁾	CN36PUE ⁽²⁾	CN35PUE ⁽²⁾	CN34PUE ⁽²⁾	CN33PUE ⁽²⁾	CN32PUE	0000
CNPU4	0072	CN63PUE	CN62PUE	CN61PUE	CN60PUE	CN59PUE	CN58PUE	CN57PUE ⁽¹⁾	CN56PUE	CN55PUE	CN54PUE	CN53PUE	CN52PUE	CN51PUE	CN50PUE	CN49PUE	CN48PUE ⁽²⁾	0000
CNPU5	0074	CN79PUE ⁽²⁾	CN78PUE ⁽¹⁾	CN77PUE ⁽¹⁾	CN76PUE ⁽²⁾	CN75PUE ⁽²⁾	CN74PUE ⁽¹⁾	CN73PUE ⁽¹⁾	CN72PUE	CN71PUE	CN70PUE	CN69PUE	CN68PUE	CN67PUE ⁽¹⁾	CN66PUE ⁽¹⁾	CN65PUE	CN64PUE	0000
CNPU6	0076	_	_	_	_		—		_	—	_	_	CN84PUE	CN83PUE	CN82PUE ⁽²⁾	CN81PUE ⁽²⁾	CN80PUE ⁽²⁾	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: Unimplemented in 64-pin devices; read as '0'.

2: Unimplemented in 64-pin and 80-pin devices; read as '0'.

4.3.3 READING DATA FROM PROGRAM MEMORY USING PROGRAM SPACE VISIBILITY

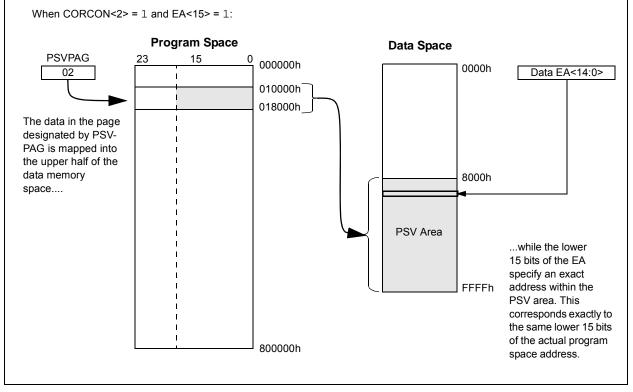
The upper 32 Kbytes of data space may optionally be mapped into any 16K word page of the program space. This provides transparent access of stored constant data from the data space without the need to use special instructions (i.e., TBLRDL/H).

Program space access through the data space occurs if the Most Significant bit (MSb) of the data space EA is '1' and program space visibility is enabled by setting the PSV bit in the CPU Control (CORCON<2>) register. The location of the program memory space to be mapped into the data space is determined by the Program Space Visibility Page Address (PSVPAG) register. This 8-bit register defines any one of 256 possible pages of 16K words in program space. In effect, PSVPAG functions as the upper 8 bits of the program memory address, with the 15 bits of the EA functioning as the lower bits. Note that by incrementing the PC by 2 for each program memory word, the lower 15 bits of data space addresses directly map to the lower 15 bits in the corresponding program space addresses.

Data reads to this area add an additional cycle to the instruction being executed, since two program memory fetches are required.

Although each data space address, 8000h and higher, maps directly into a corresponding program memory address (see Figure 4-7), only the lower 16 bits of the 24-bit program word are used to contain the data. The upper 8 bits of any program space locations used as data should be programmed with '1111 1111' or '0000 0000' to force a NOP. This prevents possible issues should the area of code ever be accidentally executed.

Note:	PSV access is temporarily disabled during
	table reads/writes.


For operations that use PSV and are executed outside a REPEAT loop, the MOV and MOV.D instructions will require one instruction cycle in addition to the specified execution time. All other instructions will require two instruction cycles in addition to the specified execution time.

For operations that use PSV which are executed inside a REPEAT loop, there will be some instances that require two instruction cycles in addition to the specified execution time of the instruction:

- · Execution in the first iteration
- · Execution in the last iteration
- Execution prior to exiting the loop due to an interrupt
- Execution upon re-entering the loop after an interrupt is serviced

Any other iteration of the REPEAT loop will allow the instruction accessing data, using PSV, to execute in a single cycle.

FIGURE 4-7: PROGRAM SPACE VISIBILITY OPERATION

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
—	—	PMPIF	OC8IF	OC7IF	OC6IF	OC5IF	IC6IF				
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0				
IC5IF	IC4IF	IC3IF		_		SPI2IF	SPF2IF				
bit 7							bit				
Legend:											
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'					
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown				
bit 15-14	Unimplemen	ted: Read as '	0'								
bit 13	PMPIF: Para	llel Master Port	Interrupt Flag	Status bit							
		request has oc request has no									
bit 12		•		ipt Flag Status I	oit						
	•	request has oc		ipt ing change							
	0 = Interrupt	request has no	toccurred								
bit 11	OC7IF: Output Compare Channel 7 Interrupt Flag Status bit										
	•	request has oc									
oit 10	•	 Interrupt request has not occurred OC6IF: Output Compare Channel 6 Interrupt Flag Status bit 									
	-	request has oc		ipt i lag Status i	Jit						
		request has no									
bit 9	OC5IF: Outp	ut Compare Ch	annel 5 Interru	ipt Flag Status I	oit						
		request has oc									
L:1 0		request has no		les Ctatus bit							
bit 8	-	IC6IF: Input Capture Channel 6 Interrupt Flag Status bit 1 = Interrupt request has occurred									
	0 = Interrupt request has not occurred										
bit 7	IC5IF: Input (Capture Chann	el 5 Interrupt F	lag Status bit							
		request has oc									
	•	request has no									
bit 6	-	IC4IF: Input Capture Channel 4 Interrupt Flag Status bit									
		 1 = Interrupt request has occurred 0 = Interrupt request has not occurred 									
bit 5		Capture Chann		lag Status bit							
	-	request has oc	-	•							
	-	request has no									
oit 4-2	-	ted: Read as '									
bit 1		Event Interrup	-	It							
		request has oc request has no									
bit 0	-	2 Fault Interrup		it							
		request has oc	-								
		request has no									

REGISTER 7-7: IFS2: INTERRUPT FLAG STATUS REGISTER 2

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0			
_		CTMUIF	_	_	—	—	LVDIF			
bit 15							bit 8			
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	U-0			
	—	—		CRCIF	U2ERIF	U1ERIF	—			
bit 7							bit 0			
Legend:										
R = Readab	ole bit	W = Writable b	oit	U = Unimplem	nented bit, read	d as '0'				
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own			
bit 15-14	Unimplemer	nted: Read as '0	,							
bit 13	CTMUIF: CT	MU Interrupt Fla	g Status bit							
		request has occur request has not								
bit 12-9		nted: Read as '0								
bit 8	LVDIF: Low-	Voltage Detect Ir	nterrupt Flag S	Status bit						
		request has occurrequest has not								
bit 7-4	Unimplemer	nted: Read as '0	,							
bit 3	CRCIF: CRC	Generator Inter	rupt Flag Stat	us bit						
		request has occu								
		request has not								
bit 2		RT2 Error Interru		s bit						
	 1 = Interrupt request has occurred 0 = Interrupt request has not occurred 									
bit 1		RT1 Error Interru		e hit						
		request has occi		5 51						
	0 = Interrupt	request has not	occurred							

REGISTER 7-9: IFS4: INTERRUPT FLAG STATUS REGISTER 4

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
ROEN		ROSSLP	ROSEL	RODIV3	RODIV2	RODIV1	RODIV0					
bit 15							bit 8					
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
_	_	_	_	_	_	_	_					
bit 7							bit C					
Legend:												
R = Readab	ole bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'						
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own					
bit 15		ence Oscillator	-									
		e oscillator ena e oscillator disa		pin								
bit 14	Unimplemen	ted: Read as '	0'									
bit 13	ROSSLP: Re	ROSSLP: Reference Oscillator Output Stop in Sleep bit										
	1 = Reference oscillator continues to run in Sleep											
	0 = Reference	e oscillator is d	isabled in Slee	р								
bit 12	ROSEL: Reference Oscillator Source Select bit											
	1 = Primary Oscillator used as the base clock. Note that the crystal oscillator must be enabled using the FOSC<2:0> bits; crystal maintains the operation in Sleep mode.											
		•			•	switching of the	device					
bit 11-8	RODIV<3:0>: Reference Oscillator Divisor Select bits											
	1111 = Base clock value divided by 32,768											
	1110 = Base clock value divided by 16,384											
		1101 = Base clock value divided by 8,192 1100 = Base clock value divided by 4,096										
	1011 = Base clock value divided by 2,048											
		1010 = Base clock value divided by 1,024										
	1001 = Base clock value divided by 512 1000 = Base clock value divided by 256											
	0111 = Base clock value divided by 128											
	0110 = Base clock value divided by 64											
	0101 = Base clock value divided by 32 0100 = Base clock value divided by 16											
	0011 = Base	clock value div	ided by 8									
	0011 = Base 0010 = Base	clock value div clock value div	ided by 8 ided by 4									
	0011 = Base 0010 = Base	clock value div clock value div clock value div	ided by 8 ided by 4									

© 2010 Microchip Technology Inc.

