

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	53
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj64ga106-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		Pin Number			-	
Function	64-Pin TQFP, QFN	80-Pin TQFP	100-Pin TQFP	I/O	Input Buffer	Description
RG0	—	75	90	I/O	ST	PORTG Digital I/O.
RG1	—	74	89	I/O	ST	
RG2	37	47	57	I/O	ST	
RG3	36	46	56	I/O	ST	
RG6	4	6	10	I/O	ST	
RG7	5	7	11	I/O	ST	
RG8	6	8	12	I/O	ST	
RG9	8	10	14	I/O	ST	
RG12	_	_	96	I/O	ST	
RG13	_	_	97	I/O	ST	
RG14	—		95	I/O	ST	
RG15	_	_	1	I/O	ST	
RP0	16	20	25	I/O	ST	Remappable Peripheral (input or output).
RP1	15	19	24	I/O	ST	
RP2	42	54	68	I/O	ST	
RP3	44	56	70	I/O	ST	
RP4	43	55	69	I/O	ST	
RP5	_	38	48	I/O	ST	
RP6	17	21	26	I/O	ST	
RP7	18	22	27	I/O	ST	
RP8	21	27	32	I/O	ST	
RP9	22	28	33	I/O	ST	
RP10	31	39	49	I/O	ST	
RP11	46	58	72	I/O	ST	
RP12	45	57	71	I/O	ST	
RP13	14	18	23	I/O	ST	
RP14	29	35	43	I/O	ST	
RP15	_	43	53	I/O	ST	
RP16	33	41	51	I/O	ST	
RP17	32	40	50	I/O	ST	
RP18	11	15	20	I/O	ST	
RP19	6	8	12	I/O	ST	
RP20	53	67	82	I/O	ST	
RP21	4	6	10	I/O	ST	
RP22	51	63	78	I/O	ST	
RP23	50	62	77	I/O	ST	
RP24	49	61	76	I/O	ST	
RP25	52	66	81	I/O	ST	
RP26	5	7	11	I/O	ST	
RP27	8	10	14	I/O	ST	
RP28	12	16	21	I/O	ST	
RP29	30	36	44	I/O	ST	
RP30	34	42	52	I/O	ST	
RP31	—	_	39	I/O	ST	
Legend:	TTI = TTI in	put buffer			ST = 5	Schmitt Trigger input buffer

TABLE 1-4: PIC24FJ256GA110 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

ANA = Analog level input/output

ST = Schmitt Trigger input buffer $I^2C^{TM} = I^2C/SMBus$ input buffer

TABLE 4-12: PORTA REGISTER MAP⁽¹⁾

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7 ⁽²⁾	Bit 6 ⁽²⁾	Bit 5 ⁽²⁾	Bit 4 ⁽²⁾	Bit 3 ⁽²⁾	Bit2 ⁽²⁾	Bit 1 ⁽²⁾	Bit 0 ⁽²⁾	All Resets
TRISA	02C0	TRISA15	TRISA14	_	_	_	TRISA10	TRISA9	_	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	36FF
PORTA	02C2	RA15	RA14	—	_	_	RA10	RA9	_	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxx
LATA	02C4	LATA15	LATA14	—	—	—	LATA10	LATA9	—	LATA7	LATA6	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	xxxx
ODCA	02C6	ODA15	ODA14	_	_	_	ODA10	ODA9	_	ODA7	ODA6	ODA5	ODA4	ODA3	ODA2	ODA1	ODA0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Reset values shown are for 100-pin devices.

Note 1: PORTA and all associated bits are unimplemented on 64-pin devices and read as '0'. Bits are available on 80-pin and 100-pin devices only, unless otherwise noted.

2: Bits are implemented on 100-pin devices only; otherwise, read as '0'.

