

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	53
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj64ga106-i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagram (100-Pin TQFP)

2.6 External Oscillator Pins

Many microcontrollers have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator (refer to **Section 8.0 "Oscillator Configuration**" for details).

The oscillator circuit should be placed on the same side of the board as the device. Place the oscillator circuit close to the respective oscillator pins with no more than 0.5 inch (12 mm) between the circuit components and the pins. The load capacitors should be placed next to the oscillator itself, on the same side of the board.

Use a grounded copper pour around the oscillator circuit to isolate it from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed.

Layout suggestions are shown in Figure 2-5. In-line packages may be handled with a single-sided layout that completely encompasses the oscillator pins. With fine-pitch packages, it is not always possible to completely surround the pins and components. A suitable solution is to tie the broken guard sections to a mirrored ground layer. In all cases, the guard trace(s) must be returned to ground.

In planning the application's routing and I/O assignments, ensure that adjacent port pins, and other signals in close proximity to the oscillator, are benign (i.e., free of high frequencies, short rise and fall times and other similar noise).

For additional information and design guidance on oscillator circuits, please refer to these Microchip Application Notes, available at the corporate web site (www.microchip.com):

- AN826, "Crystal Oscillator Basics and Crystal Selection for rfPIC[™] and PICmicro[®] Devices"
- AN849, "Basic PICmicro[®] Oscillator Design"
- AN943, "Practical PICmicro[®] Oscillator Analysis and Design"
- AN949, "Making Your Oscillator Work"

FIGURE 2-5:

SUGGESTED PLACEMENT OF THE OSCILLATOR CIRCUIT

4.3.2 DATA ACCESS FROM PROGRAM MEMORY USING TABLE INSTRUCTIONS

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the program space without going through data space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a program space word as data.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to data space addresses. Program memory can thus be regarded as two, 16-bit word-wide address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space which contains the least significant data word, and TBLRDH and TBLWTH access the space which contains the upper data byte.

Two table instructions are provided to move byte or word-sized (16-bit) data to and from program space. Both function as either byte or word operations.

 TBLRDL (Table Read Low): In Word mode, it maps the lower word of the program space location (P<15:0>) to a data address (D<15:0>). In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when the byte select is '1'; the lower byte is selected when it is '0'. TBLRDH (Table Read High): In Word mode, it maps the entire upper word of a program address (P<23:16>) to a data address. Note that D<15:8>, the 'phantom' byte, will always be '0'. In Byte mode, it maps the upper or lower byte of the program word to D<7:0> of the data address, as above. Note that the data will always be '0' when the upper 'phantom' byte is selected (byte select = 1).

In a similar fashion, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a program space address. The details of their operation are explained in **Section 5.0 "Flash Program Memory"**.

For all table operations, the area of program memory space to be accessed is determined by the Table Memory Page Address (TBLPAG) register. TBLPAG covers the entire program memory space of the device, including user and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.

Note: Only table read operations will execute in the configuration memory space, and only then, in implemented areas, such as the Device ID. Table write operations are not allowed.

© 2010 Microchip Technology Inc.

REGISTER	7-6: IFS1:	INTERRUPT	FLAG STAT	US REGISTE	R 1		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	_
bit 15							bit 8
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IC8IF	IC7IF	_	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable b	bit	U = Unimplem	nented bit. read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15	U2TXIF: UAR 1 = Interrupt r 0 = Interrupt r	T2 Transmitter equest has occ equest has not	Interrupt Flag urred occurred	Status bit			
bit 14	U2RXIF: UAF 1 = Interrupt r	RT2 Receiver In equest has occ	terrupt Flag St urred	atus bit			
bit 13	INT2IF: Exter 1 = Interrupt r 0 = Interrupt r	nal Interrupt 2 F equest has occ equest has not	Flag Status bit urred occurred				
bit 12	T5IF: Timer5 1 = Interrupt r 0 = Interrupt r	Interrupt Flag S equest has occ equest has not	tatus bit urred occurred				
bit 11	T4IF: Timer4 1 = Interrupt r 0 = Interrupt r	Interrupt Flag S equest has occ equest has not	tatus bit urred occurred				
bit 10	OC4IF: Output 1 = Interrupt r 0 = Interrupt r	ut Compare Cha equest has occ equest has not	annel 4 Interru urred occurred	pt Flag Status b	pit		
bit 9	OC3IF: Output 1 = Interrupt r 0 = Interrupt r	ut Compare Cha equest has occ equest has not	annel 3 Interru urred occurred	pt Flag Status b	pit		
bit 8	Unimplemen	ted: Read as '0	,				
bit 7	IC8IF: Input C 1 = Interrupt r 0 = Interrupt r	Capture Channe request has occ request has not	l 8 Interrupt Fl urred occurred	lag Status bit			
bit 6	IC7IF: Input C 1 = Interrupt r 0 = Interrupt r	Capture Channe request has occ request has not	I 7 Interrupt Fl urred occurred	lag Status bit			
bit 5	Unimplemen	ted: Read as '0	,				
bit 4	INT1IF: Exter 1 = Interrupt r 0 = Interrupt r	nal Interrupt 1 F equest has occ equest has not	Flag Status bit urred occurred				
bit 3	CNIF: Input C 1 = Interrupt r 0 = Interrupt r	hange Notificat equest has occ equest has not	ion Interrupt F urred occurred	lag Status bit			
bit 2	CMIF : Compa 1 = Interrupt r	arator Interrupt I equest has occ	Flag Status bit urred occurred				
bit 1	MI2C1IF: Mas 1 = Interrupt r 0 = Interrupt r	ster I2C1 Event equest has occ equest has not	Interrupt Flag urred occurred	Status bit			
bit 0	SI2C1IF: Slav 1 = Interrupt r 0 = Interrupt r	ve I2C1 Event Ir request has occ request has not	nterrupt Flag S urred occurred	Status bit			