REGISTER 10-7: RPINR8: PERIPHERAL PIN SELECT INPUT REGISTER 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	—	IC4R5	IC4R4	IC4R3	IC4R2	IC4R1	IC4R0
bit 15	-		- -	•			bit 8
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	—	IC3R5	IC3R4	IC3R3	IC3R2	IC3R1	IC3R0
bit 7							bit 0
Legend:							

Legena.						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-14	Unimplemented: Read as '0'
bit 13-8	IC4R<5:0>: Assign Input Capture 4 (IC4) to Corresponding RPn or RPIn Pin bits
bit 7-6	Unimplemented: Read as '0'
bit 5-0	IC3R<5:0>: Assign Input Capture 3 (IC3) to Corresponding RPn or RPIn Pin bits

REGISTER 10-8: RPINR9: PERIPHERAL PIN SELECT INPUT REGISTER 9

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	IC6R5	IC6R4	IC6R3	IC6R2	IC6R1	IC6R0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	IC5R5	IC5R4	IC5R3	IC5R2	IC5R1	IC5R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 IC6R<5:0>: Assign Input Capture 6 (IC6) to Corresponding RPn or RPIn Pin bits

bit 7-6 Unimplemented: Read as '0'

bit 5-0 IC5R<5:0>: Assign Input Capture 5 (IC5) to Corresponding RPn or RPIn Pin bits

	• • • • • • •						
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	U4CTSR5	U4CTSR4	U4CTSR3	U4CTSR2	U4CTSR1	U4CTSR0
bit 15							bit 8

REGISTER 10-19: RPINR27: PERIPHERAL PIN SELECT INPUT REGISTER 27

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	U4RXR5	U4RXR4	U4RXR3	U4RXR2	U4RXR1	U4RXR0
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-14	Unimplemented: Read as '0'
bit 13-8	U4CTSR<5:0>: Assign UART4 Clear to Send (U4CTS) to Corresponding RPn or RPIn Pin bits
bit 7-6	Unimplemented: Read as '0'
bit 5-0	U4RXR<5:0>: Assign UART4 Receive (U4RX) to Corresponding RPn or RPIn Pin bits

REGISTER 10-20: RPINR28: PERIPHERAL PIN SELECT INPUT REGISTER 28

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	SCK3R5	SCK3R4	SCK3R3	SCK3R2	SCK3R1	SCK3R0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	SDI3R5	SDI3R4	SDI3R3	SDI3R2	SDI3R1	SDI3R0
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit,	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-14 Unimplemented: Read as '0'

bit 13-8 SCK3R<5:0>: Assign SPI3 Data Input (SCK3IN) to Corresponding RPn or RPIn Pin bits

bit 7-6 Unimplemented: Read as '0'

bit 5-0 SDI3R<5:0>: Assign SPI3 Data Input (SDI3) to Corresponding RPn or RPIn Pin bits

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP21R5	RP21R4	RP21R3	RP21R2	RP21R1	RP21R0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP20R5	RP20R4	RP20R3	RP20R2	RP20R1	RP20R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

- bit 13-8
 RP21R<5:0>: RP21 Output Pin Mapping bits

 Peripheral output number n is assigned to pin, RP21 (see Table 10-3 for peripheral function numbers).

 bit 7-6
 Unimplemented: Read as '0'
- bit 5-0 **RP20R<5:0:>** RP20 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP20 (see Table 10-3 for peripheral function numbers).

REGISTER 10-33: RPOR11: PERIPHERAL PIN SELECT OUTPUT REGISTER 11

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP23R5	RP23R4	RP23R3	RP23R2	RP23R1	RP23R0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	RP22R5	RP22R4	RP22R3	RP22R2	RP22R1	RP22R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP23R<5:0>:** RP23 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP23 (see Table 10-3 for peripheral function numbers).

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP22R<5:0>:** RP22 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP22 (see Table 10-3 for peripheral function numbers).

12.0 TIMER2/3 AND TIMER4/5

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"PIC24F Family Reference Manual"*, Section 14. "Timers" (DS39704).

The Timer2/3 and Timer4/5 modules are 32-bit timers, which can also be configured as four independent 16-bit timers with selectable operating modes.

As 32-bit timers, Timer2/3 and Timer4/5 can each operate in three modes:

- Two independent 16-bit timers with all 16-bit operating modes (except Asynchronous Counter mode)
- Single 32-bit timer
- Single 32-bit synchronous counter

They also support these features:

- Timer Gate Operation
- Selectable Prescaler Settings
- Timer Operation during Idle and Sleep modes
- · Interrupt on a 32-Bit Period Register Match
- ADC Event Trigger (Timer2/3 only)

Individually, all four of the 16-bit timers can function as synchronous timers or counters. They also offer the features listed above, except for the ADC event trigger; this is implemented only with Timer3. The operating modes and enabled features are determined by setting the appropriate bit(s) in the T2CON, T3CON, T4CON and T5CON registers. T2CON and T4CON are shown in generic form in Register 12-1; T3CON and T5CON are shown in Register 12-2.

For 32-bit timer/counter operation, Timer2 and Timer4 are the least significant word; Timer3 and Timer4 are the most significant word of the 32-bit timers.

Note:	For 32-bit operation, T3CON and T5CON
	control bits are ignored. Only T2CON and
	T4CON control bits are used for setup and
	control. Timer2 and Timer4 clock and gate
	inputs are utilized for the 32-bit timer
	modules, but an interrupt is generated
	with the Timer3 or Timer5 interrupt flags.

To configure Timer2/3 or Timer4/5 for 32-bit operation:

- 1. Set the T32 bit (T2CON<3> or T4CON<3> = 1).
- 2. Select the prescaler ratio for Timer2 or Timer4 using the TCKPS<1:0> bits.
- Set the Clock and Gating modes using the TCS and TGATE bits. If TCS is set to external clock, RPINRx (TxCK) must be configured to an available RPn pin. See Section 10.4 "Peripheral Pin Select" for more information.
- 4. Load the timer period value. PR3 (or PR5) will contain the most significant word of the value while PR2 (or PR4) contains the least significant word.
- 5. If interrupts are required, set the interrupt enable bit, T3IE or T5IE; use the priority bits, T3IP<2:0> or T5IP<2:0>, to set the interrupt priority. Note that while Timer2 or Timer4 controls the timer, the interrupt appears as a Timer3 or Timer5 interrupt.
- 6. Set the TON bit (= 1).

The timer value, at any point, is stored in the register pair: TMR3:TMR2 (or TMR5:TMR4). TMR3 (TMR5) always contains the most significant word of the count, while TMR2 (TMR4) contains the least significant word.

To configure any of the timers for individual 16-bit operation:

- Clear the T32 bit corresponding to that timer (T2CON<3> for Timer2 and Timer3 or T4CON<3> for Timer4 and Timer5).
- 2. Select the timer prescaler ratio using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits. See Section 10.4 "Peripheral Pin Select" for more information.
- 4. Load the timer period value into the PRx register.
- 5. If interrupts are required, set the interrupt enable bit, TxIE; use the priority bits, TxIP<2:0>, to set the interrupt priority.
- 6. Set the TON bit (TxCON<15> = 1).

bits

EQUATION 14-2: CALCULATION FOR MAXIMUM PWM RESOLUTION⁽¹⁾

Maximum PWM Resolution (bits) = $\frac{\log_{10} \left(\frac{FCY}{FPWM \bullet (Timer Prescale Value)} \right)}{1 + \frac{FCY}{FPWM \bullet (Timer Prescale Value)}}$

 $\log_{10}(2)$

Note 1: Based on FCY = FOSC/2, Doze mode and PLL are disabled.

EXAMPLE 14-1: PWM PERIOD AND DUTY CYCLE CALCULATIONS⁽¹⁾

1.	Find the Timer Period register value for a desired PWM frequency of 52.08 kHz, where FOSC = 8 MHz with PLL								
	(32 MHz device clock rate) and a Timer2 prescaler setting of 1:1.								
	TCY = 2 * TOSC = 62.5 ns								
	PWM Period = $1/PWM$ Frequency = $1/52.08$ kHz = $19.2 \mu s$								
	PWM Period = $(PR2 + 1) \bullet TCY \bullet (Timer2 Prescale Value)$								
	19.2 μ s = (PR2 + 1) • 62.5 ns • 1								
	PR2 = 306								
2.	Find the maximum resolution of the duty cycle that can be used with a 52.08 kHz frequency and a 32 MHz device clock rate:								
	PWM Resolution = $\log_{10}(FCY/FPWM)/\log_{10}2)$ bits								
	$= (\log_{10}(16 \text{ MHz}/52.08 \text{ kHz})/\log_{10}2) \text{ bits}$								
	= 8.3 bits								
N	ote 1: Based on Tcy = 2 * Tosc, Doze mode and PLL are disabled.								

