

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	53
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj64ga106-e-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.2 Other Special Features

- Peripheral Pin Select: The Peripheral Pin Select (PPS) feature allows most digital peripherals to be mapped over a fixed set of digital I/O pins. Users may independently map the input and/or output of any one of the many digital peripherals to any one of the I/O pins.
- Communications: The PIC24FJ256GA110 family incorporates a range of serial communication peripherals to handle a range of application requirements. There are three independent I²C[™] modules that support both Master and Slave modes of operation. Devices also have, through the Peripheral Pin Select (PPS) feature, four independent UARTs with built-in IrDA[®] encoder/decoders and three SPI modules.
- Analog Features: All members of the PIC24FJ256GA110 family include a 10-bit A/D Converter module and a triple comparator module. The A/D module incorporates programmable acquisition time, allowing for a channel to be selected and a conversion to be initiated without waiting for a sampling period, as well as faster sampling speeds. The comparator module includes three analog comparators that are configurable for a wide range of operations.
- **CTMU Interface:** In addition to their other analog features, members of the PIC24FJ256GA110 family include the brand new CTMU interface module. This provides a convenient method for precision time measurement and pulse generation, and can serve as an interface for capacitive sensors.
- **Parallel Master Port:** One of the general purpose I/O ports can be reconfigured for enhanced parallel data communications. In this mode, the port can be configured for both master and slave operations, and supports 8-bit transfers with up to 16 external address lines in Master modes.
- Real-Time Clock/Calendar: This module implements a full-featured clock and calendar with alarm functions in hardware, freeing up the timer resources and program memory space for the use of the core application.

1.3 Details on Individual Family Members

Devices in the PIC24FJ256GA110 family are available in 64-pin, 80-pin and 100-pin packages. The general block diagram for all devices is shown in Figure 1-1.

The devices are differentiated from each other in four ways:

- Flash program memory (64 Kbytes for PIC24FJ64GA1 devices, 128 Kbytes for PIC24FJ128GA1 devices, 192 Kbytes for PIC24FJ192GA1 devices and 256 Kbytes for PIC24FJ256GA1 devices).
- Available I/O pins and ports (53 pins on 6 ports for 64-pin devices, 69 pins on 7 ports for 80-pin devices and 85 pins on 7 ports for 100-pin devices).
- 3. Available Interrupt-on-Change Notification (ICN) inputs (same as the number of available I/O pins for all devices).
- 4. Available remappable pins (31 pins on 64-pin devices, 42 pins on 80-pin devices and 46 pins on 100-pin devices)

All other features for devices in this family are identical. These are summarized in Table 1-1.

A list of the pin features available on the PIC24FJ256GA110 family devices, sorted by function, is shown in Table 1-4. Note that this table shows the pin location of individual peripheral features and not how they are multiplexed on the same pin. This information is provided in the pinout diagrams in the beginning of this data sheet. Multiplexed features are sorted by the priority given to a feature, with the highest priority peripheral being listed first.

TABLE 4-12: PORTA REGISTER MAP⁽¹⁾

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7 ⁽²⁾	Bit 6 ⁽²⁾	Bit 5 ⁽²⁾	Bit 4 ⁽²⁾	Bit 3 ⁽²⁾	Bit2 ⁽²⁾	Bit 1 ⁽²⁾	Bit 0 ⁽²⁾	All Resets
TRISA	02C0	TRISA15	TRISA14	_	_	_	TRISA10	TRISA9	_	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	36FF
PORTA	02C2	RA15	RA14	_	—	—	RA10	RA9	_	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxx
LATA	02C4	LATA15	LATA14	—	—	—	LATA10	LATA9		LATA7	LATA6	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	xxxx
ODCA	02C6	ODA15	ODA14	_	_	_	ODA10	ODA9	_	ODA7	ODA6	ODA5	ODA4	ODA3	ODA2	ODA1	ODA0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Reset values shown are for 100-pin devices.

Note 1: PORTA and all associated bits are unimplemented on 64-pin devices and read as '0'. Bits are available on 80-pin and 100-pin devices only, unless otherwise noted.

2: Bits are implemented on 100-pin devices only; otherwise, read as '0'.

TABLE 4-13: PORTB REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	02C8	TRISB15	TRISB14	TRISB13	TRISB12	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	FFFF
PORTB	02CA	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx
LATB	02CC	LATB15	LATB14	LATB13	LATB12	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	xxxx
ODCB	02CE	ODB15	ODB14	ODB13	ODB12	ODB11	ODB10	ODB9	ODB8	ODB7	ODB6	ODB5	ODB4	ODB3	ODB2	ODB1	ODB0	0000

Legend: Reset values are shown in hexadecimal.

TABLE 4-14: PORTC REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4 ⁽¹⁾	Bit 3 ⁽²⁾	Bit 2 ⁽¹⁾	Bit 1 ⁽²⁾	Bit 0	All Resets
TRISC	02D0	TRISC15	TRISC14	TRISC13	TRISC12	_	_		-	—	—	-	TRISC4	TRISC3	TRISC2	TRISC1		F01E
PORTC	02D2	RC15 ^(3,4)	RC14	RC13	RC12 ⁽³⁾			_	—	_	-	—	RC4	RC3	RC2	RC1	—	xxxx
LATC	02D4	LATC15	LATC14	LATC13	LATC12	—	—	—	—	—	—	—	LATC4	LATC3	LATC2	LATC1	_	xxxx
ODCC	02D6	ODC15	ODC14	ODC13	ODC12	_	_	_	_	_	_	_	ODC4	ODC3	ODC2	ODC1	_	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Reset values shown are for 100-pin devices.

