

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	85
Program Memory Size	256KB (85.5K x 24)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj256ga110t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Pin Number					
Function	64-Pin TQFP, QFN	80-Pin TQFP	100-Pin TQFP	I/O	Input Buffer	Description
CTED1	28	34	42	I	ANA	CTMU External Edge Input 1.
CTED2	27	33	41	I	ANA	CTMU External Edge Input 2.
CTPLS	29	35	43	0		CTMU Pulse Output.
CVREF	23	29	34	0	_	Comparator Voltage Reference Output.
ENVREG	57	71	86	I	ST	Voltage Regulator Enable.
INT0	35	45	55	I	ST	External Interrupt Input.
MCLR	7	9	13	I	ST	Master Clear (device Reset) Input. This line is brought low to cause a Reset.
OSCI	39	49	63	I	ANA	Main Oscillator Input Connection.
OSCO	40	50	64	0	ANA	Main Oscillator Output Connection.
PGEC1	15	19	24	I/O	ST	In-Circuit Debugger/Emulator/ICSP™ Programming Clock.
PGED1	16	20	25	I/O	ST	In-Circuit Debugger/Emulator/ICSP Programming Data.
PGEC2	17	21	26	I/O	ST	In-Circuit Debugger/Emulator/ICSP Programming Clock.
PGED2	18	22	27	I/O	ST	In-Circuit Debugger/Emulator/ICSP Programming Data.
PGEC3	11	15	20	I/O	ST	In-Circuit Debugger/Emulator/ICSP Programming Clock.
PGED3	12	16	21	I/O	ST	In-Circuit Debugger/Emulator/ICSP Programming Data.
PMA0	30	36	44	I/O	ST	Parallel Master Port Address Bit 0 Input (Buffered Slave modes) and Output (Master modes).
PMA1	29	35	43	I/O	ST	Parallel Master Port Address Bit 1 Input (Buffered Slave modes) and Output (Master modes).
PMA2	8	10	14	0		Parallel Master Port Address (Demultiplexed Master
PMA3	6	8	12	0		modes).
PMA4	5	7	11	0	_	
PMA5	4	6	10	0		
PMA6	16	24	29	0		
PMA7	22	23	28	0		
PMA8	32	40	50	0		
PMA9	31	39	49	0	_	
PMA10	28	34	42	0	—	
PMA11	27	33	41	0	_	
PMA12	24	30	35	0	_	
PMA13	23	29	34	0	_	
PMCS1	45	57	71	I/O	ST/TTL	Parallel Master Port Chip Select 1 Strobe/Address Bit 15.
PMCS2	44	56	70	0	ST	Parallel Master Port Chip Select 2 Strobe/Address Bit 14.
PMBE	51	63	78	0	_	Parallel Master Port Byte Enable Strobe.
PMD0	60	76	93	I/O	ST/TTL	Parallel Master Port Data (Demultiplexed Master mode) or
PMD1	61	77	94	I/O	ST/TTL	Address/Data (Multiplexed Master modes).
PMD2	62	78	98	I/O	ST/TTL	1
PMD3	63	79	99	I/O	ST/TTL	1
PMD4	64	80	100	I/O	ST/TTL	1
PMD5	1	1	3	I/O	ST/TTL	
PMD6	2	2	4	I/O	ST/TTL	
PMD7	3	3	5	I/O	ST/TTL	
PMRD	53	67	82	0	_	Parallel Master Port Read Strobe.
PMWR	52	66	81	0	_	Parallel Master Port Write Strobe.
Legend:	TTL = TTL in			-	ST = 5	Schmitt Trigger input buffer
	ANA = Analog		utput		I ² C™	= I ² C/SMBus input buffer

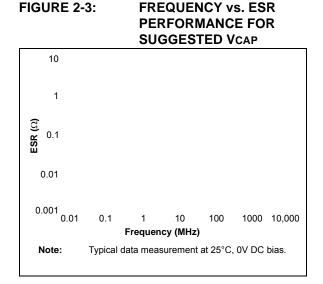
TABLE 1-4: PIC24FJ256GA110 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

2.4 **Voltage Regulator Pins** (ENVREG/DISVREG and VCAP/VDDCORE)

Note:	This section applies only to PIC24F J
	devices with an on-chip voltage regulator.

The on-chip voltage regulator enable/disable pin (ENVREG or DISVREG, depending on the device family) must always be connected directly to either a supply voltage or to ground. The particular connection is determined by whether or not the regulator is to be used:

- For ENVREG, tie to VDD to enable the regulator, or to ground to disable the regulator
- · For DISVREG, tie to ground to enable the regulator or to VDD to disable the regulator


Refer to Section 25.2 "On-Chip Voltage Regulator" for details on connecting and using the on-chip regulator.

When the regulator is enabled, a low-ESR (< 5Ω) capacitor is required on the VCAP/VDDCORE pin to stabilize the voltage regulator output voltage. The VCAP/VDDCORE pin must not be connected to VDD and must use a capacitor of 10 µF connected to ground. The type can be ceramic or tantalum. Suitable examples of capacitors are shown in Table 2-1. Capacitors with equivalent specification can be used.