TABLE 14-1: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 4 MIPS (Fcy = 4 MHz)⁽¹⁾

PWM Frequency	7.6 Hz	61 Hz	122 Hz	977 Hz	3.9 kHz	31.3 kHz	125 kHz
Timer Prescaler Ratio	8	1	1	1	1	1	1
Period Register Value	FFFFh	FFFFh	7FFFh	0FFFh	03FFh	007Fh	001Fh
Resolution (bits)	16	16	15	12	10	7	5

Note 1: Based on Fcy = Fosc/2, Doze mode and PLL are disabled.

TABLE 14-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 16 MIPS (Fcy = 16 MHz)⁽¹⁾

PWM Frequency	30.5 Hz	244 Hz	488 Hz	3.9 kHz	15.6 kHz	125 kHz	500 kHz
Timer Prescaler Ratio	8	1	1	1	1	1	1
Period Register Value	FFFFh	FFFFh	7FFFh	0FFFh	03FFh	007Fh	001Fh
Resolution (bits)	16	16	15	12	10	7	5

Note 1: Based on FCY = FOSC/2, Doze mode and PLL are disabled.

REGISTER 14-2: OCxCON2: OUTPUT COMPARE x CONTROL 2 REGISTER (CONTINUED)

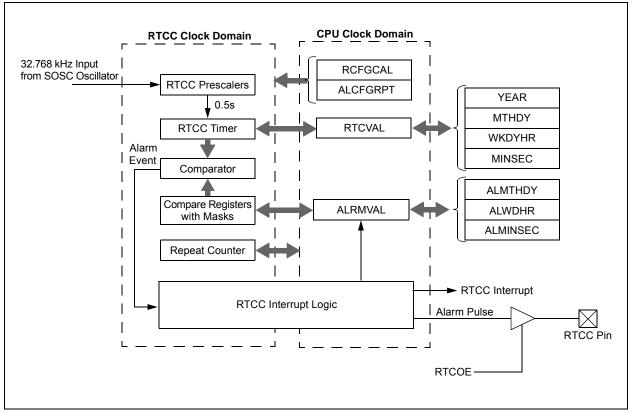
bit 4-0 SYNCSEL<4:0>: Trigger/Synchronization Source Selection bits

11111 = This OC module⁽¹⁾ 11110 = Input Capture 9⁽²⁾ 11101 = Input Capture 6⁽²⁾ 11100 = CTMU⁽²⁾ 11011 = A/D⁽²⁾ 11010 = Comparator 3⁽²⁾ 11001 = Comparator 2⁽²⁾ 11000 = Comparator 1⁽²⁾ 10111 = Input Capture 4⁽²⁾ 10110 = Input Capture 3⁽²⁾ 10101 = Input Capture 2⁽²⁾ 10100 = Input Capture 1⁽²⁾ 10011 = Input Capture 8⁽²⁾ 10010 = Input Capture 7⁽²⁾ 1000x = reserved 01111 = Timer5 01110 = Timer4 01101 = Timer3 01100 = Timer2 01011 = Timer1 01010 = Input Capture 5⁽²⁾ 01001 = Output Compare 9⁽¹⁾ 01000 = Output Compare 8⁽¹⁾ 00111 = Output Compare 7⁽¹⁾ 00110 = Output Compare 6⁽¹⁾ 00101 = Output Compare 5⁽¹⁾ 00100 = Output Compare 4⁽¹⁾ 00011 = Output Compare 3⁽¹⁾ 00010 = Output Compare 2⁽¹⁾ 00001 = Output Compare 1⁽¹⁾ 00000 = Not synchronized to any other module

- **Note 1:** Never use an OC module as its own trigger source, either by selecting this mode or another equivalent SYNCSEL setting.
 - **2:** Use these inputs as trigger sources only and never as sync sources.

REGISTER 16-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

bit 4	P: Stop bit
	1 = Indicates that a Stop bit has been detected last
	0 = Stop bit was not detected last
	Hardware set or clear when Start, Repeated Start or Stop detected.
bit 3	S: Start bit
	 1 = Indicates that a Start (or Repeated Start) bit has been detected last 0 = Start bit was not detected last
	Hardware set or clear when Start, Repeated Start or Stop detected.
bit 2	R/W : Read/Write Information bit (when operating as I^2C slave)
	 1 = Read – indicates data transfer is output from slave 0 = Write – indicates data transfer is input to slave Hardware set or clear after reception of I²C device address byte.
bit 1	RBF: Receive Buffer Full Status bit
	 1 = Receive complete, I2CxRCV is full 0 = Receive not complete, I2CxRCV is empty Hardware set when I2CxRCV is written with received byte. Hardware clear when software reads I2CxRCV.
bit 0	TBF: Transmit Buffer Full Status bit
	 1 = Transmit in progress, I2CxTRN is full 0 = Transmit complete, I2CxTRN is empty Hardware set when software writes I2CxTRN. Hardware clear at completion of data transmission.


19.0 REAL-TIME CLOCK AND CALENDAR (RTCC)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "PIC24F Family Reference Manual", Section 29. "Real-Time Clock and Calendar (RTCC)" (DS39696).

The Real-Time Clock and Calendar (RTCC) provides on-chip, hardware-based clock and calendar functionality with little or no CPU overhead. It is intended for applications where accurate time must be maintained for extended periods with minimal CPU activity and with limited power resources, such as battery-powered applications. Key features include:

- Time data in hours, minutes and seconds, with a granularity of one-half second
- 24-hour format (military time) display option
- · Calendar data as date, month and year
- Automatic, hardware-based day of week and leap year calculations for dates from 2000 through 2099
- Time and calendar data in BCD format for compact firmware
- Highly configurable alarm function
- External output pin with selectable alarm signal or seconds "tick" signal output
- · User calibration feature with auto-adjust

A simplified block diagram of the module is shown in Figure 19-1.The SOSC and RTCC will both remain running while the device is held in Reset with MCLR and will continue running after MCLR is released.

FIGURE 19-1: RTCC BLOCK DIAGRAM

R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
ADON ⁽¹⁾	—	ADSIDL	—	—	—	FORM1	FORM0
bit 15							bit 8
R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0, HCS	R-0, HCS
SSRC2	SSRC1	SSRC0		<u> </u>	ASAM	SAMP	DONE
bit 7							bit 0
Legend:		HCS = Hardw	are Clearable/	Settable bit			
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15		perating Mode					
	1 = A/D Conv0 = A/D Conv	verter module is	soperating				
L:1 4 4			. ,				
bit 14	-	ted: Read as '(
bit 13	-	o in Idle Mode k		evice enters Idle	mada		
		module operat			emode		
bit 12-10		ted: Read as '					
bit 9-8	-	Data Output Fo					
		ractional (sddd		0000)			
	10 = Fraction	al (dddd dddd	dd00 0000))			
		nteger (ssss		ddd)			
		0000 00dd d	-				
bit 7-5		Conversion Tri					
		event ends sar		starts conversion	on (auto-conve	π)	
	101 = Reserv		inpling and old				
			sampling and	starts conversi	on		
	011 = Reserv		sampling and	starts conversi	00		
				ampling and sta			
				nd starts conver			
bit 4-3	Unimplemen	ted: Read as 'o)'				
bit 2	ASAM: A/D S	ample Auto-Sta	art bit				
					mpletes; SAMI	Dit is auto-set	
b :4 4		begins when t		Set			
bit 1		ample Enable le/hold amplifie		nout			
		le/hold amplifie		nput			
bit 0	-	onversion Stat	-				
	1 = A/D conve						
	0 = A/D conve	ersion is NOT d	one				
Note 1: Val	lues of ADC1B	UEx registers v	vill not retain th	eir values once	the ADON hit	is cleared. Rea	id out the

REGISTER 21-1: AD1CON1: A/D CONTROL REGISTER 1

Note 1: Values of ADC1BUFx registers will not retain their values once the ADON bit is cleared. Read out the conversion values from the buffer before disabling the module.