Note 1: Bits are unimplemented in 64-pin and 80-pin devices; read as '0'.

2: Bits are unimplemented in 64-pin devices; read as '0'.

3: RC12 and RC15 are only available when the Primary Oscillator is disabled or when EC mode is selected (POSCMD<1:0> Configuration bits = 11 or 00); otherwise, read as '0'

4: RC15 is only available when POSCMD<1:0> Configuration bits = 11 or 00 and the OSCIOFN Configuration bit = 1.

TABLE 4-15: PORTD REGISTER MAP

File Name	Addr	Bit 15 ⁽¹⁾	Bit 14 ⁽¹⁾	Bit 13 ⁽¹⁾	Bit 12 ⁽¹⁾	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISD	02D8	TRISD15	TRISD14	TRISD13	TRISD12	TRISD11	TRISD10	TRISD9	TRISD8	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	FFFF
PORTD	02DA	RD15	RD14	RD13	RD12	RD11	RD10	RD9	RD8	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx
LATD	02DC	LATD15	LATD14	LATD13	LATD12	LATD11	LATD10	LATD9	LATD8	LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0	xxxx
ODCD	02DE	ODD15	ODD14	ODD13	ODD12	ODD11	ODD10	ODD9	ODD8	ODD7	ODD6	ODD5	ODD4	ODD3	ODD2	ODD1	ODD0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Reset values shown are for 100-pin devices.

Note 1: Bits are unimplemented on 64-pin devices; read as '0'.

5.6.2 PROGRAMMING A SINGLE WORD OF FLASH PROGRAM MEMORY

If a Flash location has been erased, it can be programmed using table write instructions to write an instruction word (24-bit) into the write latch. The TBLPAG register is loaded with the 8 Most Significant Bytes of the Flash address. The TBLWTL and TBLWTH instructions write the desired data into the write latches and specify the lower 16 bits of the program memory address to write to. To configure the NVMCON register for a word write, set the NVMOP bits (NVMCON<3:0>) to '0011'. The write is performed by executing the unlock sequence and setting the WR bit, as shown in Example 5-7. An equivalent procedure in C, using the MPLAB C30 compiler and built-in hardware functions, is shown in Example 5-8.

EXAMPLE 5-7: PROGRAMMING A SINGLE WORD OF FLASH PROGRAM MEMORY (ASSEMBLY LANGUAGE CODE)

; Setup a p	pointer to data Program Memory	
MOV	<pre>#tblpage(PROG_ADDR), W0</pre>	;
MOV	W0, TBLPAG	;Initialize PM Page Boundary SFR
MOV	<pre>#tbloffset(PROG_ADDR), W0</pre>	;Initialize a register with program memory address
MOV	#LOW_WORD, W2	;
MOV	#HIGH_BYTE, W3	i
TBLWTL	W2, [W0]	; Write PM low word into program latch
TBLWTH	W3, [W0++]	; Write PM high byte into program latch
; Setup NVN	MCON for programming one word t	o data Program Memory
MOV	#0x4003, W0	i
MOV	W0, NVMCON	; Set NVMOP bits to 0011
DISI	#5	; Disable interrupts while the KEY sequence is written
MOV	#0x55, W0	; Write the key sequence
MOV	W0, NVMKEY	
MOV	#0xAA, W0	
MOV	W0, NVMKEY	
BSET	NVMCON, #WR	; Start the write cycle
NOP		; Insert two NOPs after the erase
NOP		; Command is asserted

EXAMPLE 5-8: PROGRAMMING A SINGLE WORD OF FLASH PROGRAM MEMORY (C LANGUAGE CODE)

```
// C example using MPLAB C30
   unsigned int offset;
   unsigned long progAddr = 0xXXXXXX;
                                               // Address of word to program
   unsigned int progDataL = 0xXXXX;
                                                // Data to program lower word
   unsigned char progDataH = 0xXX;
                                                // Data to program upper byte
//Set up NVMCON for word programming
   NVMCON = 0 \times 4003;
                                                // Initialize NVMCON
//Set up pointer to the first memory location to be written
                                               // Initialize PM Page Boundary SFR
   TBLPAG = progAddr>>16;
   offset = progAddr & 0xFFFF;
                                                // Initialize lower word of address
//Perform TBLWT instructions to write latches
                                               // Write to address low word
       __builtin_tblwtl(offset, progDataL);
       __builtin_tblwth(offset, progDataH);
                                               // Write to upper byte
       asm("DISI #5");
                                                // Block interrupts with priority < 7</pre>
                                                // for next 5 instructions
       __builtin_write_NVM();
                                                // C30 function to perform unlock
                                                // sequence and set WR
```

