

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	85
Program Memory Size	256KB (85.5K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj256ga110-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.2 Other Special Features

- Peripheral Pin Select: The Peripheral Pin Select (PPS) feature allows most digital peripherals to be mapped over a fixed set of digital I/O pins. Users may independently map the input and/or output of any one of the many digital peripherals to any one of the I/O pins.
- Communications: The PIC24FJ256GA110 family incorporates a range of serial communication peripherals to handle a range of application requirements. There are three independent I²C[™] modules that support both Master and Slave modes of operation. Devices also have, through the Peripheral Pin Select (PPS) feature, four independent UARTs with built-in IrDA[®] encoder/decoders and three SPI modules.
- Analog Features: All members of the PIC24FJ256GA110 family include a 10-bit A/D Converter module and a triple comparator module. The A/D module incorporates programmable acquisition time, allowing for a channel to be selected and a conversion to be initiated without waiting for a sampling period, as well as faster sampling speeds. The comparator module includes three analog comparators that are configurable for a wide range of operations.
- **CTMU Interface:** In addition to their other analog features, members of the PIC24FJ256GA110 family include the brand new CTMU interface module. This provides a convenient method for precision time measurement and pulse generation, and can serve as an interface for capacitive sensors.
- **Parallel Master Port:** One of the general purpose I/O ports can be reconfigured for enhanced parallel data communications. In this mode, the port can be configured for both master and slave operations, and supports 8-bit transfers with up to 16 external address lines in Master modes.
- Real-Time Clock/Calendar: This module implements a full-featured clock and calendar with alarm functions in hardware, freeing up the timer resources and program memory space for the use of the core application.

1.3 Details on Individual Family Members

Devices in the PIC24FJ256GA110 family are available in 64-pin, 80-pin and 100-pin packages. The general block diagram for all devices is shown in Figure 1-1.

The devices are differentiated from each other in four ways:

- Flash program memory (64 Kbytes for PIC24FJ64GA1 devices, 128 Kbytes for PIC24FJ128GA1 devices, 192 Kbytes for PIC24FJ192GA1 devices and 256 Kbytes for PIC24FJ256GA1 devices).
- Available I/O pins and ports (53 pins on 6 ports for 64-pin devices, 69 pins on 7 ports for 80-pin devices and 85 pins on 7 ports for 100-pin devices).
- 3. Available Interrupt-on-Change Notification (ICN) inputs (same as the number of available I/O pins for all devices).
- 4. Available remappable pins (31 pins on 64-pin devices, 42 pins on 80-pin devices and 46 pins on 100-pin devices)

All other features for devices in this family are identical. These are summarized in Table 1-1.

A list of the pin features available on the PIC24FJ256GA110 family devices, sorted by function, is shown in Table 1-4. Note that this table shows the pin location of individual peripheral features and not how they are multiplexed on the same pin. This information is provided in the pinout diagrams in the beginning of this data sheet. Multiplexed features are sorted by the priority given to a feature, with the highest priority peripheral being listed first.

2.6 External Oscillator Pins

Many microcontrollers have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator (refer to **Section 8.0 "Oscillator Configuration**" for details).

The oscillator circuit should be placed on the same side of the board as the device. Place the oscillator circuit close to the respective oscillator pins with no more than 0.5 inch (12 mm) between the circuit components and the pins. The load capacitors should be placed next to the oscillator itself, on the same side of the board.

Use a grounded copper pour around the oscillator circuit to isolate it from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed.

Layout suggestions are shown in Figure 2-5. In-line packages may be handled with a single-sided layout that completely encompasses the oscillator pins. With fine-pitch packages, it is not always possible to completely surround the pins and components. A suitable solution is to tie the broken guard sections to a mirrored ground layer. In all cases, the guard trace(s) must be returned to ground.

In planning the application's routing and I/O assignments, ensure that adjacent port pins, and other signals in close proximity to the oscillator, are benign (i.e., free of high frequencies, short rise and fall times and other similar noise).

For additional information and design guidance on oscillator circuits, please refer to these Microchip Application Notes, available at the corporate web site (www.microchip.com):

- AN826, "Crystal Oscillator Basics and Crystal Selection for rfPIC[™] and PICmicro[®] Devices"
- AN849, "Basic PICmicro[®] Oscillator Design"
- AN943, "Practical PICmicro[®] Oscillator Analysis and Design"
- AN949, "Making Your Oscillator Work"

FIGURE 2-5:

SUGGESTED PLACEMENT OF THE OSCILLATOR CIRCUIT

3.3 Arithmetic Logic Unit (ALU)

The PIC24F ALU is 16 bits wide and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are 2's complement in nature. Depending on the operation, the ALU may affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the SR register. The C and DC Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations.

The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is used. Data for the ALU operation can come from the W register array, or data memory, depending on the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W register array or a data memory location.

The PIC24F CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware for 16-bit divisor division.