REGISTER 22-1: CMxCON: COMPARATOR x CONTROL REGISTERS (COMPARATORS 1 THROUGH 3) (CONTINUED)

- bit 4 CREF: Comparator Reference Select bits (non-inverting input)
 - 1 = Non-inverting input connects to internal CVREF voltage
 - 0 = Non-inverting input connects to CXINA pin
- bit 3-2 Unimplemented: Read as '0'
- bit 1-0 CCH<1:0>: Comparator Channel Select bits
 - 11 = Inverting input of comparator connects to VBG/2
 - 10 = Inverting input of comparator connects to CxIND pin
 - 01 = Inverting input of comparator connects to CxINC pin
 - 00 = Inverting input of comparator connects to CxINB pin

REGISTER 22-2: CMSTAT: COMPARATOR MODULE STATUS REGISTER

R/W-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0	
CMIDL	—	—	—	—	C3EVT	C2EVT	C1EVT	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0	
—	—	—	—	—	C3OUT	C2OUT	C1OUT	
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable bit		U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown			nown	

bit 15	CMIDL: Comparator Stop in Idle Mode bit
	 1 = Module does not generate interrupts in Idle mode, but is otherwise operational 0 = Module continues normal operation in Idle mode
bit 14-11	Unimplemented: Read as '0'
bit 10	C3EVT: Comparator 3 Event Status bit (read-only)
	Shows the current event status of Comparator 3 (CM3CON<9>).
bit 9	C2EVT: Comparator 2 Event Status bit (read-only)
	Shows the current event status of Comparator 2 (CM2CON<9>).
bit 8	C1EVT: Comparator 1 Event Status bit (read-only)
	Shows the current event status of Comparator 1 (CM1CON<9>).
bit 7-3	Unimplemented: Read as '0'
bit 2	C3OUT: Comparator 3 Output Status bit (read-only)
	Shows the current output of Comparator 3 (CM3CON<8>).
bit 1	C2OUT: Comparator 2 Output Status bit (read-only)
	Shows the current output of Comparator 2 (CM2CON<8>).
bit 0	C1OUT: Comparator 1 Output Status bit (read-only)
	Shows the current output of Comparator 1 (CM1CON<8>).