R/W-0

OC4IP0

U-0

bit 8

U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 T4IP2 T4IP1 T4IP0 OC4IP2 OC4IP1 ____ _ bit 15 U-0 R/W-1 R/W-0 R/W-0 U-0 U-0 U-0 ___ OC3IP2 OC3IP1 OC3IP0 ___ ___ ____

bit 7					bit 0						
Legend:											
R = Readal	ble bit	W = Writable bit	U = Unimplemented bit,	, read as '0'							
-n = Value at POR		'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown							
bit 15	Unimple	mented: Read as '0'									
bit 14-12	T4IP<2:0	>: Timer4 Interrupt Priority b	pits								
	111 = Int	errupt is priority 7 (highest p	riority interrupt)								
	•										
	•										
	• 001 = Int	errupt is priority 1									
	000 = Int	errupt source is disabled									
bit 11	Unimple	mented: Read as '0'									
bit 10-8	OC4IP<2	OC4IP<2:0>: Output Compare Channel 4 Interrupt Priority bits									
	111 = Int	errupt is priority 7 (highest p	riority interrupt)								
	•										
	•										
	001 = Int	errupt is priority 1									
	000 = Int	errupt source is disabled									
bit 7	Unimple	mented: Read as '0'									
bit 6-4	OC3IP<2	OC3IP<2:0>: Output Compare Channel 3 Interrupt Priority bits									
	111 = Int	errupt is priority 7 (highest p	riority interrupt)								
	•										
	•										
	- 001 = Int	errupt is priority 1									
	000 = Int	errupt source is disabled									
bit 3-0	Unimple	mented: Read as '0'									

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	U2TXIP2	U2TXIP1	U2TXIP0	_	U2RXIP2	U2RXIP1	U2RXIP0
bit 15					·		bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	INT2IP2	INT2IP1	INT2IP0	—	T5IP2	T5IP1	T5IP0
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
			- 1				
DIT 15	Unimplemen	ted: Read as	0°	4 Dui - 11 - 1-14-			
DIT 14-12		•: UARIZ Irans	smitter interrup	t Priority Dits			
	•	pr is priority 7 (nighest phonty	interrupt)			
	•						
	•						
	001 = Interru	pt is priority 1 pt source is dis	abled				
bit 11	Unimplemen	ted: Read as '	0'				
bit 10-8	U2RXIP<2:0>	: UART2 Rece	eiver Interrupt F	Priority bits			
	111 = Interru	pt is priority 7 (highest priority	interrupt)			
	•		0 1 3	1 /			
	•						
	• 001 = Interru	pt is priority 1					
	000 = Interru	pt source is dis	abled				
bit 7	Unimplemen	ted: Read as '	0'				
bit 6-4	INT2IP<2:0>:	External Interi	rupt 2 Priority b	oits			
	111 = Interru	pt is priority 7 (highest priority	interrupt)			
	•						
	•						
	001 = Interru	pt is priority 1					
	000 = Interru	pt source is dis	abled				
bit 3	Unimplemen	ted: Read as '	0'				
bit 2-0	T5IP<2:0>: ⊺	imer5 Interrupt	Priority bits				
	111 = Interru	pt is priority 7 (highest priority	interrupt)			
	•						
	•						
	001 = Interru	pt is priority 1	ablod				
			avieu				