3.3.1 MULTIPLIER

The ALU contains a high-speed, 17-bit x 17-bit multiplier. It supports unsigned, signed or mixed sign operation in several multiplication modes:

- 1. 16-bit x 16-bit signed
- 2. 16-bit x 16-bit unsigned
- 3. 16-bit signed x 5-bit (literal) unsigned
- 4. 16-bit unsigned x 16-bit unsigned
- 5. 16-bit unsigned x 5-bit (literal) unsigned
- 6. 16-bit unsigned x 16-bit signed
- 7. 8-bit unsigned x 8-bit unsigned

3.3.2 DIVIDER

The divide block supports signed and unsigned integer divide operations with the following data sizes:

- 1. 32-bit signed/16-bit signed divide
- 2. 32-bit unsigned/16-bit unsigned divide
- 3. 16-bit signed/16-bit signed divide
- 4. 16-bit unsigned/16-bit unsigned divide

The quotient for all divide instructions ends up in W0 and the remainder in W1. Sixteen-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn), and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.

3.3.3 MULTI-BIT SHIFT SUPPORT

The PIC24F ALU supports both single bit and single-cycle, multi-bit arithmetic and logic shifts. Multi-bit shifts are implemented using a shifter block, capable of performing up to a 15-bit arithmetic right shift, or up to a 15-bit left shift, in a single cycle. All multi-bit shift instructions only support Register Direct Addressing for both the operand source and result destination.

A full summary of instructions that use the shift operation is provided below in Table 3-2.

TABLE 3-2: INSTRUCTIONS THAT USE THE SINGLE AND MULTI-BIT SHIFT OPERATION

Instruction	Description
ASR	Arithmetic shift right source register by one or more bits.
SL	Shift left source register by one or more bits.
LSR	Logical shift right source register by one or more bits.

4.0 MEMORY ORGANIZATION

As Harvard architecture devices, PIC24F microcontrollers feature separate program and data memory spaces and busses. This architecture also allows the direct access of program memory from the data space during code execution.

4.1 **Program Address Space**

The program address memory space of the PIC24FJ256GA110 family devices is 4M instructions. The space is addressable by a 24-bit value derived

from either the 23-bit Program Counter (PC) during program execution, or from table operation or data space remapping, as described in **Section 4.3 "Interfacing Program and Data Memory Spaces"**.

User access to the program memory space is restricted to the lower half of the address range (000000h to 7FFFFFh). The exception is the use of TBLRD/TBLWT operations which use TBLPAG<7> to permit access to the Configuration bits and Device ID sections of the configuration memory space.

Memory maps for the PIC24FJ256GA110 family of devices are shown in Figure 4-1.

FIGURE 4-1: PROGRAM SPACE MEMORY MAP FOR PIC24FJ256GA110 FAMILY DEVICES

TABLE 4-3: CPU CORE REGISTERS MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
WREG0	0000								Working	Register 0								0000
WREG1	0002		Working Register 1 0000											0000				
WREG2	0004			Working Register 2 0000											0000			
WREG3	0006								Working	Register 3								0000
WREG4	0008								Working	Register 4								0000
WREG5	000A								Working	Register 5								0000
WREG6	000C								Working	Register 6								0000
WREG7	000E								Working	Register 7								0000
WREG8	0010								Working	Register 8								0000
WREG9	0012								Working	Register 9								0000
WREG10	0014								Working F	Register 10								0000
WREG11	0016								Working F	Register 11								0000
WREG12	0018								Working F	Register 12								0000
WREG13	001A								Working F	Register 13								0000
WREG14	001C								Working F	Register 14								0000
WREG15	001E								Working F	Register 15								0800
SPLIM	0020							Stack	R Pointer Lin	nit Value Re	egister							xxxx
PCL	002E							Progra	m Counter	Low Word F	Register							0000
PCH	0030	_	_	_	—	—	_	—	_			Progra	m Counter	Register Hig	gh Byte			0000
TBLPAG	0032	_	_	_	—	—	_	—	—			Table N	lemory Pag	e Address F	Register			0000
PSVPAG	0034	_	_	_	—	—	_	—	—		F	Program Spa	ace Visibility	/ Page Addr	ress Regist	er		0000
RCOUNT	0036		•	•		•		Rep	peat Loop C	ounter Reg	ister							xxxx
SR	0042	—	—	_	—	_	_	—	DC	IPL2	IPL1	IPL0	RA	N	OV	Z	С	0000
CORCON	0044	—	—	—	—	_	_	—	—	—	—	—	—	IPL3	PSV	—	—	0000
DISICNT	0052	—	_						Disab	le Interrupts	Counter R	egister						xxxx