REGISTER 25-2: CW2: FLASH CONFIGURATION WORD 2

R/PO-1 R/PO-1 R/PO-1 R/PO-1 R/PO-1 R/PO-1 R/PO-1 IESO	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1		
R/PO-1R/PO		—	—	_	—	—	—	—		
IESO	bit 23							bit 16		
IESO										
bit 15 bit 15 bit 15 bit 16 bit 16 bit 16 bit 16 bit 17 bit 17 bit 17 bit 16 bi		K/PO-1	K/FO-1	R/FU-1	R/FO-1					
R/PO-1						1110002	110001	bit 8		
FCKSM1 FCKSM0 OSCIOFCN IOL1WAY IZC2SEL ⁽¹⁾ POSCMD1 POSCMD1 bit 7 bit 7 bit bit bit bit Legend: R = Readable bit PO = Program Once bit U = Unimplemented bit, read as '0' bit -n = Value when device is unprogrammed '1' = Bit is set '0' = Bit is cleared bit 23-16 Reserved 11 = ESO mode (Two-Speed Start-up) enabled 0 = ESO enabled Treas Case Btailiator (LPRC) </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										
bit 7 bit Legend: R = Readable bit PO = Program Once bit U = Unimplemented bit, read as '0' -n = Value when device is unprogrammed '1' = Bit is set '0' = Bit is cleared bit 23-16 Reserved bit 15 IESO: Internal External Switchover bit 1 = IESO mode (Two-Speed Start-up) enabled 0 = IESO mode (Two-Speed Start-up) disabled bit 14-11 Reserved bit 10-8 FNOSC-2:0>: Initial Oscillator Select bits 111 = Fast RC Oscillator with Postscaler (FRCDIV) 102 = Reserved 101 = Low-Power RC Oscillator (LPRC) 101 = Frimary Oscillator with Postscaler and PLL module (FRCPLL) 001 = Fast RC Oscillator with Postscaler and PLL module (FRCPLL) 000 = Fast RC Oscillator (FRC) 001 = Fast RC Oscillator (FRC) 001 = Fast RC Oscillator (FRC) 001 = Fast RC Oscillator (FRC) 002 = Clock switching and Fail-Safe Clock Monitor Configuration bits 1x = Clock switching and Fail-Safe Clock Monitor is disabled 01 = Clock switching and Fail-Safe Clock Monitor is enabled 01 = Clock switching and Fail-Safe Clock Monitor is enabled 01 = Clock switching and Fail-Safe Clock Monitor is enabled 01 = Clock Switching ant configuration bit </td <td>R/PO-1</td> <td>R/PO-1</td> <td>R/PO-1</td> <td>R/PO-1</td> <td>R/PO-1</td> <td></td> <td>R/PO-1</td> <td>R/PO-1</td>	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1		R/PO-1	R/PO-1		
Legend: R = Readable bit PO = Program Once bit U = Unimplemented bit, read as '0' -n = Value when device is unprogrammed '1' = Bit is set 0' = Bit is cleared bit 23-16 Reserved bit 23-16 Reserved bit 23-16 Reserved 1 = IESO mode (Two-Speed Start-up) enabled 0 = IESO mode (Two-Speed Start-up) enabled 0 = IESO mode (Two-Speed Start-up) disabled bit 14-11 Reserved 10 = Low-Power RC Oscillator Select bits 111 = Fast RC Oscillator with Postscaler (FRCDIV) 110 = Reserved 101 = Low-Power RC Oscillator (LPRC) 100 = Secondary Oscillator (XT, HS, EC) 001 = Fast RC Oscillator with Postscaler and PLL module (FRCPLL) 000 = Fast RC Oscillator (KT, HS, EC) 001 = Fast RC Oscillator (FRC) bit 7-6 FCKSM-1:0:: Clock Switching and Fail-Safe Clock Monitor Configuration bits 1x = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching and Fail-Safe Clock Monitor is disabled 01 = Clock switching and Fail-Safe Clock Monitor is disabled 01 = Clock switching and Fail-Safe Clock Monitor is disabled 01 = Clock switching and Fail-Safe Clock Monitor is enabled bit 5 OSCIOFCN: OSCO Pin Configuration bit 1 = OSCO/CLKO/RC15 functions as CLKO (Fosc/2) 0 = OSCO/CLKO/RC15 functions as port I/O (RC15) 1 = OSCO/CLKO/RC15 functions as port I/O (RC15) 1 = The IOLOCK bit (OSCCON<6>) can be set once, provided the unlock sequence has be completed Once set, the Peripheral Pin Select registers cannot be written to a second time. 0 = The IOLOCK bit (OSCCON<6>) can be set once, provided the unlock sequence has be completed Once set, the Peripheral Pin Select registers cannot be written to a second time. 0 = The IOLOCK bit can be set and cleared as needed, provided the unlock sequence has be completed bit 3 Reserved bit 2 I2C2SEL: I2C2 Pin Select bit ⁽¹⁾ 1 = Use SCL2/SDA2 pins for I2C2		FCKSM0	OSCIOFCN	IOL1WAY	—	12C2SEL ⁽¹⁾	POSCMD1	POSCMD0		
R = Readable bit PO = Program Once bit U = Unimplemented bit, read as 'o' -n = Value when device is unprogrammed '1' = Bit is set '0' = Bit is cleared bit 23-16 Reserved '0' = Bit is cleared bit 15 IESO: Internal External Switchover bit 1 = Bit or is set '0' = Bit is cleared bit 15 IESO mode (Two-Speed Start-up) enabled 0 = ESO mode (Two-Speed Start-up) disabled 0' = Bit is cleared bit 14-11 Reserved 11 = Fast RC Oscillator Select bits 11 = Fast RC Oscillator with Postscaler (FRCDIV) 110 = Reserved 101 = Low-Power RC Oscillator (LPRC) 100 = Secondary Oscillator (SOSC) 101 = Primary Oscillator with PLL module (XTPLL, HSPLL, ECPLL) 010 = Primary Oscillator (FRC) 000 = Fast RC Oscillator (FRC) 000 = Fast RC Oscillator (FRC) 010 = Fast RC Oscillator (FRC) 001 = Fast RC Oscillator (FRC) 010 = Fast RC Oscillator (FRC) 001 = Fast RC Oscillator (FRC) 010 = Fast RC Oscillator (FRC) 001 = Fast RC Oscillator (FRC) 011 = Clock switching and Fail-Safe Clock Monitor Configuration bits 1x = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 0 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled <t< td=""><td>bit 7</td><td></td><td></td><td></td><td></td><td></td><td></td><td>bit 0</td></t<>	bit 7							bit 0		
R = Readable bit PO = Program Once bit U = Unimplemented bit, read as 'o' -n = Value when device is unprogrammed '1' = Bit is set '0' = Bit is cleared bit 23-16 Reserved '0' = Bit is cleared bit 15 IESO: Internal External Switchover bit 1 = Bit or is set '0' = Bit is cleared bit 15 IESO mode (Two-Speed Start-up) enabled 0 = ESO mode (Two-Speed Start-up) disabled 0' = Bit is cleared bit 14-11 Reserved 11 = Fast RC Oscillator Select bits 11 = Fast RC Oscillator with Postscaler (FRCDIV) 110 = Reserved 101 = Low-Power RC Oscillator (LPRC) 100 = Secondary Oscillator (SOSC) 101 = Primary Oscillator with PLL module (XTPLL, HSPLL, ECPLL) 010 = Primary Oscillator (FRC) 000 = Fast RC Oscillator (FRC) 000 = Fast RC Oscillator (FRC) 010 = Fast RC Oscillator (FRC) 001 = Fast RC Oscillator (FRC) 010 = Fast RC Oscillator (FRC) 001 = Fast RC Oscillator (FRC) 010 = Fast RC Oscillator (FRC) 001 = Fast RC Oscillator (FRC) 011 = Clock switching and Fail-Safe Clock Monitor Configuration bits 1x = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 0 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled <t< td=""><td>Logond</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Logond									
-n = Value when device is unprogrammed '1' = Bit is set '0' = Bit is cleared bit 23-16 Reserved bit 15 IESO: Internal External Switchover bit 1 = IESO mode (Two-Speed Start-up) enabled 0' = Bit is cleared 0 = IESO mode (Two-Speed Start-up) disabled 0' = Bit is cleared bit 14-11 Reserved bit 10-8 FNOSC-2:0>: Initial Oscillator Select bits 111 = Fast RC Oscillator with Postscaler (FRCDIV) 100 = Reserved 101 = Low-Power RC Oscillator (LPRC) 100 = Secondary Oscillator (XT, HS, EC) 101 = Primary Oscillator with Postscaler and PLL module (FRCPLL) 001 = Fast RC Oscillator with Postscaler and PLL module (FRCPLL) 000 = Fast RC Oscillator (FRC) 011 = Clock switching is enabled, Fail-Safe Clock Monitor Configuration bits 1x = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled 01 = OSCO/CLKO/RC15 functions as CLKO (Fosc/2) 0 = OSCO/CLKO/RC15 functions as CLKO (Fosc/2) 0 = OSCO/CLKO/RC15 functions as port I/0 (RC15) If POSCMD<10' = 10 or	-	e hit	PO = Program	n Once hit	U = Unimpler	mented bit reac	l as '0'			
bit 23-16 Reserved bit 23-16 IESO: Internal External Switchover bit 1 = IESO mode (Two-Speed Start-up) enabled 0 = IESO mode (Two-Speed Start-up) disabled bit 14-11 Reserved bit 10-8 FNOSC<2:0>: Initial Oscillator Select bits 111 = Fast RC Oscillator with Postscaler (FRCDIV) 110 = Reserved 101 = Low-Power RC Oscillator (LPRC) 100 = Secondary Oscillator (SORC) 011 = Primary Oscillator with PLL module (XTPLL, HSPLL, ECPLL) 010 = Fecendary Oscillator (KT, HS, EC) 001 = Fast RC Oscillator with Put module (XTPLL, HSPLL, ECPLL) 010 = Fast RC Oscillator with Put module (KTPLL, HSPLL, ECPLL) 010 = Fast RC Oscillator with Put module (KTPLL, HSPLL, ECPLL) 010 = Fast RC Oscillator with Put scalar and PLL module (FRCPLL) 000 = Fast RC Oscillator with Postscaler and PLL module (FRCPLL) 000 = Fast RC Oscillator with Pail-Safe Clock Monitor Configuration bits 1x = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled bit 5 OSCIOFCN: OSCO Pin Configuration bit If POSCMD<10/2 = 10 or 01: 0SCIOFCN has no effect on OSCO/CLKO/RC15. bit 4 IOL1WAY: IOLOCK One-Way Set Enable bit 1 = The IOLOCK bit (OSCCON-6>) can be set once, provided the unlock sequence has be completed. Once set, the Peripheral Pin Select registers cannot be written to a second time. 0 = The IOLOCK bit can be set and cleared as needed, provided the unlock sequence has be completed. bit 3 Reserved bit 3 Reserved bit 4 IOL2SEL: I2C2 Pin Select bit ⁽¹⁾ 1 = Use SCL2/SDA2 pins for I2C2			•		-			ared		