R/W-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
TRAPR	IOPUWR	_		_	_	СМ	PMSLP
oit 15							bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1
EXTR	SWR	SWDTEN ⁽²⁾	WDTO	SLEEP	IDLE	BOR	POR
bit 7	OWIX	OWDIEN	WDTO	OLLLI	IDLL	BOIX	bit
							_
Legend:						(0)	
R = Read		W = Writable bi	it	•	ented bit, read		
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	IOWN
bit 15	1 = A Trap C	o Reset Flag bit onflict Reset has onflict Reset has					
bit 14	1 = An illega Pointer c	egal Opcode or U I opcode detectio aused a Reset I opcode or unini	n, an illegal a	ddress mode or	r uninitialized W	/ register used	as an Addre
bit 13-10	-	ted: Read as '0'					
bit 9	1 = A Configu	ation Word Mism aration Word Mise aration Word Mise	match Reset	has occurred	d		
bit 8	1 = Program	gram Memory Po memory bias volt nemory bias volta	age remains	powered during		regulator enters	s Standby mo
bit 7	1 = A Master	nal Reset (MCLR Clear (pin) Rese Clear (pin) Rese	t has occurre				
bit 6	1 = A reset	are Reset (Instruction has b instruction has n	een executed				
bit 5	SWDTEN: So 1 = WDT is e 0 = WDT is d		isable of WD	T bit ⁽²⁾			
bit 4	WDTO: Wate	hdog Timer Time e-out has occurre e-out has not occ	ed				
bit 3	SLEEP: Wak	e From Sleep Fla as been in Sleep as not been in Sle	ag bit mode				
bit 2	IDLE: Wake- 1 = Device ha	up From Idle Flag as been in Idle m as not been in Idl	g bit ode				
bit 1	BOR: Brown	out Reset Flag b out Reset has oc out Reset has no	it curred. Note	that BOR is also	o set after a Po	wer-on Reset.	
bit 0	1 = A Power-	on Reset Flag bi on Reset has occ on Reset has no	curred				
Note 1:	All of the Reset cause a device		e set or cleare	ed in software. S	Setting one of th	ese bits in soft	ware does n
2:	If the FWDTEN	Configuration bit	is '1' (unprog	rammed), the W	VDT is always e	enabled, regard	dless of the

2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

REGISTER 7-12: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
U2TXIE	U2RXIE	INT2IE ⁽¹⁾	T5IE	T4IE	OC4IE	OC3IE	_
bit 15			L				bit 8
D44/0	DAMO		DAMO	DAMA	DAMO	DAMA	DAMA
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IC8IE bit 7	IC7IE	—	INT1IE ⁽¹⁾	CNIE	CMIE	MI2C1IE	SI2C1IE bit (
							Dit t
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	1 = Interrupt	RT2 Transmitter request enabled request not ena	, t	ole bit			
bit 14	U2RXIE: UAP 1 = Interrupt	RT2 Receiver Ir request enabled request not ena	nterrupt Enable	e bit			
bit 13	INT2IE: Exten 1 = Interrupt	rnal Interrupt 2 request enabled request not ena	Enable bit ⁽¹⁾ 1				
bit 12	T5IE: Timer5 1 = Interrupt	Interrupt Enable request enable request not ena	e bit 1				
bit 11	T4IE: Timer4 1 = Interrupt	Interrupt Enable request enable request not ena	e bit 1				
bit 10	OC4IE: Outp	ut Compare Ch request enabled request not ena	annel 4 Interru ว	pt Enable bit			
bit 9	1 = Interrupt	ut Compare Ch request enabled request not ena	t	pt Enable bit			
bit 8		ted: Read as '					
bit 7	1 = Interrupt	Capture Channe request enablee request not ena	t t	nable bit			
bit 6	IC7IE: Input (1 = Interrupt	Capture Channe request enablee request not ena	el 7 Interrupt E ป	nable bit			
bit 5		ted: Read as '					
bit 4	1 = Interrupt	rnal Interrupt 1 request enableo request not ena	t				
bit 3	1 = Interrupt	Change Notifica request enableo request not ena	t	Enable bit			
bit 2	CMIE: Comp 1 = Interrupt	arator Interrupt request enabled request not ena	Enable bit d				
Note 1: If	an external inte	errupt is enabled	I, the interrupt	input must also	o be configured	d to an available	RPn or RPI

Note 1: If an external interrupt is enabled, the interrupt input must also be configured to an available RPn or RPIn pin. See **Section 10.4 "Peripheral Pin Select**" for more information.

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
—	—	—	—	—	INT4IP2	INT4IP1	INT4IP0
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—	INT3IP2	INT3IP1	INT3IP0		<u> </u>		_
bit 7							bit (
Logondi							
Legend: R = Readab	le bit	W = Writable	hit	U = Unimplei	mented bit, read	1 as '0'	
-n = Value a		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	NOWD
bit 15-11	Unimplemen	ted: Read as ')'				
bit 10-8	INT4IP<2:0>:	External Interr	upt 4 Priority b	oits			
	111 = Interrup	ot is priority 7 (I	nighest priority	interrupt)			
	•						
	•						
	001 = Interrup	ot is priority 1					
		ot source is dis	abled				
oit 7	Unimplemen	ted: Read as ')'				
bit 6-4	INT3IP<2:0>:	External Interr	upt 3 Priority b	oits			
	111 = Interrup	ot is priority 7 (I	nighest priority	interrupt)			
	•						
	•						
	001 = Interru	ot is priority 1					
	001 = Interrup 000 = Interrup	ot is priority 1 ot source is dis	abled				