REGISTER 7-24: IPC7: INTERRUPT PRIORITY CONTROL REGISTER 7

		_	-								
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
—	—	—	—	—	—	—	—				
bit 15							bit 8				
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
	PMPIP2	PMPIP1	PMPIP0		OC8IP2	OC8IP1	OC8IP0				
bit 7							bit 0				
Legend:											
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'					
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown					
bit 15-7	Unimplemen	ted: Read as '	0'								
bit 6-4	PMPIP<2:0>:	: Parallel Maste	er Port Interrup	t Priority bits							
	111 = Interru	pt is priority 7 (highest priority	interrupt)							
	•										
	•										
	001 = Interru	001 = Interrupt is priority 1									
	000 = Interru	pt source is dis	abled								
bit 3	Unimplemen	ted: Read as '	0'								
bit 2-0	OC8IP<2:0>:	Output Compa	are Channel 8	Interrupt Priorit	y bits						
	111 = Interru	pt is priority 7 (highest priority	interrupt)							
	•										
	•										
	001 = Interru	pt is priority 1									
	000 = Interru	pt source is dis	abled								

REGISTER 7-28: IPC11: INTERRUPT PRIORITY CONTROL REGISTER 11

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
_	_		_	_	INT4IP2	INT4IP1	INT4IP0
bit 15				·		•	bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
	INT3IP2	INT3IP1	INT3IP0	_	_	_	_
bit 7			•	·			bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 15-11	Unimplemen	ted: Read as '	כי				
bit 10-8	INT4IP<2:0>:	External Interr	upt 4 Priority b	oits			
	111 = Interru	pt is priority 7 (I	nighest priority	interrupt)			
	•						
	•						
	001 = Interru	pt is priority 1					
	000 = Interru	pt source is dis	abled				
bit 7	Unimplemen	ted: Read as '	כי				
bit 6-4	INT3IP<2:0>:	External Interr	upt 3 Priority b	oits			
	111 = Interru	pt is priority 7 (I	nighest priority	interrupt)			
	•						
	•						
	001 = Interru	pt is priority 1					
	000 = Interru	pt source is dis	abled				
bit 3-0	Unimplemen	ted: Read as '	י)				

REGISTER 7-30: IPC13: INTERRUPT PRIORITY CONTROL REGISTER 13

9.0 POWER-SAVING FEATURES

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "PIC24F Family Reference Manual", Section 10. "Power-Saving Features" (DS39698).

The PIC24FJ256GA110 family of devices provides the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of circuits being clocked constitutes lower consumed power. All PIC24F devices manage power consumption in four different ways:

- Clock frequency
- Instruction-based Sleep and Idle modes
- Software controlled Doze mode
- · Selective peripheral control in software

Combinations of these methods can be used to selectively tailor an application's power consumption, while still maintaining critical application features, such as timing-sensitive communications.

9.1 Clock Frequency and Clock Switching

PIC24F devices allow for a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or high-precision oscillators by simply changing the NOSC bits. The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in **Section 8.0** "Oscillator Configuration".

9.2 Instruction-Based Power-Saving Modes

PIC24F devices have two special power-saving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution; Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. The assembly syntax of the PWRSAV instruction is shown in Example 9-1. Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to "wake-up".

9.2.1 SLEEP MODE

Sleep mode has these features:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption will be reduced to a minimum provided that no I/O pin is sourcing current.
- The Fail-Safe Clock Monitor does not operate during Sleep mode since the system clock source is disabled.
- The LPRC clock will continue to run in Sleep mode if the WDT is enabled.
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode.
- Some device features or peripherals may continue to operate in Sleep mode. This includes items such as the input change notification on the I/O ports, or peripherals that use an external clock input. Any peripheral that requires the system clock source for its operation will be disabled in Sleep mode.

Additional power reductions can be achieved by disabling the on-chip voltage regulator whenever Sleep mode is invoked. This is done by clearing the PMSLP bit (RCON<8>). Disabling the regulator adds an additional delay of about 190 μ s to the device wake-up time. It is recommended that applications not using the voltage regulator leave the PMSLP bit set. For additional details on the regulator and Sleep mode, see **Section 25.2.5 "Voltage Regulator Standby Mode"**.

The device will wake-up from Sleep mode on any of these events:

- On any interrupt source that is individually enabled
- · On any form of device Reset
- On a WDT time-out

On wake-up from Sleep, the processor will restart with the same clock source that was active when Sleep mode was entered.