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

EXAMPLE 5-4: LOADING THE WRITE BUFFERS (C LANGUAGE CODE)

```
// C example using MPLAB C30
   #define NUM_INSTRUCTION_PER_ROW 64
   unsigned int offset;
   unsigned int i;
   unsigned long progAddr = 0xXXXXXX;
                                                 // Address of row to write
   unsigned int progData[2*NUM_INSTRUCTION_PER_ROW]; // Buffer of data to write
//Set up NVMCON for row programming
   NVMCON = 0 \times 4001;
                                                   // Initialize NVMCON
//Set up pointer to the first memory location to be written
   TBLPAG = progAddr>>16;
                                                  // Initialize PM Page Boundary SFR
   offset = progAddr & 0xFFFF;
                                                  // Initialize lower word of address
//Perform TBLWT instructions to write necessary number of latches
   for(i=0; i < 2*NUM_INSTRUCTION_PER_ROW; i++)</pre>
       {
      __builtin_tblwtl(offset, progData[i++]);
      offset = offset + 2;
   }
```


DISI	#5	;	Block all interrupts with priority <7
		;	for next 5 instructions
MOV	#0x55, W0		
MOV	W0, NVMKEY	;	Write the 55 key
MOV	#0xAA, W1	;	
MOV	W1, NVMKEY	;	Write the AA key
BSET	NVMCON, #WR	;	Start the erase sequence
NOP		;	
NOP		;	
BTSC	NVMCON, #15	;	and wait for it to be
BRA	\$-2	;	completed

EXAMPLE 5-6: INITIATING A PROGRAMMING SEQUENCE (C LANGUAGE CODE)

// C example using MPLAB	C30
asm("DISI #5");	<pre>// Block all interrupts with priority < 7 // for next 5 instructions</pre>
builtin_write_NVM();	// Perform unlock sequence and set WR

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	U2TXIP2	U2TXIP1	U2TXIP0	_	U2RXIP2	U2RXIP1	U2RXIP0
bit 15					·		bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	INT2IP2	INT2IP1	INT2IP0	—	T5IP2	T5IP1	T5IP0
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
			- 1				
DIT 15	Unimplemen	ted: Read as	0°	4 Dui - 11 - 1-14-			
DIT 14-12		•: UARIZ Irans	smitter interrup	t Priority Dits			
	•	pr is priority 7 (nighest phonty	interrupt)			
	•						
	•						
	001 = Interru	pt is priority 1 pt source is dis	abled				
bit 11	Unimplemen	ted: Read as '	0'				
bit 10-8	U2RXIP<2:0>	: UART2 Rece	eiver Interrupt F	Priority bits			
	111 = Interru	pt is priority 7 (highest priority	interrupt)			
	•		0 1 3	1 /			
	•						
	• 001 = Interru	pt is priority 1					
	000 = Interru	pt source is dis	abled				
bit 7	Unimplemen	ted: Read as '	0'				
bit 6-4	INT2IP<2:0>:	External Interi	rupt 2 Priority b	oits			
	111 = Interru	pt is priority 7 (highest priority	interrupt)			
	•						
	•						
	001 = Interru	pt is priority 1					
	000 = Interru	pt source is dis	abled				
bit 3	Unimplemen	ted: Read as '	0'				
bit 2-0	T5IP<2:0>: ⊺	imer5 Interrupt	Priority bits				
	111 = Interru	pt is priority 7 (highest priority	interrupt)			
	•						
	•						
	001 = Interru	pt is priority 1	ablod				
			avieu				

REGISTER 7-24: IPC7: INTERRUPT PRIORITY CONTROL REGISTER 7

10.0 I/O PORTS

Note:	This data sheet summarizes the features of								
	this group of PIC24F devices. It is not								
	intended to be a comprehensive reference								
	source. For more information, refer to the								
	"PIC24F Family Reference Manual",								
	Section 12. "I/O Ports with Peripheral								
	Pin Select (PPS)" (DS39711).								

All of the device pins (except VDD, VSS, MCLR and OSCI/CLKI) are shared between the peripherals and the parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity.

10.1 Parallel I/O (PIO) Ports

A parallel I/O port that shares a pin with a peripheral is, in general, subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. The logic also prevents "loop through", in which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 10-1 shows how ports are shared with other peripherals and the associated I/O pin to which they are connected. When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin may be read, but the output driver for the parallel port bit will be disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin may be driven by a port.

All port pins have three registers directly associated with their operation as digital I/O. The Data Direction register (TRIS) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the Output Latch register (LAT), read the latch. Writes to the latch, write the latch. Reads from the port (PORT), read the port pins, while writes to the port pins, write the latch.

Any bit and its associated data and control registers that are not valid for a particular device will be disabled. That means the corresponding LAT and TRIS registers and the port pin will read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is regarded as a dedicated port because there is no other competing source of outputs.