Designers may use Figure 2-3 to evaluate ESR equivalence of candidate devices.

The placement of this capacitor should be close to VCAP/VDDCORE. It is recommended that the trace length not exceed 0.25 inch (6 mm). Refer to Section 28.0 "Electrical Characteristics" for additional information.

When the regulator is disabled, the VCAP/VDDCORE pin must be tied to a voltage supply at the VDDCORE level. Refer to Section 28.0 "Electrical Characteristics" for information on VDD and VDDCORE.

TABLE 2-1:	SUITABLE CAPACITOR EQUIVALENTS								
Make	Part #	Nominal Capacitance	Base Tolerance	Rated Voltage	Temp. Range				
TDK	C3216X7R1C106K	10 µF	±10%	16V	-55 to 125°C				
TDK	C3216X5R1C106K	10 µF	±10%	16V	-55 to 85°C				
Panasonic	ECJ-3YX1C106K	10 µF	±10%	16V	-55 to 125°C				
Panasonic	ECJ-4YB1C106K	10 µF	±10%	16V	-55 to 85°C				
Murata	GRM32DR71C106KA01L	10 µF	±10%	16V	-55 to 125°C				
Murata	GRM31CR61C106KC31L	10 µF	±10%	16V	-55 to 85°C				

4.3.3 READING DATA FROM PROGRAM MEMORY USING PROGRAM SPACE VISIBILITY

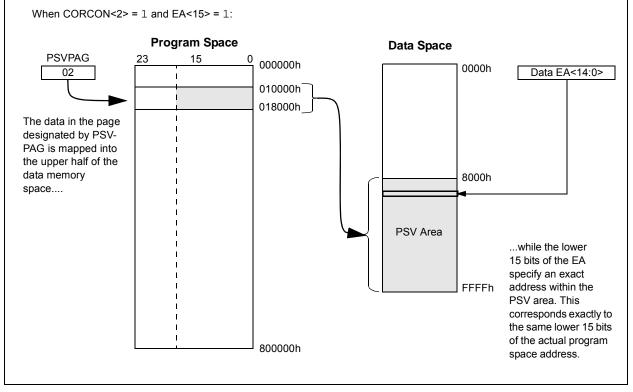
The upper 32 Kbytes of data space may optionally be mapped into any 16K word page of the program space. This provides transparent access of stored constant data from the data space without the need to use special instructions (i.e., TBLRDL/H).

Program space access through the data space occurs if the Most Significant bit (MSb) of the data space EA is '1' and program space visibility is enabled by setting the PSV bit in the CPU Control (CORCON<2>) register. The location of the program memory space to be mapped into the data space is determined by the Program Space Visibility Page Address (PSVPAG) register. This 8-bit register defines any one of 256 possible pages of 16K words in program space. In effect, PSVPAG functions as the upper 8 bits of the program memory address, with the 15 bits of the EA functioning as the lower bits. Note that by incrementing the PC by 2 for each program memory word, the lower 15 bits of data space addresses directly map to the lower 15 bits in the corresponding program space addresses.

Data reads to this area add an additional cycle to the instruction being executed, since two program memory fetches are required.

Although each data space address, 8000h and higher, maps directly into a corresponding program memory address (see Figure 4-7), only the lower 16 bits of the 24-bit program word are used to contain the data. The upper 8 bits of any program space locations used as data should be programmed with '1111 1111' or '0000 0000' to force a NOP. This prevents possible issues should the area of code ever be accidentally executed.

Note:	PSV access is temporarily disabled during
	table reads/writes.


For operations that use PSV and are executed outside a REPEAT loop, the MOV and MOV.D instructions will require one instruction cycle in addition to the specified execution time. All other instructions will require two instruction cycles in addition to the specified execution time.

For operations that use PSV which are executed inside a REPEAT loop, there will be some instances that require two instruction cycles in addition to the specified execution time of the instruction:

- · Execution in the first iteration
- · Execution in the last iteration
- Execution prior to exiting the loop due to an interrupt
- Execution upon re-entering the loop after an interrupt is serviced

Any other iteration of the REPEAT loop will allow the instruction accessing data, using PSV, to execute in a single cycle.

FIGURE 4-7: PROGRAM SPACE VISIBILITY OPERATION

R/SO-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	U-0	U-0	U-0	U-0	U-0	
WR	WREN	WRERR	—	_				
bit 15							bit	
U-0	R/W-0 ⁽¹⁾	U-0	U-0	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	
—	ERASE	—	_	NVMOP3 ⁽²⁾	NVMOP2 ⁽²⁾	NVMOP1 ⁽²⁾	NVMOP0(2	
bit 7							bit	
Legend:		SO = Set Only	y bit					
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown	
bit 15	cleared b	a Flash memor by hardware one or erase opera	ce the operation	n is complete.	n. The operatio	n is self-timed	and the bit	
bit 14		lash program/e						
bit 13	 0 = Inhibit Flash program/erase operations WRERR: Write Sequence Error Flag bit⁽¹⁾ 1 = An improper program or erase sequence attempt or termination has occurred (bit is se automatically on any set attempt of the WR bit) 0 = The program or erase operation completed normally 							
bit 12-7	Unimplemen	ted: Read as ')'					
bit 6	ERASE: Eras	se/Program Ena	able bit ⁽¹⁾					
		the erase opera the program op					nd	
bit 5-4	Unimplemen	ted: Read as ')'					
bit 3-0		NVM Operati						
	0011 = Memo 0010 = Memo	ory bulk erase o ory word progra ory page erase ory row progran	m operation (E operation (ER	ERASE = 0) or ASE = 1) or no	no operation (E operation (ER/	ERASE = 1) ASE = 0)		
2: Al	l other combina	nly be reset on I itions of NVMO	P<3:0> are un	•	ing specificatio	-		