EXAMPLE 9-1: PWRSAV INSTRUCTION SYNTAX

PWRSAV	#0	; Put	the	device	into	SLEEP	mode
PWRSAV	#1	; Put	the	device	into	IDLE 1	mode

REGISTER 10-7: RPINR8: PERIPHERAL PIN SELECT INPUT REGISTER 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	IC4R5	IC4R4	IC4R3	IC4R2	IC4R1	IC4R0
bit 15							bit 8
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	IC3R5	IC3R4	IC3R3	IC3R2	IC3R1	IC3R0
bit 7							bit 0
Legend:							

Logena.						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-14	Unimplemented: Read as '0'
bit 13-8	IC4R<5:0>: Assign Input Capture 4 (IC4) to Corresponding RPn or RPIn Pin bits
bit 7-6	Unimplemented: Read as '0'
bit 5-0	IC3R<5:0>: Assign Input Capture 3 (IC3) to Corresponding RPn or RPIn Pin bits

REGISTER 10-8: RPINR9: PERIPHERAL PIN SELECT INPUT REGISTER 9

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	—	IC6R5	IC6R4	IC6R3	IC6R2	IC6R1	IC6R0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	IC5R5	IC5R4	IC5R3	IC5R2	IC5R1	IC5R0
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-14 Unimplemented: Read as '0'

bit 13-8 IC6R<5:0>: Assign Input Capture 6 (IC6) to Corresponding RPn or RPIn Pin bits

bit 7-6 Unimplemented: Read as '0'

bit 5-0 IC5R<5:0>: Assign Input Capture 5 (IC5) to Corresponding RPn or RPIn Pin bits

REGISTER 14-1: OCxCON1: OUTPUT COMPARE x CONTROL 1 REGISTER

11.0	11.0						
0-0	0-0					0-0	0-0
 bit 15	_	UCSIDE	UCISEL2	UCISELI	UCISELU		— hit 9
DIC 15							DIL O
R/W-0	U-0	U-0	R/W-0, HCS	R/W-0	R/W-0	R/W-0	R/W-0
ENFLT0	—	_	OCFLT0	TRIGMODE	OCM2 ⁽¹⁾	OCM1 ⁽¹⁾	OCM0 ⁽¹⁾
bit 7	•	•			•	•	bit 0
Legend:		HCS = Hardw	are Clearable/S	Settable bit			
R = Reada	ble bit	W = Writable	bit	U = Unimplem	ented bit, read	as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkno	own
bit 15_1/	Unimplemen	tod. Pood as '() '				
bit 13		o Output Comp	, are v in Idle Mc	de Control hit			
bit 15	1 = Output C	ompare x halts	in CPU Idle mo	de contror bit			
	0 = Output C	ompare x conti	nues to operate	e in CPU Idle m	ode		
bit 12-10	OCTSEL<2:0	>: Output Com	pare x Timer S	elect bits			
	111 = Periphe	eral Clock (Fcy)				
	110 = Reserv	red					
	101 = Reserv	red					
	011 = Timer5						
	010 = Timer4						
	001 = Timer3						
	000 = 1 mer2		.,				
DIT 9-8		ted: Read as (
DIL 7	1 = Eoult 0 in	it o input Enabled	e bit				
	1 = Fault 0 ir 0 = Fault 0 ir	nput is disabled					
bit 6-5	Unimplemen	ted: Read as '0)'				
bit 4	OCFLT0: PW	M Fault Conditi	ion Status bit				
	1 = PWM Fau	ult condition ha	s occurred (cle	ared in HW only	/)		
	0 = No PWM	Fault condition	has occurred	(this bit is only ι	used when OCI	M<2:0> = 111)	
bit 3	TRIGMODE:	Trigger Status I	Mode Select bit	İ			
	1 = TRIGSTA	AT (OCxCON2<	6>) is cleared v	when OCxRS =	OCxTMR or in	software	
hit 2 0	0 = TRIGSTA		ed by soltware	t hite(1)			
DIL 2-0	111 = Center			2)			
	110 = Edge-/	Aligned PWM n	node on OCx ⁽²⁾	1			
	101 = Double	e Compare Cor	ntinuous Pulse	mode: initialize	OCx pin low, t	oggle OCx stat	e continuously
	on alte	ernate matches	of OCxR and O				
	100 = 001	e Compare Sing	gie-Snot mode:	initialize OCx p	in iow, toggle C	CX state on ma	icnes of OCxR
	011 = Sinale	Compare Cont	inuous Pulse n	node: compare (events continuo	ously toaale OC	x pin
	010 = Single	Compare Sing	le-Shot mode:	initialize OCx pi	n high, compar	e event forces (OCx pin low
	001 = Single	Compare Sing	le-Shot mode:	initialize OCx pi	n low, compare	e event forces O	Cx pin high
	000 = Output	t compare chan	inel is disabled				
Note 1:	The OCx output	must also be c	onfigured to an	available RPn	pin. For more i	nformation, see	Section 10.4
	"Peripheral Pin	Select".					