FIGURE 10-1: BLOCK DIAGRAM OF A TYPICAL SHARED PORT STRUCTURE

REGISTER 13-2: ICxCON2: INPUT CAPTURE x CONTROL REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
	_	_	_	_	_	_	IC32
bit 15							bit 8
R/W-0	R/W-0, HS	U-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-1
ICTRIG	TRIGSTAT	—	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0
bit 7							bit 0
Legend:		HS = Hardwa	re Settable bit				
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
			. 1				
bit 15-9	Unimplement	ted: Read as ')' 				
bit 8	IC32: Cascad	e Iwo IC Modu	iles Enable bit	(32-bit operation	0N)	aat in hath mad	
	1 = 100 and 100 m	ions independe	ntly as a 16-hi	z-bil module (li t module	lis bit must be	set in both mot	ules)
bit 7		Frigger/Sync Se	elect bit	lineaalo			
Sit 1	1 = Trigger IC	Cx from source	designated by	SYNCSELx bit	ts		
	0 = Synchron	ize ICx with so	urce designate	d by SYNCSE	Lx bits		
bit 6	TRIGSTAT: Ti	mer Trigger Sta	atus bit				
	1 = Timer sou	urce has been t	triggered and is	s running (set ir	n hardware, ca	n be set in soft	ware)
	0 = Timer sou	urce has not be	en triggered a	nd is being held	d clear		
bit 5	Unimplement	ted: Read as ')'				
bit 4-0	SYNCSEL<4:	0>: Trigger/Sy	nchronization S	Source Selectio	on bits		
	111111 = Rese	erved					
	11100 = Inpu	t Capture 6					
	11100 = CTM	1U ⁽¹⁾					
	11011 = A/D ⁽	1)					
	11010 = Com	parator $3^{(1)}$					
	11001 = Com	$parator 2^{(1)}$					
	10111 = Inpu	t Capture 4					
	10110 = Inpu	t Capture 3					
	10101 = Inpu	t Capture 2					
	10100 = Inpu	t Capture 1					
	10011 = Inpu	t Capture 8					
	1000x = rese	rved					
	01111 = Time	er5					
	01110 = Time	er4					
	01101 = Time	er3					
	01100 = Time	er1					
	01010 = Inpu	t Capture 5					
	01001 = Outp	out Compare 9					
	01000 = Outp	out Compare 8					
	00111 = Outp	out Compare 7					
	00110 = Outp	out Compare 5					
	00100 = Outp	out Compare 4					
	00011 = Outp	out Compare 3					
	00010 = Outp	out Compare 2					
	00001 = Outp	out Compare 1		dula			
	00000 = NOt	synchronized to	o any other mo	uule			

Note 1: Use these inputs as trigger sources only and never as sync sources.

REGISTER 14-2: OCxCON2: OUTPUT COMPARE x CONTROL 2 REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0
FLTMD	FLTOUT	FLTTRIEN	OCINV	—	—	—	OC32
bit 15							bit 8

R/W-0	R/W-0, HS	R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0
OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0
bit 7							bit 0

R = Readable bit W = Writable bit U = Unimp	plemented bit, read as '0'
-n = Value at POR '1' = Bit is set '0' = Bit is	cleared x = Bit is unknown
bit 15 FLTMD: Fault Mode Select bit	
1 = Fault mode is maintained until the Fault source is	removed and the corresponding OCFLT0 bit is
cleared in software	removed and a new DWM pariad starts
bit 14 ELTOLIT: Equit Out bit	removed and a new Fivily period starts
UIL 14 FLIVUI. FAUL UIL UIL 1 - DWM output is driven high on a Fault	
1 - PWM output is driven high on a Fault 0 = PWM output is driven low on a Fault	
bit 13 FLTTRIEN: Fault Output State Select bit	
1 = Pin is forced to an output on a Fault condition	
0 = Pin I/O condition is unaffected by a Fault	
bit 12 OCINV: OCMP Invert bit	
1 = OCx output is inverted	
0 = OCx output is not inverted	
bit 11-9 Unimplemented: Read as '0'	
bit 8 OC32: Cascade Two OC Modules Enable bit (32-bit op	peration)
1 = Cascade module operation enabled	
0 = Cascade module operation disabled	
DIT / OCTRIG: OCx Trigger/Sync Select bit	11
\perp = Trigger UCX from source designated by SYNCSE 0 = Synchronize OCX with source designated by SYNC	CSELx bits
bit 6 TRIGSTAT: Timer Trigger Status bit	
1 = Timer source has been triggered and is running	
0 = Timer source has not been triggered and is being	held clear
bit 5 OCTRIS: OCx Output Pin Direction Select bit	
1 = OCx pin is tristated	
0 = Output Compare Peripheral x connected to the OC	Cx pin
Note 1: Never use an OC module as its own triager source, either	by selecting this mode or another equivalent
SYNCSEL setting.	

2: Use these inputs as trigger sources only and never as sync sources.