TABLE 4-13: PORTB REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	02C8	TRISB15	TRISB14	TRISB13	TRISB12	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	FFFF
PORTB	02CA	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx
LATB	02CC	LATB15	LATB14	LATB13	LATB12	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	xxxx
ODCB	02CE	ODB15	ODB14	ODB13	ODB12	ODB11	ODB10	ODB9	ODB8	ODB7	ODB6	ODB5	ODB4	ODB3	ODB2	ODB1	ODB0	0000

Legend: Reset values are shown in hexadecimal.

TABLE 4-14: PORTC REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4 ⁽¹⁾	Bit 3 ⁽²⁾	Bit 2 ⁽¹⁾	Bit 1 ⁽²⁾	Bit 0	All Resets
TRISC	02D0	TRISC15	TRISC14	TRISC13	TRISC12	—	—	_	—	_	—	—	TRISC4	TRISC3	TRISC2	TRISC1	_	F01E
PORTC	02D2	RC15 ^(3,4)	RC14	RC13	RC12 ⁽³⁾	—	—	—	—	_	—	—	RC4	RC3	RC2	RC1	_	xxxx
LATC	02D4	LATC15	LATC14	LATC13	LATC12	—	—	—	—	—	—	—	LATC4	LATC3	LATC2	LATC1	_	xxxx
ODCC	02D6	ODC15	ODC14	ODC13	ODC12	—	—	_	—	—	—	—	ODC4	ODC3	ODC2	ODC1	—	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Reset values shown are for 100-pin devices.

Note 1: Bits are unimplemented in 64-pin and 80-pin devices; read as '0'.

2: Bits are unimplemented in 64-pin devices; read as '0'.

3: RC12 and RC15 are only available when the Primary Oscillator is disabled or when EC mode is selected (POSCMD<1:0> Configuration bits = 11 or 00); otherwise, read as '0'

4: RC15 is only available when POSCMD<1:0> Configuration bits = 11 or 00 and the OSCIOFN Configuration bit = 1.

TABLE 4-15: PORTD REGISTER MAP

File Name	Addr	Bit 15 ⁽¹⁾	Bit 14 ⁽¹⁾	Bit 13 ⁽¹⁾	Bit 12 ⁽¹⁾	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISD	02D8	TRISD15	TRISD14	TRISD13	TRISD12	TRISD11	TRISD10	TRISD9	TRISD8	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	FFFF
PORTD	02DA	RD15	RD14	RD13	RD12	RD11	RD10	RD9	RD8	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx
LATD	02DC	LATD15	LATD14	LATD13	LATD12	LATD11	LATD10	LATD9	LATD8	LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0	xxxx
ODCD	02DE	ODD15	ODD14	ODD13	ODD12	ODD11	ODD10	ODD9	ODD8	ODD7	ODD6	ODD5	ODD4	ODD3	ODD2	ODD1	ODD0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Reset values shown are for 100-pin devices.

Note 1: Bits are unimplemented on 64-pin devices; read as '0'.

4.3.2 DATA ACCESS FROM PROGRAM MEMORY USING TABLE INSTRUCTIONS

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the program space without going through data space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a program space word as data.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to data space addresses. Program memory can thus be regarded as two, 16-bit word-wide address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space which contains the least significant data word, and TBLRDH and TBLWTH access the space which contains the upper data byte.

Two table instructions are provided to move byte or word-sized (16-bit) data to and from program space. Both function as either byte or word operations.

 TBLRDL (Table Read Low): In Word mode, it maps the lower word of the program space location (P<15:0>) to a data address (D<15:0>). In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when the byte select is '1'; the lower byte is selected when it is '0'. TBLRDH (Table Read High): In Word mode, it maps the entire upper word of a program address (P<23:16>) to a data address. Note that D<15:8>, the 'phantom' byte, will always be '0'. In Byte mode, it maps the upper or lower byte of the program word to D<7:0> of the data address, as above. Note that the data will always be '0' when the upper 'phantom' byte is selected (byte select = 1).

In a similar fashion, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a program space address. The details of their operation are explained in **Section 5.0 "Flash Program Memory"**.