REGISTER 7-30: IPC13: INTERRUPT PRIORITY CONTROL REGISTER 13

R/W-0 DOZE2 U-0 	R/W-0 DOZE1 U-0 W = Writable I	R/W-0 DOZE0 U-0 —	R/W-0 DOZEN ⁽¹⁾ U-0 —	R/W-0 RCDIV2 U-0	R/W-0 RCDIV1 U-0	R/W-1 RCDIV0 bit 8 U-0
U-0 —	U-0					bit 8
e bit	-	U-0 —	U-0	U-0 —	U-0	
e bit	-	U-0 —	U-0	U-0	U-0	U-0
	W = Writable I		—			
	W = Writable I				—	_
	W = Writable I					bit 0
	W = Writable I					
POP	•••••••••••••••••••••••••••••••••••••••	oit	U = Unimplem	ented bit, read	l as '0'	
ION	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
DOZE<2:0>: 111 = 1:128 110 = 1:64 101 = 1:32 100 = 1:16 011 = 1:8 010 = 1:4 001 = 1:2 000 = 1:1	CPU Periphera	I Clock Ratio S	Select bits			
	ZE Enable bit ⁽¹⁾					
1 = DOZE<2	2:0> bits specify		oheral clock ratio	0		
111 = 31.25 110 = 125 kH 101 = 250 kH 100 = 500 kH 011 = 1 MHz 010 = 2 MHz 001 = 4 MHz 000 = 8 MHz	kHz (divide by 2 Hz (divide by 64 Hz (divide by 32 Hz (divide by 16 (divide by 8) (divide by 4) (divide by 2)	(56)))				
	1 = Interrupt 0 = Interrupt DOZE<2:0>: 111 = 1:128 110 = 1:64 101 = 1:32 100 = 1:16 011 = 1:8 010 = 1:4 001 = 1:2 000 = 1:1 DOZEN: DOZ 1 = DOZE<2 0 = CPU per RCDIV<2:0> 111 = 31.25 110 = 125 kH 101 = 250 kH 100 = 500 kH 011 = 1 MHz 010 = 2 MHz 000 = 8 MHz	1 = Interrupts clear the DOZ 0 = Interrupts have no effect DOZE<2:0>: CPU Periphera 111 = 1:128 110 = 1:64 101 = 1:32 100 = 1:16 011 = 1:8 010 = 1:4 001 = 1:2 000 = 1:1 DOZEN: DOZE Enable bit ⁽¹⁾ 1 = DOZE<2:0> bits specify 0 = CPU peripheral clock rat RCDIV<2:0>: FRC Postscale 111 = 31.25 kHz (divide by 22) 100 = 500 kHz (divide by 44) 011 = 1 MHz (divide by 4) 010 = 2 MHz (divide by 4) 001 = 4 MHz (divide by 1)	0 = Interrupts have no effect on the DOZE DOZE<2:0>: CPU Peripheral Clock Ratio S 111 = 1:128 110 = 1:64 101 = 1:32 100 = 1:16 011 = 1:8 010 = 1:4 001 = 1:2 000 = 1:1 DOZEN: DOZE Enable bit ⁽¹⁾ 1 = DOZE<2:0> bits specify the CPU peripheral clock ratio set to 1:1 RCDIV<2:0>: FRC Postscaler Select bits 111 = 31.25 kHz (divide by 256) 110 = 125 kHz (divide by 4) 101 = 250 kHz (divide by 3) 100 = 500 kHz (divide by 4) 011 = 1 MHz (divide by 4) 001 = 4 MHz (divide by 1)	1 = Interrupts clear the DOZEN bit and reset the CPU per 0 = Interrupts have no effect on the DOZEN bit DOZE<2:0>: CPU Peripheral Clock Ratio Select bits 111 = 1:128 110 = 1:64 101 = 1:32 100 = 1:16 011 = 1:8 010 = 1:4 001 = 1:2 000 = 1:1 DOZEN: DOZE Enable bit ⁽¹⁾ 1 = DOZE<2:0> bits specify the CPU peripheral clock ratio 0 = CPU peripheral clock ratio set to 1:1 RCDIV<2:0>: FRC Postscaler Select bits 111 = 31.25 kHz (divide by 256) 110 = 125 kHz (divide by 4) 101 = 250 kHz (divide by 32) 100 = 500 kHz (divide by 4) 011 = 1 MHz (divide by 4) 010 = 2 MHz (divide by 4) 001 = 4 MHz (divide by 1)	1 = Interrupts clear the DOZEN bit and reset the CPU peripheral clock ratio 0 = Interrupts have no effect on the DOZEN bit DOZE<2:0>: CPU Peripheral Clock Ratio Select bits 111 = 1:128 110 = 1:64 101 = 1:32 100 = 1:16 011 = 1:8 010 = 1:4 001 = 1:2 000 = 1:1 DOZEN: DOZE Enable bit ⁽¹⁾ 1 = DOZE<2:0> bits specify the CPU peripheral clock ratio 0 = CPU peripheral clock ratio set to 1:1 RCDIV<2:0>: FRC Postscaler Select bits 111 = 31.25 kHz (divide by 256) 110 = 125 kHz (divide by 4) 101 = 250 kHz (divide by 16) 011 = 1 MHz (divide by 4) 010 = 2 MHz (divide by 4) 001 = 4 MHz (divide by 1)	1 = Interrupts clear the DOZEN bit and reset the CPU peripheral clock ratio to 1:1 0 = Interrupts have no effect on the DOZEN bit DOZE<2:0>: CPU Peripheral Clock Ratio Select bits 111 = 1:128 110 = 1:64 101 = 1:32 100 = 1:16 011 = 1:8 010 = 1:4 001 = 1:2 000 = 1:1 $DOZEN: DOZE Enable bit^{(1)}$ 1 = DOZE<2:0> bits specify the CPU peripheral clock ratio 0 = CPU peripheral clock ratio set to 1:1 RCDIV<2:0>: FRC Postscaler Select bits 111 = 31.25 kHz (divide by 256) 110 = 125 kHz (divide by 4) 101 = 250 kHz (divide by 4) 011 = 1 MHz (divide by 4) 011 = 4 MHz (divide by 2) 000 = 8 MHz (divide by 1)