R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
BUSY	IRQM1	IRQM0	INCM1	INCM0	MODE16	MODE1	MODE0				
bit 15							bit 8				
DAMA	D /// 0		DANO	DAVA	DAMA	DAALO	DAMA				
		R/W-0	R/W-0	R/W-0	R/W-0						
WAITB1	VVAITB0	WAITM3	WAI I M2	WAI I M1	WATTMU	WAITEN	WAITE0				
							DIL U				
Legend:											
R = Readat	ole bit	W = Writable	bit	U = Unimplen	nented bit, read	1 as '0'					
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown				
bit 15 bit 14-13	 bit 15 BUSY: Busy bit (Master mode only) 1 = Port is busy (not useful when the processor stall is active) 0 = Port is not busy bit 14-13 IRQM<1:0>: Interrupt Request Mode bits 										
	11 = Interrup or on a 10 = No inter 01 = Interrup 00 = No inter	ot generated wh read or write o rrupt generated ot generated at rrupt generated	nen Read Buffe peration when I, processor sta the end of the I	er 3 is read or W PMA<1:0> = 1 all activated read/write cycl	/rite Buffer 3 is 1 (Addressable e	written (Buffere PSP mode or	ed PSP mode), Ily)				
bit 12-11	INCM<1:0>:	ncrement Mod	e bits								
	11 = PSP rea 10 = Decrem 01 = Increme 00 = No incre	ad and write bu nent ADDR<10 ent ADDR<10:(ement or decre	uffers auto-incr :0> by 1 every)> by 1 every r ement of addre	ement (Legacy read/write cycl read/write cycle ss	PSP mode on e	ly)					
bit 10	MODE16: 8/1	6-Bit Mode bit									
	1 = 16-bit mo 0 = 8-bit mod	de: Data regist le: Data registe	er is 16 bits; a er is 8 bits; a re	read or write to ad or write to th	the Data regist ne Data registe	ter invokes two r invokes one 8	8-bit transfers 8-bit transfer				
bit 9-8	MODE<1:0>:	Parallel Port M	lode Select bit	S							
	11 = Master 10 = Master 01 = Enhanc 00 = Legacy	Mode 1 (PMCS Mode 2 (PMCS ed PSP, contro Parallel Slave	S1, PMRD/PM S1, PMRD <u>, PM</u> ol signals (PMF Port, control s	WR, PMENB, F IWR, PMBE, Pl RD, PMWR, PN ignals (PMRD,	PMBE, PMA <x: MA<x:0> and F ICS1, PMD<7:0 PMWR, PMCS</x:0></x: 	0> and PMD<7 PMD<7:0>) 0> and PMA<1 1 and PMD<7:	':0>) :0>) 0>)				
bit 7-6	WAITB<1:0>:	Data Setup to	Read/Write W	ait State Config	guration bits ⁽¹⁾						
	11 = Data wa 10 = Data wa 01 = Data wa 00 = Data wa	ait of 4 TCY; mu ait of 3 TCY; mu ait of 2 TCY; mu ait of 1 TCY; mu	Itiplexed addre Itiplexed addre Itiplexed addre Itiplexed addre	ess phase of 4 ess phase of 3 ess phase of 2 ess phase of 1	TCY TCY TCY TCY						
bit 5-2	WAITM<3:0>	Read to Byte	Enable Strobe	Wait State Cor	nfiguration bits						
	1111 = Wait o	of additional 15	Тсү								
	 0001 = Wait o 0000 = No ad	of additional 1 ⁻ Iditional wait cy	Гсү vcles (operation	n forced into on	ie Tcy) ⁽²⁾						
bit 1-0	WAITE<1:0>:	Data Hold Afte	er Strobe Wait	State Configura	ation bits ⁽¹⁾						
	11 = Wait of 10 = Wait of 01 = Wait of	4 Tcy 3 Tcy 2 Tcy									
	00 = Wait of	1 ICY									
Note 1: \	VAITB and WAIT	E bits are igno	red whenever	WAITM<3:0> =	0000.						

REGISTER 18-2: PMMODE: PARALLEL MASTER PORT MODE REGISTER

2: A single cycle delay is required between consecutive read and/or write operations.

FIGURE 18-5: MASTER MODE, PARTIALLY MULTIPLEXED ADDRESSING (SEPARATE READ AND WRITE STROBES, TWO CHIP SELECTS)

PIC24F	PMA<13:8>	
	PMD<7:0> PMA<7:0>	
	PMCS1	
	PMCS2	Address Bus
	PMALL	Multiplexed
		Address Bus
		Control Lines
	1	

FIGURE 18-6: MASTER MODE, FULLY MULTIPLEXED ADDRESSING (SEPARATE READ AND WRITE STROBES, TWO CHIP SELECTS)

24.2 Measuring Time

Time measurements on the pulse width can be similarly performed using the A/D module's internal capacitor (CAD) and a precision resistor for current calibration. Figure 24-2 shows the external connections used for time measurements, and how the CTMU and A/D modules are related in this application. This example also shows both edge events coming from the external CTEDG pins, but other configurations using internal edge sources are possible. A detailed discussion on measuring capacitance and time with the CTMU module is provided in the "*PIC24F Family Reference Manual*".