REGISTER 5-1: NVMCON: FLASH MEMORY CONTROL REGISTER

3: Available in ICSP[™] mode only. Refer to the device programming specification.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
—	—	PMPIF	OC8IF	OC7IF	OC6IF	OC5IF	IC6IF					
bit 15							bit 8					
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0					
IC5IF	IC4IF	IC3IF		_		SPI2IF	SPF2IF					
bit 7							bit (
Legend:												
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'						
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown					
bit 15-14	Unimplemen	ted: Read as '	0'									
bit 13	PMPIF: Para	llel Master Port	Interrupt Flag	Status bit								
		request has oc request has no										
bit 12		•		ipt Flag Status I	oit							
	•	request has oc		ipt ing change								
	0 = Interrupt	request has no	toccurred									
bit 11	OC7IF: Output Compare Channel 7 Interrupt Flag Status bit											
	1 = Interrupt request has occurred											
oit 10	0 = Interrupt request has not occurred											
	OC6IF: Output Compare Channel 6 Interrupt Flag Status bit 1 = Interrupt request has occurred											
		request has no										
bit 9	OC5IF: Output Compare Channel 5 Interrupt Flag Status bit											
	1 = Interrupt request has occurred											
L:1 0		0 = Interrupt request has not occurred										
bit 8	IC6IF: Input Capture Channel 6 Interrupt Flag Status bit 1 = Interrupt request has occurred											
	0 = Interrupt request has not occurred											
bit 7	IC5IF: Input (Capture Chann	el 5 Interrupt F	lag Status bit								
	1 = Interrupt request has occurred											
	•	request has no										
bit 6	IC4IF: Input Capture Channel 4 Interrupt Flag Status bit											
	 Interrupt request has occurred Interrupt request has not occurred 											
bit 5		Capture Chann		lag Status bit								
	1 = Interrupt request has occurred											
	-	request has no										
oit 4-2	-	ted: Read as '										
bit 1		Event Interrup	-	It								
		request has oc request has no										
bit 0	-	2 Fault Interrup		it								
		request has oc	-									
		request has no										

REGISTER 7-7: IFS2: INTERRUPT FLAG STATUS REGISTER 2

REGISTER 7-13: IEC2: INTERRUPT ENABLE CONTROL REGISTER 2

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
_	—	PMPIE	OC8IE	OC7IE	OC6IE	OC5IE	IC6IE				
bit 15				•			bit 8				
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0				
IC5IE	IC4IE	IC3IE	0-0	0-0	0-0	SPI2IE	SPF2IE				
bit 7	IC4IE	ICJIE			_	JF121L	bit (
Legend:											
R = Readable		W = Writable	bit	•	nented bit, read	d as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown				
bit 15-14	Unimpleme	ented: Read as ')'								
bit 13	PMPIE: Par	allel Master Port	Interrupt Enal	ole bit							
		t request enabled t request not ena									
bit 12	OC8IE: Out	put Compare Ch	annel 8 Interru	upt Enable bit							
	OC8IE: Output Compare Channel 8 Interrupt Enable bit 1 = Interrupt request enabled										
	0 = Interrupt request not enabled										
bit 11	OC7IE: Output Compare Channel 7 Interrupt Enable bit										
		t request enabled t request not ena									
bit 10	OC6IE: Output Compare Channel 6 Interrupt Enable bit										
		t request enabled t request not ena									
bit 9	OC5IE: Out	put Compare Ch	annel 5 Interru	upt Enable bit							
	•	t request enabled t request not ena									
bit 8	IC6IE: Input Capture Channel 6 Interrupt Enable bit										
		t request enable t request not ena									
bit 7	IC5IE: Input Capture Channel 5 Interrupt Enable bit										
		t request enabled t request not ena									
bit 6	IC4IE: Input Capture Channel 4 Interrupt Enable bit										
		t request enable t request not ena									
bit 5	IC3IE: Input Capture Channel 3 Interrupt Enable bit										
	1 = Interrupt request enabled										
	0 = Interrupt	t request not ena	bled								
bit 4-2	Unimpleme	nted: Read as ')'								
bit 1		2 Event Interrup									
		t request enable									
	-	t request not ena									
bit 0	SPF2IE: SP	t request not ena l2 Fault Interrup t request enable	Enable bit								