REGISTER 8-2: CLKDIV: CLOCK DIVIDER REGISTER

Note 1: This bit is automatically cleared when the ROI bit is set and an interrupt occurs.

9.2.2 IDLE MODE

Idle mode has these features:

- The CPU will stop executing instructions.
- The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 9.4 "Selective Peripheral Module Control").
- If the WDT or FSCM is enabled, the LPRC will also remain active.

The device will wake from Idle mode on any of these events:

- Any interrupt that is individually enabled
- Any device Reset
- A WDT time-out

On wake-up from Idle, the clock is reapplied to the CPU and instruction execution begins immediately, starting with the instruction following the PWRSAV instruction or the first instruction in the ISR.

9.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

Any interrupt that coincides with the execution of a PWRSAV instruction will be held off until entry into Sleep or Idle mode has completed. The device will then wake-up from Sleep or Idle mode.

9.3 Doze Mode

Generally, changing clock speed and invoking one of the power-saving modes are the preferred strategies for reducing power consumption. There may be circumstances, however, where this is not practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed may introduce communication errors, while using a power-saving mode may stop communications completely.

Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate.

Doze mode is enabled by setting the DOZEN bit (CLKDIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLKDIV<14:12>). There are eight possible configurations, from 1:1 to 1:128, with 1:1 being the default.

It is also possible to use Doze mode to selectively reduce power consumption in event driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU Idles, waiting for something to invoke an interrupt routine. Enabling the automatic return to full-speed CPU operation on interrupts is enabled by setting the ROI bit (CLKDIV<15>). By default, interrupt events have no effect on Doze mode operation.

9.4 Selective Peripheral Module Control

Idle and Doze modes allow users to substantially reduce power consumption by slowing or stopping the CPU clock. Even so, peripheral modules still remain clocked and thus consume power. There may be cases where the application needs what these modes do not provide: the allocation of power resources to CPU processing with minimal power consumption from the peripherals.

PIC24F devices address this requirement by allowing peripheral modules to be selectively disabled, reducing or eliminating their power consumption. This can be done with two control bits:

- The Peripheral Enable bit, generically named "XXXEN", located in the module's main control SFR.
- The Peripheral Module Disable (PMD) bit, generically named, "XXXMD", located in one of the PMD Control registers.

Both bits have similar functions in enabling or disabling its associated module. Setting the PMD bit for a module disables all clock sources to that module, reducing its power consumption to an absolute minimum. In this state, the control and status registers associated with the peripheral will also be disabled, so writes to those registers will have no effect and read values will be invalid. Many peripheral modules have a corresponding PMD bit.

In contrast, disabling a module by clearing its XXXEN bit disables its functionality, but leaves its registers available to be read and written to. This reduces power consumption, but not by as much as setting the PMD bit does. Most peripheral modules have an enable bit; exceptions include input capture, output compare and RTCC.

To achieve more selective power savings, peripheral modules can also be selectively disabled when the device enters Idle mode. This is done through the control bit of the generic name format, "XXXIDL". By default, all modules that can operate during Idle mode will do so. Using the disable on Idle feature allows further reduction of power consumption during Idle mode, enhancing power savings for extremely critical power applications.

REGISTER 10-15: RPINR20: PERIPHERAL PIN SELECT INPUT REGISTER 20

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—		SCK1R5	SCK1R4	SCK1R3	SCK1R2	SCK1R1	SCK1R0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	SDI1R5	SDI1R4	SDI1R3	SDI1R2	SDI1R1	SDI1R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	SCK1R<5:0>: Assign SPI1 Clock Input (SCK1IN) to Corresponding RPn or RPIn Pin bits
bit 7-6	Unimplemented: Read as '0'
bit 5-0	SDI1R<5:0>: Assign SPI1 Data Input (SDI1) to Corresponding RPn or RPIn Pin bits