24.3 Pulse Generation and Delay

The CTMU module can also generate an output pulse with edges that are not synchronous with the device's system clock. More specifically, it can generate a pulse with a programmable delay from an edge event input to the module. When the module is configured for pulse generation delay by setting the TGEN bit (CTMUCON<12>), the internal current source is connected to the B input of Comparator 2. A capacitor (CDELAY) is connected to the Comparator 2 pin C2INB, and the comparator voltage reference, CVREF, is connected to C2INA. CVREF is then configured for a specific trip point. The module begins to charge CDELAY when an edge event is detected. When CDELAY charges above the CVREF trip point, a pulse is output on CTPLS. The length of the pulse delay is determined by the value of CDELAY and the CVREF trip point.

Figure 24-3 shows the external connections for pulse generation, as well as the relationship of the different analog modules required. While CTEDG1 is shown as the input pulse source, other options are available. A detailed discussion on pulse generation with the CTMU module is provided in the *"PIC24F Family Reference Manual"*.

FIGURE 24-2: TYPICAL CONNECTIONS AND INTERNAL CONFIGURATION FOR TIME MEASUREMENT

FIGURE 24-3: TYPICAL CONNECTIONS AND INTERNAL CONFIGURATION FOR PULSE DELAY GENERATION

25.3.1 WINDOWED OPERATION

The Watchdog Timer has an optional Fixed Window mode of operation. In this Windowed mode, CLRWDT instructions can only reset the WDT during the last 1/4 of the programmed WDT period. A CLRWDT instruction executed before that window causes a WDT Reset, similar to a WDT time-out.

Windowed WDT mode is enabled by programming the WINDIS Configuration bit (CW1<6>) to '0'.

25.3.2 CONTROL REGISTER

The WDT is enabled or disabled by the FWDTEN Configuration bit. When the FWDTEN Configuration bit is set, the WDT is always enabled.

The WDT can be optionally controlled in software when the FWDTEN Configuration bit has been programmed to '0'. The WDT is enabled in software by setting the SWDTEN control bit (RCON<5>). The SWDTEN control bit is cleared on any device Reset. The software WDT option allows the user to enable the WDT for critical code segments and disable the WDT during non-critical segments for maximum power savings.

25.4 Program Verification and Code Protection

PIC24FJ256GA110 family devices provide two complimentary methods to protect application code from overwrites and erasures. These also help to protect the device from inadvertent configuration changes during run time.

25.4.1 GENERAL SEGMENT PROTECTION

For all devices in the PIC24FJ256GA110 family, the on-chip program memory space is treated as a single block, known as the General Segment (GS). Code

protection for this block is controlled by one Configuration bit, GCP. This bit inhibits external reads and writes to the program memory space. It has no direct effect in normal execution mode.

Write protection is controlled by the GWRP bit in the Configuration Word. When GWRP is programmed to '0', internal write and erase operations to program memory are blocked.

TABLE 28-19: ADC MODULE SPECIFICATIONS

AC CH	ARACTERI	ACTERISTICSStandard Operating Conditions: 2.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					3.6V 35°C for Industrial 125°C for Extended
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions
	_		Device \$	Supply	_		
AD01	AVDD	Module VDD Supply	Greater of VDD – 0.3 or 2.0	_	Lesser of VDD + 0.3 or 3.6	V	
AD02	AVss	Module Vss Supply	Vss - 0.3		Vss + 0.3	V	
	•	1	Reference	e Inputs			1
AD05	VREFH	Reference Voltage High	AVss + 1.7	_	AVDD	V	
AD06	VREFL	Reference Voltage Low	AVss		AVDD – 1.7	V	
AD07	VREF	Absolute Reference Voltage	AVss – 0.3	_	AVDD + 0.3	V	
AD08	IVREF	Reference Voltage Input Current	_	—	1.25	mA	(Note 3)
AD09	ZVREF	Reference Input Impedance	_	10K		Ω	(Note 4)
		·	Analog	Input			·
AD10	VINH-VINL	Full-Scale Input Span	VREFL	_	VREFH	V	(Note 2)
AD11	VIN	Absolute Input Voltage	AVss - 0.3	_	AVDD + 0.3	V	
AD12	VINL	Absolute VINL Input Voltage	AVss – 0.3		AVDD/2	V	
AD17	Rin	Recommended Impedance of Analog Voltage Source	_		2.5K	Ω	10-bit
			ADC Ac	curacy			
AD20b	Nr	Resolution	—	10	—	bits	
AD21b	INL	Integral Nonlinearity	_	±1	<±2	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V
AD22b	DNL	Differential Nonlinearity	_	±0.5	<±1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V
AD23b	Gerr	Gain Error	—	±1	±3	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V
AD24b	EOFF	Offset Error	_	±1	±2	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V
AD25b	_	Monotonicity ⁽¹⁾	_	_	_		Guaranteed

Note 1: The ADC conversion result never decreases with an increase in the input voltage and has no missing codes.

2: Measurements taken with external VREF+ and VREF- are used as the ADC voltage reference.

3: External reference voltage applied to VREF+/- pins. IVREF is current during conversion at 3.3V, 25°C. Parameter is for design guidance only and is not tested.