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0						
_	CNIP2	CNIP1	CNIP0		CMIP2	CMIP1	CMIP0						
bit 15							bit 8						
	- - - - - - - - - -				5 444 4	5444.6	5444.0						
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0						
	MI2C1IP2	MI2C1IP1	MI2C1IP0		SI2C1IP2	SI2C1IP1	SI2C1IP0						
bit 7							bit (
Legend:													
R = Readab	le bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'							
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown						
bit 15	Unimplemen	ted: Read as '	0'										
bit 14-12	-			rupt Priority bit	S								
	CNIP<2:0>: Input Change Notification Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)												
	•	•											
	• 001 = Interrupt is priority 1												
		pt source is dis	abled										
bit 11	Unimplemen	ted: Read as '	0'										
bit 10-8	CMIP<2:0>: Comparator Interrupt Priority bits												
	111 = Interrupt is priority 7 (highest priority interrupt)												
	•												
	•												
	001 = Interrupt is priority 1 000 = Interrupt source is disabled												
bit 7		ted: Read as '											
bit 6-4	MI2C1IP<2:0>: Master I2C1 Event Interrupt Priority bits												
	111 = Interrupt is priority 7 (highest priority interrupt)												
	•												
	•												
	• 001 = Interrupt is priority 1												
		pt source is dis	abled										
bit 3	Unimplemen	ted: Read as '	0'										
bit 2-0	SI2C1IP<2:0	>: Slave I2C1 E	Event Interrupt	Priority bits									
	111 = Interru	111 = Interrupt is priority 7 (highest priority interrupt)											
	•												
	•												
	•												
	001 = Interru	pt is priority 1											

9.0 POWER-SAVING FEATURES

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "PIC24F Family Reference Manual", Section 10. "Power-Saving Features" (DS39698).

The PIC24FJ256GA110 family of devices provides the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of circuits being clocked constitutes lower consumed power. All PIC24F devices manage power consumption in four different ways:

- Clock frequency
- Instruction-based Sleep and Idle modes
- Software controlled Doze mode
- · Selective peripheral control in software

Combinations of these methods can be used to selectively tailor an application's power consumption, while still maintaining critical application features, such as timing-sensitive communications.

9.1 Clock Frequency and Clock Switching

PIC24F devices allow for a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or high-precision oscillators by simply changing the NOSC bits. The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in **Section 8.0** "Oscillator Configuration".

9.2 Instruction-Based Power-Saving Modes

PIC24F devices have two special power-saving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution; Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. The assembly syntax of the PWRSAV instruction is shown in Example 9-1. Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to "wake-up".

9.2.1 SLEEP MODE

Sleep mode has these features:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption will be reduced to a minimum provided that no I/O pin is sourcing current.
- The Fail-Safe Clock Monitor does not operate during Sleep mode since the system clock source is disabled.
- The LPRC clock will continue to run in Sleep mode if the WDT is enabled.
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode.
- Some device features or peripherals may continue to operate in Sleep mode. This includes items such as the input change notification on the I/O ports, or peripherals that use an external clock input. Any peripheral that requires the system clock source for its operation will be disabled in Sleep mode.

Additional power reductions can be achieved by disabling the on-chip voltage regulator whenever Sleep mode is invoked. This is done by clearing the PMSLP bit (RCON<8>). Disabling the regulator adds an additional delay of about 190 μ s to the device wake-up time. It is recommended that applications not using the voltage regulator leave the PMSLP bit set. For additional details on the regulator and Sleep mode, see **Section 25.2.5 "Voltage Regulator Standby Mode"**.

The device will wake-up from Sleep mode on any of these events:

- On any interrupt source that is individually enabled
- · On any form of device Reset
- On a WDT time-out

On wake-up from Sleep, the processor will restart with the same clock source that was active when Sleep mode was entered.

EXAMPLE 9-1: PWRSAV INSTRUCTION SYNTAX

PWRSAV	#0	;]	Put	the	device	into	SLEEP	mode
PWRSAV	#1	;]	Put	the	device	into	IDLE r	mode

NOTES:

14.0 OUTPUT COMPARE WITH DEDICATED TIMER

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"PIC24F Family Reference Manual"*, Section 35. "Output Compare with Dedicated Timer" (DS39723)

Devices in the PIC24FJ256GA110 family all feature 9 independent enhanced output compare modules. Each of these modules offers a wide range of configuration and operating options for generating pulse trains on internal device events, and can produce Pulse-Width Modulated (PWM) waveforms for driving power applications.

Key features of the enhanced output compare module include:

- Hardware-configurable for 32-bit operation in all modes by cascading two adjacent modules
- Synchronous and Trigger modes of output compare operation, with up to 30 user-selectable trigger/sync sources available
- Two separate Period registers (a main register, OCxR, and a secondary register, OCxRS) for greater flexibility in generating pulses of varying widths
- Configurable for single pulse or continuous pulse generation on an output event, or continuous PWM waveform generation
- Up to 6 clock sources available for each module, driving a separate internal 16-bit counter

14.1 General Operating Modes

14.1.1 SYNCHRONOUS AND TRIGGER MODES

By default, the enhanced output compare module operates in a free-running mode. The internal, 16-bit counter, OCxTMR, counts up continuously, wrapping around from FFFFh to 0000h on each overflow, with its period synchronized to the selected external clock source. Compare or PWM events are generated each time a match between the internal counter and one of the Period registers occurs. In Synchronous mode, the module begins performing its compare or PWM operation as soon as its selected clock source is enabled. Whenever an event occurs on the selected sync source, the module's internal counter is reset. In Trigger mode, the module waits for a sync event from another internal module to occur before allowing the counter to run.