bit 15 IESO: Internal External Switchover bit 1 = IESO mode (Two-Speed Start-up) enabled 0 = IESO mode (Two-Speed Start-up) disabled bit 14-11 Reserved 11 = Fast RC Oscillator Select bits 111 = Fast RC Oscillator with Postscaler (FRCDIV) 100 = Reserved 101 = Low-Power RC Oscillator (LPRC) 100 = Secondary Oscillator with Put module (XTPLL, HSPLL, ECPLL) 101 = Primary Oscillator with Postscaler and PLL module (FRCPLL) 101 = Primary Oscillator (KT, HS, EC) 101 = Fast RC Oscillator (FRC) 100 = Fast RC Oscillator (FRC) 111 = Clock switching and Fail-Safe Clock Monitor Configuration bits 111 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 111 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled 111 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled 111 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled 111 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled 111 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled 111 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled 111 = Clock Switching is enabled, Fail-Safe Clock Monitor is enabled 11 = Clock Switching is enabled, Fail-Safe Clock Monitor is enabled 11 = OscO/CL			.p. e g. ee e							
 1 = IESO mode (Two-Speed Start-up) enabled 0 = IESO mode (Two-Speed Start-up) disabled bit 14-11 Reserved bit 10-8 FNOSC<2:0>: Initial Oscillator Select bits 111 = Fast RC Oscillator with Postscaler (FRCDIV) 100 = Reserved 101 = Low-Power RC Oscillator (LPRC) 100 = Secondary Oscillator (SOSC) 111 = Primary Oscillator with PLL module (XTPLL, HSPLL, ECPLL) 111 = Primary Oscillator with PLL module (XTPLL, HSPLL, ECPLL) 111 = Primary Oscillator (XT, HS, EC) 111 = Clock Switching and Fail-Safe Clock Monitor Configuration bits 112 x = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 112 Clock switching is enabled, Fail-Safe Clock Monitor is enabled 112 Clock switching is enabled, Fail-Safe Clock Monitor is enabled 112 Clock Switching is enabled, Fail-Safe Clock Monitor is enabled 112 Clock Switching is enabled, Fail-Safe Clock Monitor is enabled 112 Clock Switching is enabled, Fail-Safe Clock Monitor is enabled 112 Clock Switching is enabled, Fail-Safe Clock Monitor is enabled 12 Clock Switching is enabled, Fail-Safe Clock Monitor is enabled 13 Clock Clock Clop = 11 or 01: 14 IOLOCK bit (OSCCON-6>) can be set once, provided the unlock sequence has be completed. 14 IOLOCK bit can be set and cleared as needed, provided the unlock sequence has be completed. 14 IOLOCK bit can be set and cleared as needed, provided the unlock sequence has be completed. 14 IOLOCK bit can be set and cleared as needed, provided the unlock sequence has be completed. 14 IS IS ISCESEL: I2C2 Pin Select bit⁽¹⁾ 14 I SUC2SEL: I2C2 Pin Select bit⁽¹⁾ 14 I SUC2SEL: I2C2 Pin Select bit⁽¹⁾ 	bit 23-16	Reserved								
 0 = IESO mode (Two-Speed Start-up) disabled bit 14-11 Reserved bit 10-8 FNOSC-2:0-: Initial Oscillator Select bits 111 = Fast RC Oscillator with Potscaler (FRCDIV) 110 = Reserved 101 = Low-Power RC Oscillator (LPRC) 100 = Secondary Oscillator (SOSC) 011 = Primary Oscillator with PLL module (XTPLL, HSPLL, ECPLL) 010 = Primary Oscillator with PL module (XTPLL, HSPLL, ECPLL) 010 = Primary Oscillator (FRC) 001 = Fast RC Oscillator (FRC) 000 = Fast RC Oscillator (FRC) 000 = Fast RC Oscillator (FRC) 011 = Clock switching and Fail-Safe Clock Monitor Configuration bits 1x = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled 01 = Clock Switching is enabled, Fail-Safe Clock Monitor is enabled 01 = OSCO/CLKO/RC15 functions as CLKO (Fosc/2) 0 = OSCO/CLKO/RC15 functions as port I/O (RC15) If POSCMD 01 = OSCO/CLKO is to on SCO (CLKO/RC15. 01 = T	bit 15									
bit 14-11 Reserved bit 10-8 FNOSC<2:0>: Initial Oscillator Select bits 111 = Fast RC Oscillator with Postscaler (FRCDIV) 110 = Reserved 101 = Low-Power RC Oscillator (LPRC) 100 = Secondary Oscillator (SOSC) 011 = Primary Oscillator with PLL module (XTPLL, HSPLL, ECPLL) 010 = Primary Oscillator with PLL module (TPLL), HSPLL, ECPLL) 010 = Fast RC Oscillator (XT, HS, EC) 001 = Fast RC Oscillator (KRC) 000 = Fast RC Oscillator (FRC) 001 = Fast RC Oscillator (FRC) bit 7-6 FCKSM 112 = Clock switching and Fail-Safe Clock Monitor Configuration bits 11x = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled 01 = OSCO/CLKO/RC15 functions as CLKO (Fosc/2) 0 = OSCO/CLKO/RC15 functions as port I/O (RC15) If POSCMD 10 or 01: OSCIOFCN has no effect on OSCO/CLKO/RC15. bit 4 IOL1WAY: IOLOCK One-Way Set Enable bit 1 = The IOLOCK bit (OSCCON<6>) can be set once, provided the unlock sequence has be completed. bit 3 Reserved bit 4 IOLCW bit (Can b										
 bit 10-8 FNOSC<2:0-: Initial Oscillator Select bits 111 = Fast RC Oscillator with Postscaler (FRCDIV) 100 = Reserved 101 = Low-Power RC Oscillator (LPRC) 100 = Secondary Oscillator (SOSC) 011 = Primary Oscillator with PLL module (XTPLL, HSPLL, ECPLL) 010 = Primary Oscillator (XT, HS, EC) 001 = Fast RC Oscillator (FRC) 100 = Fast RC Oscillator (FRC) bit 7-6 FCKSM<1:0-: Clock Switching and Fail-Safe Clock Monitor Configuration bits 1x = Clock switching and Fail-Safe Clock Monitor are disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled 00 = Clock Switching is enabled, Fail-Safe Clock Monitor is enabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled 00 = Clock Switching is enabled, Fail-Safe Clock Monitor is enabled 00 = Clock Switching is enabled, Fail-Safe Clock Monitor is enabled 01 = 0SCO/CLKO/RC15 functions as CLKO (Fosc/2) 0 = OSCO/CLKO/RC15 functions as port I/O (RC15) If POSCMD<1:0> = 10 or 01: OSCIOFCN has no effect on OSCO/CLKO/RC15. bit 4 IOL1WAY: IOLOCK One-Way Set Enable bit 1 = The IOLOCK bit (OSCCON<6>) can be set once, provided the unlock sequence has be completed. Once set, the Peripheral Pin Select registers cannot be written to a second time. 0 = The IOLOCK bit (can be set and cleared as needed, provided the unlock sequence has be completed bit 3 Reserved bit 4 bit 2 I2C2SEL: I2C2 Pin Select bit⁽¹⁾ 1 = Use SCL2/SDA2 pins for I2C2 	hit 14-11		ue (1wo-speeu	Start-up) uisai	bieu					
 111 = Fast RC Oscillator with Postscaler (FRCDIV) 110 = Reserved 101 = Low-Power RC Oscillator (LPRC) 100 = Secondary Oscillator (SOSC) 011 = Primary Oscillator with PLL module (XTPLL, HSPLL, ECPLL) 010 = Primary Oscillator with PLL module (XTPLL, HSPLL, ECPLL) 000 = Fast RC Oscillator (FRC) bit 7-6 FCKSM FCKSM			Initial Oscillat	or Select bits						
 110 = Reserved 101 = Low-Power RC Oscillator (LPRC) 100 = Secondary Oscillator with PLL module (XTPLL, HSPLL, ECPLL) 011 = Primary Oscillator with PLL module (XTPLL, HSPLL, ECPLL) 010 = Primary Oscillator with Postscaler and PLL module (FRCPLL) 000 = Fast RC Oscillator (FRC) bit 7-6 FCKSM<1:0>: Clock Switching and Fail-Safe Clock Monitor Configuration bits 1x = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 02 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled 03 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 04 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled 05 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 03 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled 04 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled 05 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 05 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 05 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 05 = Clock switching and Fail-Safe Clock Monitor is disabled 05 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 05 = Clock switching and Fail-Safe Clock Monitor is disabled 05 = Clock Switching and Fail-Safe Clock Monitor is disabled 05 = Clock Switching and Fail-Safe Clock Monitor is disabled 05 = Clock Switching and Fail-Safe Clock Monitor					RCDIV)					
 100 = Secondary Oscillator (SOSC) 011 = Primary Oscillator with PLL module (XTPLL, HSPLL, ECPLL) 010 = Primary Oscillator (XT, HS, EC) 001 = Fast RC Oscillator with Postscaler and PLL module (FRCPLL) 000 = Fast RC Oscillator (FRC) bit 7-6 FCKSM<1:0>: Clock Switching and Fail-Safe Clock Monitor Configuration bits 1x = Clock switching and Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled bit 5 OSCIOFCN: OSCO Pin Configuration bit If POSCMD<1:0> = 11 or 00: 1 = OSCO/CLKO/RC15 functions as CLKO (Fosc/2) 0 = OSCO/CLKO/RC15 functions as port I/O (RC15) If POSCMD<1:0> = 10 or 01: OSCIOFCN has no effect on OSCO/CLKO/RC15. bit 4 IOL1WAY: IOLOCK One-Way Set Enable bit 1 = The IOLOCK bit (OSCCON<6>) can be set once, provided the unlock sequence has be completed. Once set, the Peripheral Pin Select registers cannot be written to a second time. 0 = The IOLOCK bit can be set and cleared as needed, provided the unlock sequence has be completed bit 3 Reserved bit 2 I2C2SEL: I2C2 Pin Select bit⁽¹⁾ 1 = Use SCL2/SDA2 pins for I2C2 		110 = Reserv	ved		- /					
 011 = Primary Oscillator with PLL module (XTPLL, HSPLL, ECPLL) 010 = Primary Oscillator (XT, HS, EC) 001 = Fast RC Oscillator with Postscaler and PLL module (FRCPLL) 000 = Fast RC Oscillator (FRC) bit 7-6 FCKSM<1:0>: Clock Switching and Fail-Safe Clock Monitor Configuration bits 1x = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled bit 5 OSCIOFCN: OSCO Pin Configuration bit If POSCMD<1:0> = 11 or 00: 1 = OSCO/CLKO/RC15 functions as CLKO (Fosc/2) 0 = OSCO/CLKO/RC15 functions as port I/O (RC15) If POSCMD<1:0> = 10 or 01: OSCIOFCN has no effect on OSCO/CLKO/RC15. bit 4 IOL1WAY: IOLOCK One-Way Set Enable bit 1 = The IOLOCK bit (OSCCON<6>) can be set once, provided the unlock sequence has be completed. Once set, the Peripheral Pin Select registers cannot be written to a second time. 0 = The IOLOCK bit can be set and cleared as needed, provided the unlock sequence has be completed bit 3 Reserved bit 4 I2C2SEL: I2C2 Pin Select bit⁽¹⁾ 1 = Use SCL2/SDA2 pins for I2C2 										