4: Impedance during sampling is at 3.3V, 25°C. Parameter is for design guidance only and is not tested.

FIGURE 28-15: OUTPUT COMPARE TIMINGS

TABLE 28-28: OUTPUT COMPARE

Param. No.	Symbol	Characteristic	Min	Мах	Unit	Condition
OC11	TCCR	OC1 Output Rise Time		10	ns	—
			—	—	ns	—
OC10	TCCF	OC1 Output Fall Time	—	10	ns	—
			—	—	ns	—

FIGURE 28-16: PWM MODULE TIMING REQUIREMENTS

TABLE 28-29: PWM TIMING REQUIREMENTS

Param. No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Unit	Condition
OC15	Tfd	Fault Input to PWM I/O Change	_	_	25	ns	VDD = 3.0V, -40°C to +85°C
OC20	Тғн	Fault Input Pulse Width	50	_	_	ns	VDD = 3.0V, -40°C to +85°C

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

INDEX

Α	
A/D Converter	
Analog Input Model	233
Transfer Function	234
AC Characteristics	
A/D Specifications	286
Capacitive Loading Requirements on	
Output Pins	282
CLKO and I/O Requirements	285
Conversion Timing Requirements	287
External Clock Requirements	283
Internal RC Oscillator Accuracy	284
Internal RC Oscillator Specifications	284
Load Conditions and Requirements for	
Specifications	282
PLL Clock Specifications	284
Reset Specifications	285
Reset, Watchdog Timer, Oscillator Start-up	
Timer, Power-up Timer, Brown-out Reset	
Requirements	288
AC Specifications	289
Alternate Interrupt Vector Table (AIVT)	71
Assembler	
MPASM Assembler	266

В

Block Diagrams	
10-Bit High-Speed A/D Converter	226
8-Bit Multiplexed Address and Data Application .	210
Accessing Program Space Using Table	
Instructions	55
Addressable Parallel Slave Port Example	208
Addressing for Table Registers	57
CALL Stack Frame	53
Comparator Voltage Reference	239
CPU Programmer's Model	31
CRC Module	221
CRC Shift Engine	222
CTMU Current Source Calibration Circuit	281
I ² C Module	186
Individual Comparator Configurations	236
Input Capture	163
LCD Control (Byte Mode)	210
Legacy Parallel Slave Port Example	208
Master Mode, Demultiplexed Addressing	
(Separate Read and Write Strobes)	208
Master Mode, Fully Multiplexed Addressing	
(Separate Read and Write Strobes)	209
Master Mode, Partially Multiplexed Addressing	
(Separate Read and Write Strobes)	209
Multiplexed Addressing Application	209
On-Chip Regulator Connections	251
Output Compare (16-Bit Mode)	168
Output Compare (Double-Buffered,	
16-Bit PWM Mode)	170
Parallel EEPROM (15-Bit Address, 8-Bit Data)	210
Parallel EEPROM (15-Bit Address,16-Bit Data) .	210
Partially Multiplexed Addressing Application	210
PCI24FJ256GA110 Family (General)	14
PIC24F CPU Core	30
PMP Module Overview	201
Program Space Address Generation	54
PSV Operation	56

Reset System	65
RTCC	211
Shared I/O Port Structure	127
SPI Master, Frame Master Connection	183
SPI Master, Frame Slave Connection	183
SPI Master/Slave Connection	
(Enhanced Buffer Modes)	182
SPI Master/Slave Connection (Standard Mode)	182
SPI Slave, Frame Master Connection	183
SPI Slave, Frame Slave Connection	183
SPIx Module (Enhanced Mode)	177
SPIx Module (Standard Mode)	176
System Clock	115
Timer1	155
Timer2 and Timer4 (16-Bit Synchronous)	159
Timer2/3 and Timer4/5 (32-Bit)	158
Timer3 and Timer5 (16-Bit Asynchronous)	159
Triple Comparator Module	235
Typical CTMU Connections and Internal	
Configuration for Capacitance Measurement	241
Typical CTMU Connections and Internal	
Configuration for Pulse Delay Generation	242
Typical CTMU Connections and Internal	
Configuration for Time Measurement	242
UART (Simplified)	193
Watchdog Timer (WDT)	253

С

C Compilers	
MPLAB C18	266
Charge Time Measurement Unit. See CTMU.	
Clock Frequency	125
Clock Switching	125
Code Examples	
Basic Sequence for Clock Switching	121
Configuring UART1 Input and Output Functions	134
Erasing a Program Memory Block, Assembly	60
Erasing a Program Memory Block, C Language	61
I/O Port Read/Write	128
Initiating a Programming Sequence, Assembly	62
Initiating a Programming Sequence, C Language .	62
Loading the Write Buffers, Assembly	61
Loading the Write Buffers, C Language	62
Setting the RTCWREN Bit	212
Single-Word Flash Programming, Assembly	63
Single-Word Flash Programming, C Language	63
Code Protection	253
Code Segment	254
Configuration Options	254
Configuration Registers	254
General Segment	253
Comparator Voltage Reference Module	239
Configuring	239
Configuration Bits	245
CPU	
ALU	34
Control Registers	32
Core Registers	31
CRC	
Operation in Power Save Modes	222
Setup Example	221
User Interface	222