Free-running mode is selected by default, or any time that the SYNCSEL bits (OCxCON2<4:0>) are set to '00000'. Synchronous or Trigger modes are selected any time the SYNCSEL bits are set to any value except '00000'. The OCTRIG bit (OCxCON2<7>) selects either Synchronous or Trigger mode; setting the bit selects Trigger mode operation. In both modes, the SYNCSEL bits determine the sync/trigger source.

14.1.2 CASCADED (32-BIT) MODE

By default, each module operates independently with its own set of 16-Bit Timer and Duty Cycle registers. To increase resolution, adjacent even and odd modules can be configured to function as a single 32-bit module. (For example, modules 1 and 2 are paired, as are modules 3 and 4, and so on.) The odd-numbered module (OCx) provides the Least Significant 16 bits of the 32-bit register pairs, and the even module (OCy) provides the Most Significant 16 bits. Wraparounds of the OCx registers cause an increment of their corresponding OCy registers.

Cascaded operation is configured in hardware by setting the OC32 bits (OCxCON2<8>) for both modules.

bits

EQUATION 14-2: CALCULATION FOR MAXIMUM PWM RESOLUTION⁽¹⁾

Maximum PWM Resolution (bits) = $\frac{\log_{10} \left(\frac{FCY}{FPWM \bullet (Timer Prescale Value)} \right)}{1 + \frac{FCY}{FPWM \bullet (Timer Prescale Value)}}$

 $\log_{10}(2)$

Note 1: Based on FCY = FOSC/2, Doze mode and PLL are disabled.

EXAMPLE 14-1: PWM PERIOD AND DUTY CYCLE CALCULATIONS⁽¹⁾

1.	Find the Timer Period register value for a desired PWM frequency of 52.08 kHz, where FOSC = 8 MHz with PLL
	(32 MHz device clock rate) and a Timer2 prescaler setting of 1:1.
	TCY = 2 * TOSC = 62.5 ns
	PWM Period = $1/PWM$ Frequency = $1/52.08$ kHz = $19.2 \mu s$
	PWM Period = $(PR2 + 1) \bullet TCY \bullet (Timer2 Prescale Value)$
	19.2 μ s = (PR2 + 1) • 62.5 ns • 1
	PR2 = 306
2.	Find the maximum resolution of the duty cycle that can be used with a 52.08 kHz frequency and a 32 MHz device clock rate:
	PWM Resolution = $\log_{10}(FCY/FPWM)/\log_{10}2)$ bits
	$= (\log_{10}(16 \text{ MHz}/52.08 \text{ kHz})/\log_{10}2) \text{ bits}$
	= 8.3 bits
N	ote 1: Based on Tcy = 2 * Tosc, Doze mode and PLL are disabled.

TABLE 14-1: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 4 MIPS (Fcy = 4 MHz)⁽¹⁾

PWM Frequency	7.6 Hz	61 Hz	122 Hz	977 Hz	3.9 kHz	31.3 kHz	125 kHz
Timer Prescaler Ratio	8	1	1	1	1	1	1
Period Register Value	FFFFh	FFFFh	7FFFh	0FFFh	03FFh	007Fh	001Fh
Resolution (bits)	16	16	15	12	10	7	5

Note 1: Based on Fcy = Fosc/2, Doze mode and PLL are disabled.

TABLE 14-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 16 MIPS (Fcy = 16 MHz)⁽¹⁾

PWM Frequency	30.5 Hz	244 Hz	488 Hz	3.9 kHz	15.6 kHz	125 kHz	500 kHz
Timer Prescaler Ratio	8	1	1	1	1	1	1
Period Register Value	FFFFh	FFFFh	7FFFh	0FFFh	03FFh	007Fh	001Fh
Resolution (bits)	16	16	15	12	10	7	5

Note 1: Based on FCY = FOSC/2, Doze mode and PLL are disabled.

16.0 INTER-INTEGRATED CIRCUIT (I²C[™])

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"PIC24F Family Reference Manual"*, Section 24. "Inter-Integrated Circuit (I²CTM)" (DS39702).

The Inter-Integrated Circuit (I²C) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, display drivers, A/D Converters, etc.

The I²C module supports these features:

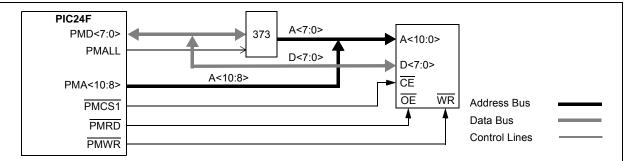
- · Independent master and slave logic
- 7-bit and 10-bit device addresses
- General call address, as defined in the I²C protocol
- Clock stretching to provide delays for the processor to respond to a slave data request
- Both 100 kHz and 400 kHz bus specifications.
- Configurable address masking
- Multi-Master modes to prevent loss of messages in arbitration
- Bus Repeater mode, allowing the acceptance of all messages as a slave regardless of the address
- Automatic SCL

A block diagram of the module is shown in Figure 16-1.