 010 = Primary Oscillator (XT, HS, EC) 001 = Fast RC Oscillator with Postscaler and PLL module (FRCPLL) 000 = Fast RC Oscillator (FRC) bit 7-6 FCKSM<1:0>: Clock Switching and Fail-Safe Clock Monitor Configuration bits 1x = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled 00 = OSCO/CLKO/RC15 functions as CLKO (Fosc/2) 0 = OSCO/CLKO/RC15 functions as port I/O (RC15) 14 10L1WAY: IOLOCK One-Way Set Enable bit 1 = The IOLOCK bit (OSCCON<6>) can be set once, provided the unlock sequence has be completed. 0 = The IOLOCK bit can be set and cleared as needed, provided the unlock sequence has be completed 1 = Use SCL2/SDA2 pins for I2C2 					XTPLL, HSPL	L. ECPLL)				
000 = Fast RC Oscillator (FRC) bit 7-6 FCKSM<1:0>: Clock Switching and Fail-Safe Clock Monitor Configuration bits 1x = Clock switching and Fail-Safe Clock Monitor are disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled bit 5 OSCIOFCN: OSCO Pin Configuration bit If POSCMD<1:0> = 11 or 00: 1 = OSCO/CLKO/RC15 functions as CLKO (Fosc/2) 0 = OSCO/CLKO/RC15 functions as port I/O (RC15) If POSCMD<1:0> = 10 or 01: OSCIOFCN has no effect on OSCO/CLKO/RC15. bit 4 IOL1WAY: IOLOCK One-Way Set Enable bit 1 = The IOLOCK bit (OSCCON<6>) can be set once, provided the unlock sequence has be completed. Once set, the Peripheral Pin Select registers cannot be written to a second time. 0 = The IOLOCK bit can be set and cleared as needed, provided the unlock sequence has be completed bit 3 Reserved bit 4 I2C2SEL: I2C2 Pin Select bit ⁽¹⁾ 1 = Use SCL2/SDA2 pins for I2C2		010 = Primar	y Oscillator (XT	, HS, EC)	•					
bit 7-6 FCKSM<1:0>: Clock Switching and Fail-Safe Clock Monitor Configuration bits 1x = Clock switching and Fail-Safe Clock Monitor are disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled bit 5 OSCIOFCN: OSCO Pin Configuration bit If POSCMD<1:0> = 11 or 00: 1 = OSCO/CLKO/RC15 functions as CLKO (Fosc/2) 0 = OSCO/CLKO/RC15 functions as port I/O (RC15) If POSCMD<1:0> = 10 or 01: OSCIOFCN has no effect on OSCO/CLKO/RC15. bit 4 IOL1WAY: IOLOCK One-Way Set Enable bit 1 = The IOLOCK bit (OSCCON<6>) can be set once, provided the unlock sequence has be completed. Once set, the Peripheral Pin Select registers cannot be written to a second time. 0 = The IOLOCK bit can be set and cleared as needed, provided the unlock sequence has be completed bit 3 Reserved bit 2 I2C2SEL: I2C2 Pin Select bit ⁽¹⁾ 1 = Use SCL2/SDA2 pins for I2C2					nd PLL module	e (FRCPLL)				
1x = Clock switching and Fail-Safe Clock Monitor are disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled bit 5 OSCIOFCN: OSCO Pin Configuration bit If POSCMD<1:0> = 11 or 00: 1 = OSCO/CLKO/RC15 functions as CLKO (Fosc/2) 0 = OSCO/CLKO/RC15 functions as port I/O (RC15) If POSCMD<1:0> = 10 or 01: OSCIOFCN has no effect on OSCO/CLKO/RC15. bit 4 IOL1WAY: IOLOCK One-Way Set Enable bit 1 = The IOLOCK bit (OSCCON<6>) can be set once, provided the unlock sequence has be completed. Once set, the Peripheral Pin Select registers cannot be written to a second time. 0 = The IOLOCK bit can be set and cleared as needed, provided the unlock sequence has be completed bit 3 Reserved bit 2 I2C2SEL: I2C2 Pin Select bit ⁽¹⁾ 1 = Use SCL2/SDA2 pins for I2C2	hit 7-6				afe Clock Moni	tor Configuratio	n hite			
 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled bit 5 OSCIOFCN: OSCO Pin Configuration bit If POSCMD<1:0> = 11 or 00: 1 = OSCO/CLKO/RC15 functions as CLKO (Fosc/2) 0 = OSCO/CLKO/RC15 functions as port I/O (RC15) If POSCMD<1:0> = 10 or 01: OSCIOFCN has no effect on OSCO/CLKO/RC15. bit 4 IOL1WAY: IOLOCK One-Way Set Enable bit 1 = The IOLOCK bit (OSCCON<6>) can be set once, provided the unlock sequence has be completed. Once set, the Peripheral Pin Select registers cannot be written to a second time. 0 = The IOLOCK bit can be set and cleared as needed, provided the unlock sequence has be completed bit 3 Reserved bit 2 I2C2SEL: I2C2 Pin Select bit⁽¹⁾ 1 = Use SCL2/SDA2 pins for I2C2 	DIL 7-0			•		•	II DIIS			
bit 5 OSCIOFCN: OSCO Pin Configuration bit If POSCMD<1:0> = 11 or 00: 1 = OSCO/CLKO/RC15 functions as CLKO (Fosc/2) 0 = OSCO/CLKO/RC15 functions as port I/O (RC15) If POSCMD<1:0> = 10 or 01: OSCIOFCN has no effect on OSCO/CLKO/RC15. bit 4 IOL1WAY: IOLOCK One-Way Set Enable bit 1 = The IOLOCK bit (OSCCON<6>) can be set once, provided the unlock sequence has be completed. Once set, the Peripheral Pin Select registers cannot be written to a second time. 0 = The IOLOCK bit can be set and cleared as needed, provided the unlock sequence has be completed bit 3 Reserved bit 2 I2C2SEL: I2C2 Pin Select bit ⁽¹⁾ 1 = Use SCL2/SDA2 pins for I2C2		01 = Clock s	witching is ena	bled, Fail-Safe	Clock Monitor	is disabled				
If POSCMD<1:0> = 11 or 00: 1 = OSCO/CLKO/RC15 functions as CLKO (Fosc/2) 0 = OSCO/CLKO/RC15 functions as port I/O (RC15) If POSCMD<1:0> = 10 or 01: OSCIOFCN has no effect on OSCO/CLKO/RC15. bit 4 IOL1WAY: IOLOCK One-Way Set Enable bit 1 = The IOLOCK bit (OSCCON<6>) can be set once, provided the unlock sequence has be completed. Once set, the Peripheral Pin Select registers cannot be written to a second time. 0 = The IOLOCK bit can be set and cleared as needed, provided the unlock sequence has be completed bit 3 Reserved bit 2 I2C2SEL: I2C2 Pin Select bit ⁽¹⁾ 1 = Use SCL2/SDA2 pins for I2C2			•		Clock Monitor	is enabled				
 1 = OSCO/CLKO/RC15 functions as CLKO (Fosc/2) 0 = OSCO/CLKO/RC15 functions as port I/O (RC15) If POSCMD<1:0> = 10 or 01: OSCIOFCN has no effect on OSCO/CLKO/RC15. bit 4 IOL1WAY: IOLOCK One-Way Set Enable bit 1 = The IOLOCK bit (OSCCON<6>) can be set once, provided the unlock sequence has be completed. Once set, the Peripheral Pin Select registers cannot be written to a second time. 0 = The IOLOCK bit can be set and cleared as needed, provided the unlock sequence has be completed bit 3 Reserved bit 2 I2C2SEL: I2C2 Pin Select bit⁽¹⁾ 1 = Use SCL2/SDA2 pins for I2C2 	bit 5			•						
 0 = OSCO/CLKO/RC15 functions as port I/O (RC15) If POSCMD<1:0> = 10 or 01: OSCIOFCN has no effect on OSCO/CLKO/RC15. bit 4 IOL1WAY: IOLOCK One-Way Set Enable bit 1 = The IOLOCK bit (OSCCON<6>) can be set once, provided the unlock sequence has be completed. Once set, the Peripheral Pin Select registers cannot be written to a second time. 0 = The IOLOCK bit can be set and cleared as needed, provided the unlock sequence has be completed bit 3 Reserved bit 2 I2C2SEL: I2C2 Pin Select bit⁽¹⁾ 1 = Use SCL2/SDA2 pins for I2C2 					(Fosc/2)					
If POSCMD<1:0> = 10 or 01: OSCIOFCN has no effect on OSCO/CLKO/RC15. bit 4 IOL1WAY: IOLOCK One-Way Set Enable bit 1 = The IOLOCK bit (OSCCON<6>) can be set once, provided the unlock sequence has be completed. Once set, the Peripheral Pin Select registers cannot be written to a second time. 0 = The IOLOCK bit can be set and cleared as needed, provided the unlock sequence has be completed bit 3 Reserved bit 2 I2C2SEL: I2C2 Pin Select bit ⁽¹⁾ 1 = Use SCL2/SDA2 pins for I2C2										
 bit 4 IOL1WAY: IOLOCK One-Way Set Enable bit 1 = The IOLOCK bit (OSCCON<6>) can be set once, provided the unlock sequence has be completed. Once set, the Peripheral Pin Select registers cannot be written to a second time. 0 = The IOLOCK bit can be set and cleared as needed, provided the unlock sequence has be completed bit 3 Reserved bit 2 I2C2SEL: I2C2 Pin Select bit⁽¹⁾ 1 = Use SCL2/SDA2 pins for I2C2 		If POSCMD<	1:0> = 10 or 0	<u>1:</u>						
 1 = The IOLOCK bit (OSCCON<6>) can be set once, provided the unlock sequence has be completed. Once set, the Peripheral Pin Select registers cannot be written to a second time. 0 = The IOLOCK bit can be set and cleared as needed, provided the unlock sequence has be completed bit 3 Reserved bit 2 I2C2SEL: I2C2 Pin Select bit⁽¹⁾ 1 = Use SCL2/SDA2 pins for I2C2 										
 completed. Once set, the Peripheral Pin Select registers cannot be written to a second time. 0 = The IOLOCK bit can be set and cleared as needed, provided the unlock sequence has be completed bit 3 Reserved bit 2 I2C2SEL: I2C2 Pin Select bit⁽¹⁾ 1 = Use SCL2/SDA2 pins for I2C2 	bit 4			•		and the state of the state				
 0 = The IOLOCK bit can be set and cleared as needed, provided the unlock sequence has be completed bit 3 Reserved bit 2 I2C2SEL: I2C2 Pin Select bit⁽¹⁾ 1 = Use SCL2/SDA2 pins for I2C2 										
bit 3 Reserved bit 2 I2C2SEL: I2C2 Pin Select bit ⁽¹⁾ 1 = Use SCL2/SDA2 pins for I2C2										
bit 2 I2C2SEL: I2C2 Pin Select bit ⁽¹⁾ 1 = Use SCL2/SDA2 pins for I2C2			d							
1 = Use SCL2/SDA2 pins for I2C2	bit 3			.(1)						
	bit 2									
v = 0.00 AUULZIAUAZ PIHO IVI IZUZ			•							
Note 1: Implemented in 100-pin devices only: otherwise unimplemented read as '1'										