2: OCFA pin controls OC1-OC4 channels; OCFB pin controls the OC5-OC9 channels. OCxR and OCxRS are double-buffered only in PWM modes.

17.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

Note:	This data sheet summarizes the features of						
	this group of PIC24F devices. It is not						
	intended to be a comprehensive reference						
	source. For more information, refer to the						
	"PIC24F Family Reference Manual",						
	Section 21. "UART" (DS39708).						

The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in the PIC24F device family. The UART is a full-duplex asynchronous system that can communicate with peripheral devices, such as personal computers, LIN, RS-232 and RS-485 interfaces. The module also supports a hardware flow control option with the UxCTS and UxRTS pins, and also includes an IrDA[®] encoder and decoder.

The primary features of the UART module are:

- Full-Duplex, 8 or 9-Bit Data Transmission through the UxTX and UxRX Pins
- Even, Odd or No Parity Options (for 8-bit data)
- · One or Two Stop bits
- Hardware Flow Control Option with UxCTS and UxRTS Pins

- Fully Integrated Baud Rate Generator with 16-Bit Prescaler
- Baud Rates Ranging from 1 Mbps to 15 bps at 16 MIPS
- 4-Deep, First-In-First-Out (FIFO) Transmit Data Buffer
- 4-Deep FIFO Receive Data Buffer
- Parity, Framing and Buffer Overrun Error Detection
- Support for 9-Bit mode with Address Detect (9th bit = 1)
- · Transmit and Receive Interrupts
- Loopback mode for Diagnostic Support
- · Support for Sync and Break Characters
- Supports Automatic Baud Rate Detection
- · IrDA Encoder and Decoder Logic
- 16x Baud Clock Output for IrDA Support

A simplified block diagram of the UART is shown in Figure 17-1. The UART module consists of these key important hardware elements:

- · Baud Rate Generator
- Asynchronous Transmitter
- Asynchronous Receiver

NOTES:

R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
BUSY	IRQM1	IRQM0	INCM1	INCM0	MODE16	MODE1	MODE0			
bit 15							bit 8			
DAMA	D /// 0		DANO	DAVA	DAMA	DAALO	DAMA			
		R/W-0	R/W-0	R/W-0	R/W-0					
WAITB1	VVAITB0	WAITM3	WAI I M2	WAI I M1	WATTMU	WAITEN	WAITE0			
							DIL U			
Legend:										
R = Readat	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'									
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown			
bit 15 BUSY: Busy bit (Master mode only) 1 = Port is busy (not useful when the processor stall is active) 0 = Port is not busy bit 14-13 IRQM<1:0>: Interrupt Request Mode bits										
	11 = Interrup or on a 10 = No inter 01 = Interrup 00 = No inter	ot generated wh read or write o rrupt generated ot generated at rrupt generated	nen Read Buffe peration when I, processor sta the end of the I	er 3 is read or W PMA<1:0> = 1 all activated read/write cycl	/rite Buffer 3 is 1 (Addressable e	written (Buffere e PSP mode or	ed PSP mode), Ily)			
bit 12-11	INCM<1:0>:	ncrement Mod	e bits							
	11 = PSP rea 10 = Decrem 01 = Increme 00 = No incre	ad and write bu nent ADDR<10 ent ADDR<10:(ement or decre	uffers auto-incr :0> by 1 every)> by 1 every r ement of addre	ement (Legacy read/write cycl read/write cycle ss	PSP mode on e	ly)				
bit 10	MODE16: 8/1	6-Bit Mode bit								
	1 = 16-bit mo 0 = 8-bit mod	de: Data regist le: Data registe	er is 16 bits; a er is 8 bits; a re	read or write to ad or write to th	the Data regist ne Data registe	ter invokes two r invokes one 8	8-bit transfers 8-bit transfer			
bit 9-8	MODE<1:0>:	Parallel Port M	lode Select bit	S						
	 11 = Master Mode 1 (PMCS1, PMRD/PMWR, PMENB, PMBE, PMA<x:0> and PMD<7:0>)</x:0> 10 = Master Mode 2 (PMCS1, PMRD, PMWR, PMBE, PMA<x:0> and PMD<7:0>)</x:0> 01 = Enhanced PSP, control signals (PMRD, PMWR, PMCS1, PMD<7:0> and PMA<1:0>) 00 = Legacy Parallel Slave Port, control signals (PMRD, PMWR, PMCS1 and PMD<7:0>) 									
bit 7-6	WAITB<1:0>:	Data Setup to	Read/Write W	ait State Config	guration bits ⁽¹⁾					
	 11 = Data wait of 4 Tcy; multiplexed address phase of 4 Tcy 10 = Data wait of 3 Tcy; multiplexed address phase of 3 Tcy 01 = Data wait of 2 Tcy; multiplexed address phase of 2 Tcy 00 = Data wait of 1 Tcy; multiplexed address phase of 1 Tcy 									
bit 5-2	WAITM<3:0>	Read to Byte	Enable Strobe	Wait State Cor	nfiguration bits					
	1111 = Wait o	of additional 15	Тсү							
	 0001 = Wait o 0000 = No ad	of additional 1 ⁻ Iditional wait cy	Гсү vcles (operation	n forced into on	е Тсү) ⁽²⁾					
bit 1-0	WAITE<1:0>:	Data Hold Afte	er Strobe Wait	State Configura	ation bits ⁽¹⁾					
	11 = Wait of 10 = Wait of 01 = Wait of	4 Tcy 3 Tcy 2 Tcy								
	00 = Wait of	1 TCY								
Note 1: \	VAITB and WAIT	E bits are igno	red whenever	WAITM<3:0> =	0000.					