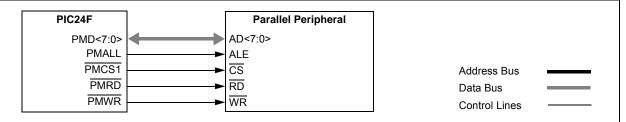
16.1 Peripheral Remapping Options

The I^2C modules are tied to fixed pin assignments and cannot be reassigned to alternate pins using Peripheral Pin Select. To allow some flexibility with peripheral multiplexing, the I2C2 module in 100-pin devices can be reassigned to the alternate pins designated as ASCL2 and ASDA2 during device configuration.

Pin assignment is controlled by the I2C2SEL Configuration bit; programming this bit (= 0) multiplexes the module to the ASCL2 and ASDA2 pins.

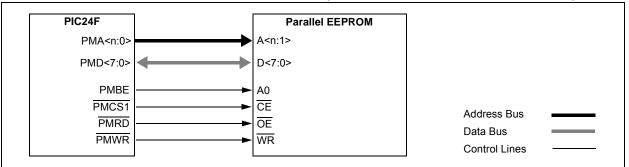

16.2 Communicating as a Master in a Single Master Environment

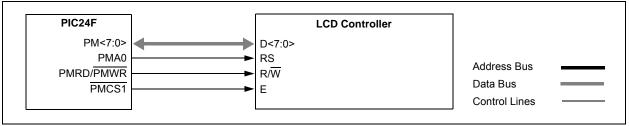
The details of sending a message in Master mode depends on the communications protocol for the device being communicated with. Typically, the sequence of events is as follows:


- 1. Assert a Start condition on SDAx and SCLx.
- Send the I²C device address byte to the slave with a write indication.
- 3. Wait for and verify an Acknowledge from the slave.
- 4. Send the first data byte (sometimes known as the command) to the slave.
- 5. Wait for and verify an Acknowledge from the slave.
- 6. Send the serial memory address low byte to the slave.
- 7. Repeat Steps 4 and 5 until all data bytes are sent.
- 8. Assert a Repeated Start condition on SDAx and SCLx.
- 9. Send the device address byte to the slave with a read indication.
- 10. Wait for and verify an Acknowledge from the slave.
- 11. Enable master reception to receive serial memory data.
- 12. Generate an ACK or NACK condition at the end of a received byte of data.
- 13. Generate a Stop condition on SDAx and SCLx.

R/W-0	U-0	R/W-0	R/W-1, HC	R/W-0	R/W-0	R/W-0	R/W-0				
I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN				
bit 15							bit				
R/W-0	R/W-0	R/W-0	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC				
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN				
bit 7							bit				
Legend:		HC = Hardwa	are Clearable bi	t							
R = Readab	le bit	W = Writable			nented bit, read	l as '0'					
-n = Value a	t POR	'1' = Bit is set	t	'0' = Bit is clea		x = Bit is unkn	iown				
bit 15	12CEN: 12Cx	Enable bit									
			le and configure	s the SDAx an	d SCLx pins as	s serial port pin	s				
			All I ² C pins are o								
bit 14	Unimplemer	nted: Read as '	0'								
bit 13		p in Idle Mode									
			eration when de ation in Idle mod		Idle mode						
bit 12	SCLREL: SC	Lx Release Co	ontrol bit (when	operating as I ²	C Slave)						
	1 = Releases SCLx clock										
	0 = Holds SCLx clock low (clock stretch) If STREN = 1:										
	Bit is R/W (i.e	e., software ma	ay write '0' to ini hission. Hardwa				lardware clea				
	<u>If STREN = 0</u> Bit is R/S (i.e	<u>):</u> e., software ma	ay only write '1		-		nning of slav				
	transmission.										
bit 11	1 = IPMI Sup	port mode is e	al Management nabled; all addro								
hit 10	0 = IPMI mod		aina hit								
bit 10		t Slave Address is a 10-bit slav	-								
		is a 7-bit slave									
bit 9	DISSLW: Dis	able Slew Rate	e Control bit								
		control disable control enable									
bit 8	SMEN: SMB	us Input Levels	bit								
		/O pin thresho SMBus input th	lds compliant wi hresholds	ith SMBus spe	cification						
bit 7	GCEN: Gene	eral Call Enable	e bit (when operation	ating as I ² C sla	ave)						
	(module i	s enabled for r	• •	ddress is receiv	ved in the I2Cx	RSR					
		call address dis			.2 .						
bit 6			n Enable bit (wh	en operating a	s I [∠] C slave)						
		unction with the	e SCLREL bit. eive clock streto								