Note 1: Implemented in 100-pin devices only; otherwise unimplemented, read as '1'.

25.2.2 ON-CHIP REGULATOR AND POR

When the voltage regulator is enabled, it takes approximately 10 μ s for it to generate output. During this time, designated as TVREG, code execution is disabled. TVREG is applied every time the device resumes operation after any power-down, including Sleep mode. The length of TVREG is determined by the PMSLP bit (RCON<8>), as described in Section 25.2.5 "Voltage Regulator Standby Mode".

If the regulator is disabled, a separate Power-up Timer (PWRT) is automatically enabled. The PWRT adds a fixed delay of 64 ms nominal delay at device start-up (POR or BOR only). When waking up from Sleep with the regulator disabled, the PMSLP bit determines the wake-up time. When operating with the regulator disabled, setting PMSLP can decrease the device wake-up time.

25.2.3 ON-CHIP REGULATOR AND BOR

When the on-chip regulator is enabled, PIC24FJ256GA110 family devices also have a simple brown-out capability. If the voltage supplied to the regulator is inadequate to maintain the tracking level, the regulator Reset circuitry will generate a Brown-out Reset. This event is captured by the BOR flag bit (RCON<1>). The brown-out voltage specifications are provided in the *"PIC24FJ Family Reference Manual"*, **Section 7. "Reset"** (DS39712).

25.2.4 POWER-UP REQUIREMENTS

The on-chip regulator is designed to meet the power-up requirements for the device. If the application does not use the regulator, then strict power-up conditions must be adhered to. While powering up, VDDCORE must never exceed VDD by 0.3 volts.

Note: For more information, see Section 28.0 "Electrical Characteristics".

25.2.5 VOLTAGE REGULATOR STANDBY MODE

When enabled, the on-chip regulator always consumes a small incremental amount of current over IDD/IPD, including when the device is in Sleep mode, even though the core digital logic does not require power. To provide additional savings in applications where power resources are critical, the regulator automatically disables itself whenever the device goes into Sleep mode. This feature is controlled by the PMSLP bit (RCON<8>). By default, the bit is cleared, which removes power from the Flash program memory, and thus, enables Standby mode. When waking up from Standby mode, the regulator must wait for TVREG to expire before wake-up. This extra time is needed to ensure that the regulator can source enough current to power the Flash memory. For applications which require a faster wake-up time, it is possible to disable regulator Standby mode. The PMSLP bit can be set to turn off Standby mode so that the Flash stays powered when in Sleep mode and the device can wake-up without waiting for TVREG. When PMSLP is set, the power consumption while in Sleep mode, will be approximately 40 μ A higher than power consumption when the regulator is allowed to enter Standby mode.

25.3 Watchdog Timer (WDT)

For PIC24FJ256GA110 family devices, the WDT is driven by the LPRC Oscillator. When the WDT is enabled, the clock source is also enabled.

The nominal WDT clock source from LPRC is 31 kHz. This feeds a prescaler that can be configured for either 5-bit (divide-by-32) or 7-bit (divide-by-128) operation. The prescaler is set by the FWPSA Configuration bit. With a 31 kHz input, the prescaler yields a nominal WDT time-out period (TWDT) of 1 ms in 5-bit mode or 4 ms in 7-bit mode.

A variable postscaler divides down the WDT prescaler output and allows for a wide range of time-out periods. The postscaler is controlled by the WDTPS<3:0> Configuration bits (CW1<3:0>), which allow the selection of a total of 16 settings, from 1:1 to 1:32,768. Using the prescaler and postscaler, time-out periods ranging from 1 ms to 131 seconds can be achieved.

The WDT, prescaler and postscaler are reset:

- On any device Reset
- On the completion of a clock switch, whether invoked by software (i.e., setting the OSWEN bit after changing the NOSC bits) or by hardware (i.e., Fail-Safe Clock Monitor)
- When a PWRSAV instruction is executed (i.e., Sleep or Idle mode is entered)
- When the device exits Sleep or Idle mode to resume normal operation
- By a CLRWDT instruction during normal execution

If the WDT is enabled, it will continue to run during Sleep or Idle modes. When the WDT time-out occurs, the device will wake the device and code execution will continue from where the PWRSAV instruction was executed. The corresponding SLEEP or IDLE bits (RCON<3:2>) will need to be cleared in software after the device wakes up.

The WDT Flag bit, WDTO (RCON<4>), is not automatically cleared following a WDT time-out. To detect subsequent WDT events, the flag must be cleared in software.

Note: The CLRWDT and PWRSAV instructions clear the prescaler and postscaler counts when executed.

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None
	BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None
BTST	BTST	f,#bit4	Bit Test f	1	1	Z
	BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С
	BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z
	BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С
	BTST.Z	Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z
BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z
	BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С
	BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z
CALL	CALL	lit23	Call Subroutine	2	2	None
	CALL	Wn	Call Indirect Subroutine	1	2	None
CLR	CLR	f	f = 0x0000	1	1	None
	CLR	WREG	WREG = 0x0000	1	1	None
	CLR	Ws	Ws = 0x0000	1	1	None
CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO, Sleep
СОМ	COM	f	$f = \overline{f}$	1	1	N, Z
	COM	f,WREG	WREG = f	1	1	N, Z
	COM	Ws,Wd	$Wd = \overline{Ws}$	1	1	N, Z
CP	CP	f	Compare f with WREG	1	1	C, DC, N, OV, Z
CP	CP	Wb,#lit5	Compare Wb with lit5	1	1	C, DC, N, OV, Z
	CP		Compare Wb with Ws (Wb – Ws)	1	1	
CP0		Wb,Ws f		1	1	C, DC, N, OV, Z
	CP0		Compare f with 0x0000	1	1	C, DC, N, OV, Z
СРВ	CP0	Ws	Compare Ws with 0x0000	1	1	C, DC, N, OV, Z
	CPB	f	Compare f with WREG, with Borrow			C, DC, N, OV, Z
	CPB	Wb,#lit5	Compare Wb with lit5, with Borrow	1	1	C, DC, N, OV, Z
	CPB	Wb,Ws	Compare Wb with Ws, with Borrow (Wb – Ws – C)	1	1	C, DC, N, OV, Z
CPSEQ	CPSEQ	Wb,Wn	Compare Wb with Wn, Skip if =	1	1 (2 or 3)	None
CPSGT	CPSGT	Wb,Wn	Compare Wb with Wn, Skip if >	1	1 (2 or 3)	None
CPSLT	CPSLT	Wb,Wn	Compare Wb with Wn, Skip if <	1	1 (2 or 3)	None
CPSNE	CPSNE	Wb,Wn	Compare Wb with Wn, Skip if ≠	1	1 (2 or 3)	None
DAW	DAW.b	Wn	Wn = Decimal Adjust Wn	1	1	С
DEC	DEC	f	f = f - 1	1	1	C, DC, N, OV, Z
	DEC	f,WREG	WREG = f – 1	1	1	C, DC, N, OV, Z
	DEC	Ws,Wd	Wd = Ws - 1	1	1	C, DC, N, OV, Z
DEC2	DEC2	f	f = f - 2	1	1	C, DC, N, OV, Z
	DEC2	f,WREG	WREG = f – 2	1	1	C, DC, N, OV, Z
	DEC2	Ws,Wd	Wd = Ws - 2	1	1	C, DC, N, OV, Z
DISI	DISI	#lit14	Disable Interrupts for k Instruction Cycles	1	1	None
DIV	DIV.SW	Wm,Wn	Signed 16/16-bit Integer Divide	1	18	N, Z, C, OV
	DIV.SD	Wm,Wn	Signed 32/16-bit Integer Divide	1	18	N, Z, C, OV
	DIV.UW	Wm,Wn	Unsigned 16/16-bit Integer Divide	1	18	N, Z, C, OV
	DIV.UD	Wm,Wn	Unsigned 32/16-bit Integer Divide	1	18	N, Z, C, OV
EXCH	EXCH	Wns,Wnd	Swap Wns with Wnd	1	1	None
FF1L	FF1L	Ws,Wnd	Find First One from Left (MSb) Side	1	1	с
FF1R	FF1R	Ws,Wnd	Find First One from Right (LSb) Side	1	1	c

TABLE 26-2: INSTRUCTION SET OVERVIEW (CONTINUED)

100-Lead TQFP (12x12x1 mm)

100-Lead TQFP (14x14x1 mm)

Example