REGISTER 10-16: RPINR21: PERIPHERAL PIN SELECT INPUT REGISTER 21

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	U3CTSR5	U3CTSR4	U3CTSR3	U3CTSR2	U3CTSR1	U3CTSR0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	SS1R5	SS1R4	SS1R3	SS1R2	SS1R1	SS1R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 U3CTSR<5:0>: Assign UART3 Clear to Send (U3CTS) to Corresponding RPn or RPIn Pin bits

bit 7-6 Unimplemented: Read as '0'

bit 5-0 SS1R<5:0>: Assign SPI1 Slave Select Input (SS1IN) to Corresponding RPn or RPIn Pin bits

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0			
TON		TSIDL	—	_	_	—	_			
bit 15							bit			
U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0			
	TGATE	TCKPS1	TCKPS0	T32 ⁽¹⁾	_	TCS ⁽²⁾				
bit 7							bi			
Lonondi										
Legend: R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'				
-n = Value a		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkne	own			
bit 15		<u>N<3> = 1:</u> 2-bit Timerx/y 2-bit Timerx/y <u>N<3> = 0:</u> 6-bit Timerx								
oit 14	-	nted: Read as '	0'							
pit 13	-	in Idle Mode bi								
	1 = Discontir	nue module ope module operat	ration when de		e mode					
bit 12-7	Unimpleme	nted: Read as '	0'							
oit 6	-	TGATE: Timerx Gated Time Accumulation Enable bit								
		nored.								
bit 5-4	TCKPS<1:0 : 11 = 1:256 10 = 1:64 01 = 1:8 00 = 1:1	>: Timerx Input	Clock Prescale	Select bits						
bit 3	T32: 32-Bit 1	imer Mode Sel	ect bit ⁽¹⁾							
	0 = Timerx a	and Timery form and Timery act a de, T3CON cont	as two 16-bit tim	ners	er operation.					
oit 2	Unimpleme	nted: Read as '	0'		·					
oit 1	1 = Externa	Clock Source S Il clock from pin clock (Fosc/2)		rising edge)						
bit 0	Unimpleme	nted: Read as '	0'							
Note 1: Ir	n 32-bit mode, t	he T3CON or T	5CON control b	its do not affec	t 32-bit timer (operation.				
2: If		IRx (TxCK) mus	st be configured			more informatic	on, see			
		lue of TxCON w		s runnina (TON	= 1) causes t	he timer prescal	o countor t			

3: Changing the value of TxCON while the timer is running (TON = 1) causes the timer prescale counter to reset and is not recommended.

REGISTER 14-2: OCxCON2: OUTPUT COMPARE x CONTROL 2 REGISTER (CONTINUED)

bit 4-0 SYNCSEL<4:0>: Trigger/Synchronization Source Selection bits

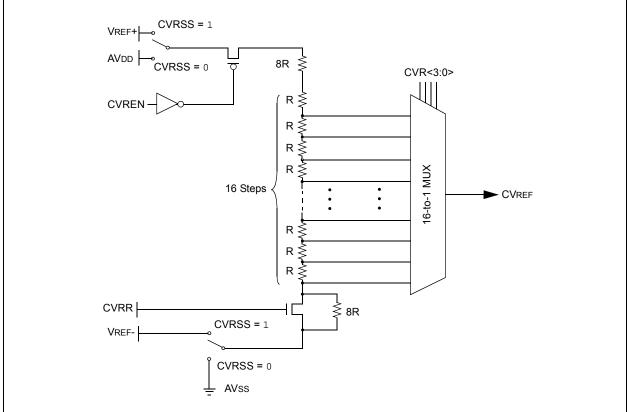
11111 = This OC module⁽¹⁾ 11110 = Input Capture 9⁽²⁾ 11101 = Input Capture 6⁽²⁾ 11100 = CTMU⁽²⁾ 11011 = A/D⁽²⁾ 11010 = Comparator 3⁽²⁾ 11001 = Comparator 2⁽²⁾ 11000 = Comparator 1⁽²⁾ 10111 = Input Capture 4⁽²⁾ 10110 = Input Capture 3⁽²⁾ 10101 = Input Capture 2⁽²⁾ 10100 = Input Capture 1⁽²⁾ 10011 = Input Capture 8⁽²⁾ 10010 = Input Capture 7⁽²⁾ 1000x = reserved 01111 = Timer5 01110 = Timer4 01101 = Timer3 01100 = Timer2 01011 = Timer1 01010 = Input Capture 5⁽²⁾ 01001 = Output Compare 9⁽¹⁾ 01000 = Output Compare 8⁽¹⁾ 00111 = Output Compare 7⁽¹⁾ 00110 = Output Compare 6⁽¹⁾ 00101 = Output Compare 5⁽¹⁾ 00100 = Output Compare 4⁽¹⁾ 00011 = Output Compare 3⁽¹⁾ 00010 = Output Compare 2⁽¹⁾ 00001 = Output Compare 1⁽¹⁾ 00000 = Not synchronized to any other module

- **Note 1:** Never use an OC module as its own trigger source, either by selecting this mode or another equivalent SYNCSEL setting.
 - **2:** Use these inputs as trigger sources only and never as sync sources.

NOTES:

23.0 COMPARATOR VOLTAGE REFERENCE

Note:	This data sheet summarizes the features of						
	this group of PIC24F devices. It is not						
	intended to be a comprehensive reference						
	source. For more information, refer to the						
	"PIC24F Family Reference Manual",						
	Section 20. "Comparator Voltage						
	Reference Module" (DS39709).						