REGISTER 18-2: PMMODE: PARALLEL MASTER PORT MODE REGISTER

2: A single cycle delay is required between consecutive read and/or write operations.

REGISTER 19-1: RCFGCAL: RTCC CALIBRATION AND CONFIGURATION REGISTER⁽¹⁾ (CONTINUED)

bit 7-0 CAL<7:0>: RTC Drift Calibration bits

...

011111111 = Maximum positive adjustment; adds 508 RTC clock pulses every one minute

00000001 = Minimum positive adjustment; adds 4 RTC clock pulses every one minute

00000000 = No adjustment

11111111 = Minimum negative adjustment; subtracts 4 RTC clock pulses every one minute

10000000 = Maximum negative adjustment; subtracts 512 RTC clock pulses every one minute

- **Note 1:** The RCFGCAL register is only affected by a POR.
 - **2:** A write to the RTCEN bit is only allowed when RTCWREN = 1.
 - **3:** This bit is read-only; it is cleared to '0' on a write to the lower half of the MINSEC register.

REGISTER 19-2: PADCFG1: PAD CONFIGURATION CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
		—	—		_	—	—	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	
—	_	—	—	—	—	RTSECSEL ⁽¹⁾	PMPTTL	
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable I	oit	U = Unimplemented bit, read as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown				
bit 15-2	Unimplemen	ted: Read as 'o)'					
bit 1	bit 1 RTSECSEL: RTCC Seconds Clock Output Select bit ⁽¹⁾							
	1 = RTCC seconds clock is selected for the RTCC pin							
	0 = RTCC alarm pulse is selected for the RTCC pin							
bit 0	PMPTTL: PM	P Module TTL	Input Buffer Se	elect bit				
	1 = PMP module inputs (PMDx, PMCS1) use TTL input buffers							

0 = PMP module inputs use Schmitt Trigger input buffers

Note 1: To enable the actual RTCC output, the RTCOE (RCFGCAL<10>) bit must also be set.

21.0 10-BIT HIGH-SPEED A/D CONVERTER

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "PIC24F Family Reference Manual", Section 17. "10-Bit A/D Converter" (DS39705).

The 10-bit A/D Converter has the following key features:

- Successive Approximation (SAR) Conversion
- Conversion Speeds of up to 500 ksps
- 16 Analog Input pins
- External Voltage Reference Input pins
- Internal Band Gap Reference Inputs
- · Automatic Channel Scan mode
- Selectable Conversion Trigger Source
- 16-Word Conversion Result Buffer
- Selectable Buffer Fill modes
- Four Result Alignment Options
- Operation during CPU Sleep and Idle modes

On all PIC24FJ256GA110 family devices, the 10-bit A/D Converter has 16 analog input pins, designated AN0 through AN15. In addition, there are two analog input pins for external voltage reference connections (VREF+ and VREF-). These voltage reference inputs may be shared with other analog input pins.

A block diagram of the A/D Converter is shown in Figure 21-1.