FIGURE 18-8: EXAMPLE OF A PARTIALLY MULTIPLEXED ADDRESSING APPLICATION

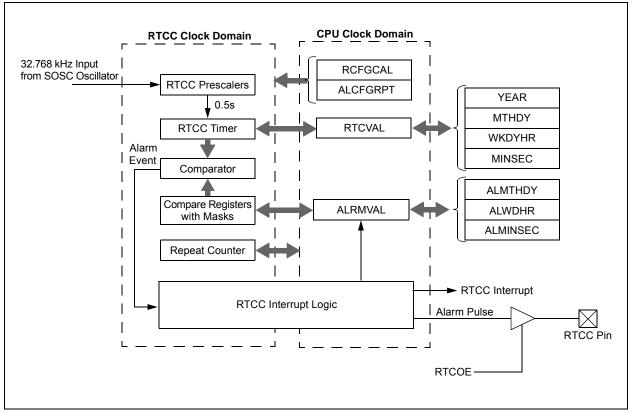

FIGURE 18-9: EXAMPLE OF AN 8-BIT MULTIPLEXED ADDRESS AND DATA APPLICATION


FIGURE 18-10: PARALLEL EEPROM EXAMPLE (UP TO 15-BIT ADDRESS, 8-BIT DATA)

PIC24F		Parallel EEPROM		
PMA <n:0></n:0>		A <n:0></n:0>		
PMD<7:0>	\longleftrightarrow	D<7:0>		
PMCS1 PMRD PMWR		CE OE WR	Address Bus Data Bus Control Lines	

FIGURE 18-11: PARALLEL EEPROM EXAMPLE (UP TO 15-BIT ADDRESS, 16-BIT DATA)

FIGURE 18-12: LCD CONTROL EXAMPLE (BYTE MODE OPERATION)


19.0 REAL-TIME CLOCK AND CALENDAR (RTCC)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "PIC24F Family Reference Manual", Section 29. "Real-Time Clock and Calendar (RTCC)" (DS39696).

The Real-Time Clock and Calendar (RTCC) provides on-chip, hardware-based clock and calendar functionality with little or no CPU overhead. It is intended for applications where accurate time must be maintained for extended periods with minimal CPU activity and with limited power resources, such as battery-powered applications. Key features include:

- Time data in hours, minutes and seconds, with a granularity of one-half second
- 24-hour format (military time) display option
- · Calendar data as date, month and year
- Automatic, hardware-based day of week and leap year calculations for dates from 2000 through 2099
- Time and calendar data in BCD format for compact firmware
- Highly configurable alarm function
- External output pin with selectable alarm signal or seconds "tick" signal output
- · User calibration feature with auto-adjust

A simplified block diagram of the module is shown in Figure 19-1.The SOSC and RTCC will both remain running while the device is held in Reset with MCLR and will continue running after MCLR is released.

FIGURE 19-1: RTCC BLOCK DIAGRAM

19.3 Alarm

- · Configurable from half second to one year
- Enabled using the ALRMEN bit (ALCFGRPT<15>, Register 19-3)
- One-time alarm and repeat alarm options available

19.3.1 CONFIGURING THE ALARM

The alarm feature is enabled using the ALRMEN bit. This bit is cleared when an alarm is issued. Writes to ALRMVAL should only take place when ALRMEN = 0.

As shown in Figure 19-2, the interval selection of the alarm is configured through the AMASK bits (ALCFGRPT<13:10>). These bits determine which and how many digits of the alarm must match the clock value for the alarm to occur.

The alarm can also be configured to repeat based on a preconfigured interval. The amount of times this occurs once the alarm is enabled is stored in the ARPT bits, ARPT<7:0> (ALCFGRPT<7:0>). When the value of the ARPT bits equals 00h and the CHIME bit (ALCFGRPT<14>) is cleared, the repeat function is disabled and only a single alarm will occur. The alarm can be repeated up to 255 times by loading ARPT<7:0> with FFh.

FIGURE 19-2: ALARM MASK SETTINGS

After each alarm is issued, the value of the ARPT bits is decremented by one. Once the value has reached 00h, the alarm will be issued one last time, after which the ALRMEN bit will be cleared automatically and the alarm will turn off.

Indefinite repetition of the alarm can occur if the CHIME bit = 1. Instead of the alarm being disabled when the value of the ARPT bits reaches 00h, it rolls over to FFh and continues counting indefinitely while CHIME is set.

19.3.2 ALARM INTERRUPT

At every alarm event, an interrupt is generated. In addition, an alarm pulse output is provided that operates at half the frequency of the alarm. This output is completely synchronous to the RTCC clock and can be used as a trigger clock to other peripherals.

Note:	Changing any of the registers, other then
	the RCFGCAL and ALCFGRPT registers,
	and the CHIME bit while the alarm is
	enabled (ALRMEN = 1), can result in a
	false alarm event leading to a false alarm
	interrupt. To avoid a false alarm event, the
	timer and alarm values should only be
	changed while the alarm is disabled
	(ALRMEN = 0). It is recommended that
	the ALCFGRPT register and CHIME bit be
	changed when RTCSYNC = 0.