23.1 Configuring the Comparator Voltage Reference

The voltage reference module is controlled through the CVRCON register (Register 23-1). The comparator voltage reference provides two ranges of output

voltage, each with 16 distinct levels. The range to be used is selected by the CVRR bit (CVRCON<5>). The primary difference between the ranges is the size of the steps selected by the CVREF Selection bits (CVR<3:0>), with one range offering finer resolution.

The comparator reference supply voltage can come from either VDD and VSS, or the external VREF+ and VREF-. The voltage source is selected by the CVRSS bit (CVRCON<4>).

The settling time of the comparator voltage reference must be considered when changing the CVREF output.

FIGURE 23-1: COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
TBLRDH	TBLRDH	Ws,Wd	Read Prog<23:16> to Wd<7:0>	1	2	None
TBLRDL	TBLRDL	Ws,Wd	Read Prog<15:0> to Wd	1	2	None
TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None
TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog<15:0>	1	2	None
ULNK	ULNK		Unlink Frame Pointer	1	1	None
XOR	XOR	f	f = f .XOR. WREG	1	1	N, Z
	XOR	f,WREG	WREG = f .XOR. WREG	1	1	N, Z
	XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N, Z
	XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N, Z
	XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N, Z
ZE	ZE	Ws,Wnd	Wnd = Zero-Extend Ws	1	1	C, Z, N

TABLE 26-2: INSTRUCTION SET OVERVIEW (CONTINUED)

27.11 PICkit 2 Development Programmer/Debugger and PICkit 2 Debug Express

The PICkit[™] 2 Development Programmer/Debugger is a low-cost development tool with an easy to use interface for programming and debugging Microchip's Flash families of microcontrollers. The full featured Windows[®] programming interface supports baseline (PIC10F, PIC12F5xx, PIC16F5xx), midrange (PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30, dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit microcontrollers, and many Microchip Serial EEPROM products. With Microchip's powerful MPLAB Integrated Development Environment (IDE) the PICkit[™] 2 enables in-circuit debugging on most PIC[®] microcontrollers. In-Circuit-Debugging runs, halts and single steps the program while the PIC microcontroller is embedded in the application. When halted at a breakpoint, the file registers can be examined and modified.

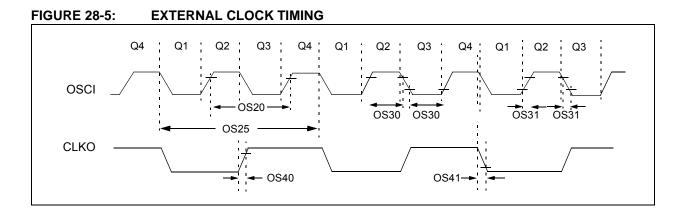
The PICkit 2 Debug Express include the PICkit 2, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

27.12 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an MMC card for file storage and data applications.

27.13 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

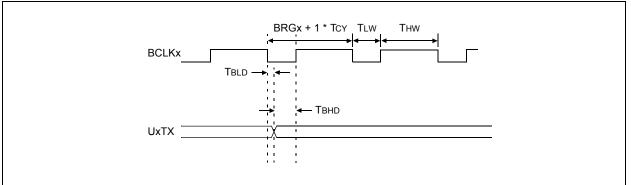

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

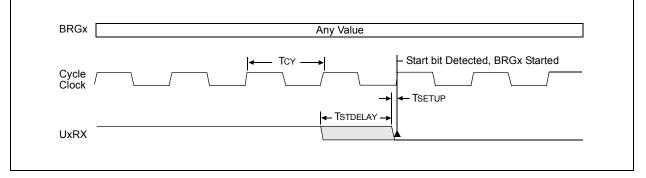
In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.


TABLE 28-13: EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{ll} \mbox{Standard Operating Conditions: 2.50 to 3.6V (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions	
OS10	Fosc	External CLKI Frequency (external clocks allowed only in EC mode)	DC 4	_	32 8	MHz MHz	EC ECPLL	
		Oscillator Frequency	3 4 10 31	 	10 8 32 33	MHz MHz MHz kHz	XT XTPLL HS SOSC	
OS20	Tosc	Tosc = 1/Fosc	_	—	—	-	See Parameter OS10 for Fosc value	
OS25	Тсү	Instruction Cycle Time ⁽²⁾	62.5	_	DC	ns		
OS30	TosL, TosH	External Clock in (OSCI) High or Low Time	0.45 x Tosc	—	_	ns	EC	
OS31	TosR, TosF	External Clock in (OSCI) Rise or Fall Time	-	—	20	ns	EC	
OS40	TckR	CLKO Rise Time ⁽³⁾	—	6	10	ns		
OS41	TckF	CLKO Fall Time ⁽³⁾		6	10	ns		


Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

- 2: Instruction cycle period (Tcr) equals two times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "Min." values with an external clock applied to the OSCI/CLKI pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.
- **3:** Measurements are taken in EC mode. The CLKO signal is measured on the OSCO pin. CLKO is low for the Q1-Q2 period (1/2 TCY) and high for the Q3-Q4 period (1/2 TCY).