To perform an A/D conversion:

- 1. Configure the A/D module:
 - Configure port pins as analog inputs and/or select band gap reference input (AD1PCFGL<15:0> and AD1PCFGH<1:0>).
 - b) Select voltage reference source to match expected range on analog inputs (AD1CON2<15:13>).
 - c) Select the analog conversion clock to match the desired data rate with the processor clock (AD1CON3<7:0>).
 - d) Select the appropriate sample/conversion sequence (AD1CON1<7:5> and AD1CON3<12:8>).
 - e) Select how conversion results are presented in the buffer (AD1CON1<9:8>).
 - f) Select interrupt rate (AD1CON2<5:2>).
 - g) Turn on A/D module (AD1CON1<15>).
- 2. Configure the A/D interrupt (if required):
 - a) Clear the AD1IF bit.
 - b) Select A/D interrupt priority.

R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0			
ADON ⁽¹⁾		ADSIDL	_	—	—	FORM1	FORM0			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0, HCS	R-0, HCS			
SSRC2	SSRC1	SSRC0	_	_	ASAM	SAMP	DONE			
bit 7	bit 0									
Legend:		HCS = Hardwa	are Clearable/	Settable bit						
R = Readable	e bit	W = Writable I	oit	U = Unimpler	mented bit, read	d as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkno	own			
bit 15	ADON: A/D C 1 = A/D Conv 0 = A/D Conv	Operating Mode verter module is verter is off	bit ⁽¹⁾ operating							
bit 14	Unimplemen	ted: Read as '0)'							
bit 13	ADSIDL: Stop	p in Idle Mode b	bit							
	1 = Discontin 0 = Continue	ue module ope module operat	ration when de	evice enters Id le	le mode					
bit 12-10	Unimplemen	ted: Read as '0)'							
bit 9-8	FORM<1:0>:	Data Output Fo	ormat bits							
	11 = Signed f 10 = Fractiona 01 = Signed in 00 = Integer (ractional (sddd al (dddd dddd nteger (ssss s (0000 00dd d	. dddd dd00 dd00 0000) sssd dddd d ddd dddd)	0000)) ddd)						
bit 7-5	SSRC<2:0>:	Conversion Trig	ger Source Se	elect bits						
111 = Internal counter ends sampling and starts conversion (auto-convert) 110 = CTMU event ends sampling and starts conversion 101 = Reserved 100 = Timer5 compare ends sampling and starts conversion 011 = Reserved 010 = Timer3 compare ends sampling and starts conversion 001 = Active transition on INTO pin ends sampling and starts conversion 000 = Clearing SAMP bit ends sampling and starts conversion										
bit 4-3	Unimplemen	ted: Read as 'o)'							
bit 2	ASAM: A/D Sample Auto-Start bit 1 = Sampling begins immediately after last conversion completes; SAMP bit is auto-set 0 = Sampling begins when the SAMP bit is set									
bit 1	SAMP: A/D S	ample Enable b	oit							
	1 = A/D samp 0 = A/D samp	ole/hold amplifie	r is sampling i r is holding	nput						
bit 0	DONE: A/D C	Conversion Statu	us bit							
	1 = A/D conve 0 = A/D conve	ersion is done ersion is NOT d	one							
			ull mot votoin th			tia alaarad Daa				

REGISTER 21-1: AD1CON1: A/D CONTROL REGISTER 1

Note 1: Values of ADC1BUFx registers will not retain their values once the ADON bit is cleared. Read out the conversion values from the buffer before disabling the module.