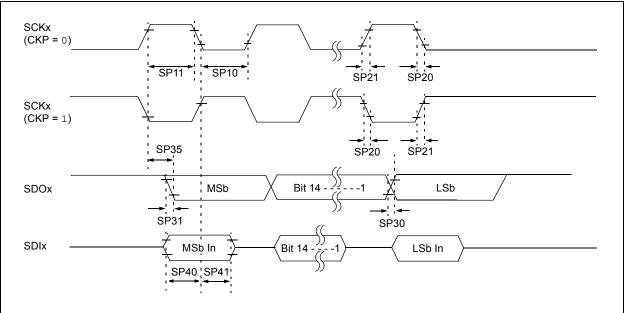
Alarm Mask Setting (AMASK<3:0>)	Day of the Week	Month Day	Hours Minutes Seconds
0000 – Every half second 0001 – Every second			
0010 – Every 10 seconds			
0011 – Every minute			
0100 – Every 10 minutes			m : s s
0101 – Every hour			
0110 – Every day			h h : m m : s s
0111 – Every week	d		h h ; m m ; s s
1000 – Every month		/ d_ d	h h : m m : s s
1001 – Every year ⁽¹⁾		m m / d d	h h : m m : s s
Note 1: Annually, except when co	onfigured fo	or February 29.	

REGISTER 21-3: AD1CON3: A/D CONTROL REGISTER 3

R/W-0	r-0	r-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADRC	r	r	SAMC4	SAMC3	SAMC2	SAMC1	SAMC0
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| ADCS7 | ADCS6 | ADCS5 | ADCS4 | ADCS3 | ADCS2 | ADCS1 | ADCS0 |
| bit 7 | | | | | | | bit 0 |

Legend:		r = Reserved bit	r = Reserved bit					
R = Readab	ole bit	W = Writable bit	e bit U = Unimplemented bit, read as '0'					
-n = Value a	t POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				
			- 1-14					
bit 15 ADRC: A/D Conversion Clock Source bit 1 = A/D internal RC clock 0 = Clock derived from system clock								
bit 14-13	Reserved	l: Maintain as '0'						
bit 12-8	11111 = 3 00001 = 7							
bit 7-0	11111111 0100000 0011111	= Reserved, do not use	Select bits					


© 2010 Microchip Technology Inc.

00000001 = 2 * Tcy 00000000 = Tcy

REGISTER 23-1: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
—	—	—	—	—	—	—	—			
bit 15					•	•	bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
CVREN	CVROE	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0			
bit 7	it 7 bit									
Legend:										
R = Readabl	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
bit 15-8 bit 7 bit 6 bit 5 bit 4	Unimplemented: Read as '0' CVREN: Comparator Voltage Reference Enable bit 1 = CVREF circuit powered on 0 = CVREF circuit powered down CVROE: Comparator VREF Output Enable bit 1 = CVREF voltage level is output on CVREF pin 0 = CVREF voltage level is disconnected from CVREF pin CVRR: Comparator VREF Range Selection bit 1 = CVRSRC range should be 0 to 0.625 CVRSRC with CVRSRC/24 step size 0 = CVRSRC range should be 0.25 to 0.719 CVRSRC with CVRSRC/32 step size									
bit 4	1 = Compara	CVRSS: Comparator VREF Source Selection bit 1 = Comparator reference source, CVRSRC = VREF+ – VREF- 0 = Comparator reference source, CVRSRC = AVDD – AVSS								
bit 3-0	<u>When CVRR</u> CVREF = (CVF <u>When CVRR</u>	<u>= 1:</u> R<3:0>/ 24) ● ((CVRSRC)	ion, $0 \le CVR < 3$ • (CVRSRC)	::0> ≤ 15, bits					

AC CHARACTERISTICS			Standard Operating Conditions: 2.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industria				
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
SP10	TscL	SCKx Output Low Time ⁽²⁾	Tcy/2	_	_	ns	
SP11	TscH	SCKx Output High Time ⁽²⁾	Tcy/2	_	_	ns	
SP20	TscF	SCKx Output Fall Time ⁽³⁾	_	10	25	ns	
SP21	TscR	SCKx Output Rise Time ⁽³⁾	_	10	25	ns	
SP30	TdoF	SDOx Data Output Fall Time ⁽³⁾	_	10	25	ns	
SP31	TdoR	SDOx Data Output Rise Time ⁽³⁾	_	10	25	ns	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_	—	30	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	20	—	—	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	20	—	—	ns	

TABLE 28-24: SPIX MASTER MODE TIMING REQUIREMENTS (CKE = 0)

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: The minimum clock period for SCKx is 100 ns; therefore, the clock generated in Master mode must not violate this specification.

3: Assumes 50 pF load on all SPIx pins.

Revision E (November 2010)

Added 64-Kbyte device variants – PIC24FJ64GA106, PIC24FJ64GA108 and PIC24FJ64GA110.

Changed the CON bit to CEN to match other existing PIC24F, PIC24H and dsPIC® products.

Changed the VREFS bit to PMSLP to match other existing PIC24F, PIC24H and dsPIC® products.

Corrected the OCxCON2 and ICxCON2 Reset values in the register descriptions.

Defined SOSC and RTCC behavior during $\overline{\text{MCLR}}$ events.

Corrected the RCFGCAL Reset values in the register descriptions.

Updated Configuration Word unprogrammed information to more accurately reflect the devices' behavior.

Added electrical specifications from the "PIC24F Family Reference Manual".

Corrected errors in the ENVREG pin operation descriptions.

Other minor typographic corrections throughout the document.