FIGURE 28-8: BAUD RATE GENERATOR OUTPUT TIMING

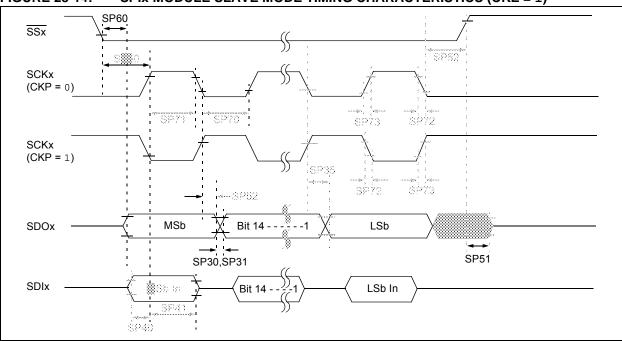


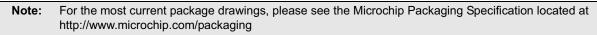
FIGURE 28-9: START BIT EDGE DETECTION

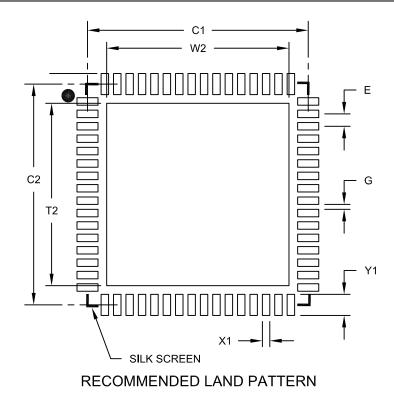
TABLE 28-22: AC SPECIFICATIONS

Symbol	Characteristics	Min	Тур	Max	Units
TLW	BCLKx High Time	20	Tcy/2	_	ns
THW	BCLKx Low Time	20	(TCY * BRGx) + TCY/2	—	ns
TBLD	BCLKx Falling Edge Delay from UxTX	-50	—	50	ns
Твно	BCLKx Rising Edge Delay from UxTX	Tcy/2 – 50	—	Tcy/2 + 50	ns
Twak	Min. Low on UxRX Line to Cause Wake-up	—	1	—	μS
Тстѕ	Min. Low on UxCTS Line to Start Transmission	Тсү	—	—	ns
TSETUP	Start bit Falling Edge to System Clock Rising Edge Setup Time	3	—	—	ns
TSTDELAY	Maximum Delay in the Detection of the Start bit Falling Edge	—	_	TCY + TSETUP	ns

FIGURE 28-14: SPIX MODULE SLAVE MODE TIMING CHARACTERISTICS (CKE = 1)

TABLE 28-27: SPIX MODULE SLAVE MODE TIMING REQUIREMENTS (CKE = 1)


AC CHARACTERISTICS			Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial				
Param No.	Symbol	Characteristic	Min	Тур ⁽¹⁾	Max	Units	Conditions
SP70	TscL	SCKx Input Low Time	30		_	ns	
SP71	TscH	SCKx Input High Time	30	_	_	ns	
SP72	TscF	SCKx Input Fall Time ⁽²⁾		10	25	ns	
SP73	TscR	SCKx Input Rise Time ⁽²⁾		10	25	ns	
SP30	TdoF	SDOx Data Output Fall Time ⁽²⁾		10	25	ns	
SP31	TdoR	SDOx Data Output Rise Time ⁽²⁾		10	25	ns	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_	_	30	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	20	_	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	20	_	_	ns	
SP50	TssL2scH, TssL2scL	$\overline{\mathrm{SSx}} \downarrow$ to SCKx \downarrow or SCKx \uparrow Input	120	_	_	ns	
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance ⁽³⁾	10	_	50	ns	
SP52	TscH2ssH TscL2ssH	SSx ↑ after SCKx Edge	1.5 Tcy + 40		_	ns	
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	—	—	50	ns	


Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: The minimum clock period for SCKx is 100 ns. Therefore, the clock generated in Master mode must not violate this specification.

3: Assumes 50 pF load on all SPIx pins.

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 0.40 mm Contact Length

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.50 BSC		
Optional Center Pad Width	W2			7.35
Optional Center Pad Length	T2			7.35
Contact Pad Spacing	C1		8.90	
Contact Pad Spacing	C2		8.90	
Contact Pad Width (X64)	X1			0.30
Contact Pad Length (X64)	Y1			0.85
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2149A

Revision E (November 2010)

Added 64-Kbyte device variants – PIC24FJ64GA106, PIC24FJ64GA108 and PIC24FJ64GA110.

Changed the CON bit to CEN to match other existing PIC24F, PIC24H and dsPIC® products.

Changed the VREFS bit to PMSLP to match other existing PIC24F, PIC24H and dsPIC® products.

Corrected the OCxCON2 and ICxCON2 Reset values in the register descriptions.

Defined SOSC and RTCC behavior during $\overline{\text{MCLR}}$ events.

Corrected the RCFGCAL Reset values in the register descriptions.

Updated Configuration Word unprogrammed information to more accurately reflect the devices' behavior.

Added electrical specifications from the "PIC24F Family Reference Manual".

Corrected errors in the ENVREG pin operation descriptions.

Other minor typographic corrections throughout the document.