CTMU

241

D

Data Memory	
Address Space	
Memory Map	
Near Data Space	
SFR Space	
Software Stack	53
Space Organization, Alignment	38
DC Characteristics	
I/O Pin Input Specifications	
I/O Pin Output Specifications	
Idle Current	
Internal Voltage Regulator Specifications	
Operating Current	273
Power-Down Current	
Program Memory	
Temperature and Voltage Specifications	
Development Support	
Device Features (Summary)	
100-Pin	13
64-Pin	11
80-Pin	12
Device Overview	
Core Features	9
Family Member Details	10
Other Special Features	10

Е

Electrical Characteristics	
Absolute Maximum Ratings	
Thermal Operating Conditions	
V/F Graph	
ENVREG Pin	
Equations	
A/D Conversion Clock Period	
Calculating the PWM Period	170
Calculation for Maximum PWM Resolution	171
Computing Baud Rate Reload Value	187
Relationship Between Device and	
SPI Clock Speed	184
RTCC Calibration	
UART Baud Rate with BRGH = 0	194
UART Baud Rate with BRGH = 1	194
Errata	8

F

Flash Configuration Words Flash Program Memory	
and Table Instructions	57
Enhanced ICSP Operation	58
JTAG Operation	58
Operations	58
Programming Algorithm	60
RTSP Operation	58
Single-Word Programming	63

L

1			
I/O Ports	. 127		
Analog Port Configuration	. 128		
Configuring Analog Pins	. 128		
Input Change Notification	. 129		
Open-Drain Configuration	. 128		
Parallel (PIO)	. 127		
Peripheral Pin Select	. 129		
Pull-ups and Pull-Downs	. 129		
l ² C			
Clock Rates	. 187		
Communicating as Master in Single Master			
Environment	185		
Peripheral Remanning Options	185		
Reserved Addresses	187		
Setting Baud Rate When Operating as	. 107		
Bue Master	107		
Slave Address Masking	107		
Slave Address Masking	. 107		
Input Capture	404		
32-Bit Cascaded Mode	. 164		
	. 164		
Synchronous and Trigger Modes	. 163		
Input Capture with Dedicated Timer	. 163		
Instruction Set			
Overview	. 259		
Summary	. 257		
Inter-Integrated Circuit (I ² C)	. 185		
Inter-Integrated Circuit. See I ² C.			
Internet Address	. 326		
Interrupt Controller	71		
Interrupt Vector Table (IVT)	71		
Interrupts			
Implemented Vectors	73		
Reset Sequence	71		
Setup and Service Procedures	. 113		
Trap Vectors			
Vector Table	72		
J			
JTAG Interface	. 255		
IVI			
Microchip Internet Web Site	. 326		
MPLAB ASM30 Assembler, Linker, Librarian	. 266		
MPLAB Integrated Development Environment			
Software	. 265		
MPLAB PM3 Device Programmer	. 268		
MPLAB REAL ICE In-Circuit Emulator System	. 267		
MPLINK Object Linker/MPLIB Object Librarian	. 266		
N			
Near Data Space			
0			
0			

Oscillator Configuration	
Bit Values for Clock Selection	116
Clock Switching	120
Sequence	121
CPU Clocking Scheme	116
Initial Configuration on POR	116
Reference Clock Output	122

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Microchip Trader Architecture — Flash Memory Fa Program Memory Product Group Pin Count — Tape and Reel Fl Temperature Rar Package — Pattern —	PIC 24 FJ 256 GA1 10 T - 1 / PT - XXX markamily y Size (KB) ag (if applicable)	 Examples: a) PIC24FJ128GA106-I/PT: General purpose PIC24F, 128-Kbyte program memory, 64-pin, Industrial temp.,TQFP package. b) PIC24FJ256GA110-I/PT: General purpose PIC24F, 256-Kbyte program memory, 100-pin, Industrial temp.,TQFP package.
Architecture	24 = 16-bit modified Harvard without DSP	
Flash Memory Family	FJ = Flash program memory	
Product Group	GA1 = General purpose microcontrollers	
Pin Count	06 = 64-pin 08 = 80-pin 10 = 100-pin	
Temperature Range	I = -40° C to $+85^{\circ}$ C (Industrial)	
Package	PF = 100-lead (14x14x1mm) TQFP (Thin Quad Flatpack) PT = 64-lead, 80-lead, 100-lead (12x12x1 mm) TQFP (Thin Quad Flatpack) MR = 64-lead (9x9x0.9 mm) QFN (Quad Flatpack No Leads)	
Pattern	Three-digit QTP, SQTP, Code or Special Requirements (blank otherwise) ES = Engineering Sample	