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
GOTO	GOTO Expr		Go to Address	2	2	None
	GOTO	Wn	Go to Indirect	1	2	None
INC	INC	f	f = f + 1	1	1	C, DC, N, OV, Z
	INC	f,WREG	WREG = f + 1	1	1	C, DC, N, OV, Z
	INC	Ws,Wd	Wd = Ws + 1	1	1	C, DC, N, OV, Z
INC2	INC2	f	f = f + 2	1	1	C, DC, N, OV, Z
	INC2	f,WREG	WREG = f + 2	1	1	C, DC, N, OV, Z
	INC2	Ws,Wd	Wd = Ws + 2	1	1	C, DC, N, OV, Z
IOR	IOR	£	f = f .IOR. WREG	1	1	N, Z
	IOR	f,WREG	WREG = f .IOR. WREG	1	1	N, Z
	IOR	#lit10,Wn	Wd = lit10 .IOR. Wd	1	1	N, Z
	IOR	Wb,Ws,Wd	Wd = Wb .IOR. Ws	1	1	N, Z
	IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N, Z
LNK	LNK	#lit14	Link Frame Pointer	1	1	None
LSR	LSR	f	f = Logical Right Shift f	1	1	C, N, OV, Z
	LSR	f,WREG	WREG = Logical Right Shift f	1	1	C, N, OV, Z
	LSR	Ws,Wd	Wd = Logical Right Shift Ws	1	1	C, N, OV, Z
	LSR	Wb,Wns,Wnd	Wnd = Logical Right Shift Wb by Wns	1	1	N, Z
	LSR	Wb,#lit5,Wnd	Wnd = Logical Right Shift Wb by lit5	1	1	N, Z
MOV	MOV	f,Wn	Move f to Wn	1	1	None
	MOV	[Wns+Slit10],Wnd	Move [Wns+Slit10] to Wnd	1	1	None
	MOV	f	Move f to f	1	1	N, Z
	MOV	f,WREG	Move f to WREG	1	1	N, Z
	MOV	#litl6,Wn	Move 16-bit Literal to Wn	1	1	None
	MOV.b	#lit8,Wn	Move 8-bit Literal to Wn	1	1	None
	MOV	Wn,f	Move Wn to f	1	1	None
	MOV	Wns,[Wns+Slit10]	Move Wns to [Wns+Slit10]	1	1	
	MOV	Wso,Wdo	Move Ws to Wd	1	1	None
	MOV	WREG,f	Move WREG to f	1	1	N, Z
	MOV.D	Wns,Wd	Move Double from W(ns):W(ns + 1) to Wd	1	2	None
	MOV.D	Ws,Wnd	Move Double from Ws to W(nd + 1):W(nd)	1	2	None
MUL	MUL.SS	Wb,Ws,Wnd	{Wnd + 1, Wnd} = Signed(Wb) * Signed(Ws)	1	1	None
	MUL.SU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = Signed(Wb) * Unsigned(Ws)	1	1	None
	MUL.US	Wb,Ws,Wnd	{Wnd + 1, Wnd} = Unsigned(Wb) * Signed(Ws)	1	1	None
	MUL.UU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = Unsigned(Wb) * Unsigned(Ws)	1	1	None
	MUL.SU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = Signed(Wb) * Unsigned(lit5)	1	1	None
	MUL.UU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = Unsigned(Wb) * Unsigned(lit5)	1	1	None
	MUL	£	W3:W2 = f * WREG	1	1	None
NEG	NEG	f	$f = \overline{f} + 1$	1	1	C, DC, N, OV, Z
	NEG	f,WREG	WREG = \overline{f} + 1	1	1	C, DC, N, OV, Z
	NEG	Ws,Wd	Wd = Ws + 1	1	1	C, DC, N, OV, Z
NOP	NOP		No Operation	1	1	None
	NOPR		No Operation	1	1	None
POP	POP	£	Pop f from Top-of-Stack (TOS)	1	1	None
	POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
	POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd + 1)	1	2	None
	POP.S		Pop Shadow Registers	1	1	All
PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
	PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
	PUSH.D	Wns	Push W(ns):W(ns + 1) to Top-of-Stack (TOS)	1	2	None
	PUSH.S		Push Shadow Registers	1	1	None

TABLE 26-2: INSTRUCTION SET OVERVIEW (CONTINUED)

FIGURE 28-19: I²C[™] BUS START/STOP BITS TIMING CHARACTERISTICS (SLAVE MODE)

TABLE 28-32: I²C[™] BUS START/STOP BIT TIMING REQUIREMENTS (SLAVE MODE)

AC CHARACTERISTICS				Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ (Industrial)			
Param No.	Symbol	Charac	Characteristic		Max	Units	Conditions
IS30	TSU:STA	Start Condition	100 kHz mode	4.7	_	μS	Only relevant for Repeated
		Setup Time	400 kHz mode	0.6	—	μS	Start condition
			1 MHz mode ⁽¹⁾	0.25	—	μs	
IS31 THD:STA	Start Condition Hold Time	100 kHz mode	4.0	—	μS	After this period, the first	
		400 kHz mode	0.6	—	μS	clock pulse is generated	
		1 MHz mode ⁽¹⁾	0.25	—	μs		
IS33	Tsu:sto	Stop Condition	100 kHz mode	4.7	_	μs	—
		Setup Time	400 kHz mode	0.6	—	μS	
			1 MHz mode ⁽¹⁾	0.6	—	μs	
IS34	THD:STO	Stop Condition	100 kHz mode	4000	_	ns	—
		Hold Time	400 kHz mode	600	_	ns]
			1 MHz mode ⁽¹⁾	250	—	ns]

Note 1: Maximum pin capacitance = 10 pF for all I^2C^{TM} pins (for 1 MHz mode only).

64-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIM	ETERS		
Dimension	MIN	NOM	MAX	
Contact Pitch	E		0.50 BSC	
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X64)	X1			0.30
Contact Pad Length (X64)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2085A