For all table operations, the area of program memory space to be accessed is determined by the Table Memory Page Address (TBLPAG) register. TBLPAG covers the entire program memory space of the device, including user and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.

Note: Only table read operations will execute in the configuration memory space, and only then, in implemented areas, such as the Device ID. Table write operations are not allowed.

© 2010 Microchip Technology Inc.

5.6.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

The user can program one row of Flash program memory at a time. To do this, it is necessary to erase the 8-row erase block containing the desired row. The general process is as follows:

- 1. Read eight rows of program memory (512 instructions) and store in data RAM.
- 2. Update the program data in RAM with the desired new data.
- 3. Erase the block (see Example 5-1 for an implementation in assembler):
 - a) Set the NVMOP bits (NVMCON<3:0>) to ⁽⁰⁰¹⁰⁾ to configure for block erase. Set the ERASE (NVMCON<6>) and WREN (NVMCON<14>) bits.
 - b) Write the starting address of the block to be erased into the TBLPAG and W registers.
 - c) Write 55h to NVMKEY.
 - d) Write AAh to NVMKEY.
 - e) Set the WR bit (NVMCON<15>). The erase cycle begins and the CPU stalls for the duration of the erase cycle. When the erase is done, the WR bit is cleared automatically.
- 4. Write the first 64 instructions from data RAM into the program memory buffers (see Example 5-3 for the implementation in assembler).

- 5. Write the program block to Flash memory:
 - a) Set the NVMOP bits to '0001' to configure for row programming. Clear the ERASE bit and set the WREN bit.
 - b) Write 55h to NVMKEY.
 - c) Write AAh to NVMKEY.
 - d) Set the WR bit. The programming cycle begins and the CPU stalls for the duration of the write cycle. When the write to Flash memory is done, the WR bit is cleared automatically.
- 6. Repeat Steps 4 and 5, using the next available 64 instructions from the block in data RAM by incrementing the value in TBLPAG, until all 512 instructions are written back to Flash memory.

For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPs, as shown in Example 5-5.

Note: The equivalent C code for these steps, prepared using Microchip's MPLAB C30 compiler and a specific library of built-in hardware functions, is shown in Examples 5-2, 5-4 and 5-6.

EXAMPLE 5-1: ERASING A PROGRAM MEMORY BLOCK (ASSEMBLY LANGUAGE CODE)

; Set up NVMCO	N for block erase operation		
MOV	#0x4042, W0	;	
MOV	W0, NVMCON	;	Initialize NVMCON
; Init pointer	to row to be ERASED		
MOV	<pre>#tblpage(PROG_ADDR), W0</pre>	;	
MOV	W0, TBLPAG	;	Initialize PM Page Boundary SFR
MOV	<pre>#tbloffset(PROG_ADDR), W0</pre>	;	Initialize in-page EA[15:0] pointer
TBLWTL	WO, [WO]	;	Set base address of erase block
DISI	#5	;	Block all interrupts with priority <7
		;	for next 5 instructions
MOV	#0x55, W0		
MOV	W0, NVMKEY	;	Write the 55 key
MOV	#0xAA, W1	;	
MOV	W1, NVMKEY	;	Write the AA key
BSET	NVMCON, #WR	;	Start the erase sequence
NOP		;	Insert two NOPs after the erase
NOP		;	command is asserted

6.0 RESETS

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "PIC24F Family Reference Manual", Section 7. "Reset" (DS39712).

The Reset module combines all Reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

- POR: Power-on Reset
- MCLR: Pin Reset
- SWR: RESET Instruction
- · WDT: Watchdog Timer Reset
- · BOR: Brown-out Reset
- CM: Configuration Mismatch Reset
- TRAPR: Trap Conflict Reset
- IOPUWR: Illegal Opcode Reset
- UWR: Uninitialized W Register Reset

A simplified block diagram of the Reset module is shown in Figure 6-1.

Any active source of Reset will make the SYSRST signal active. Many registers associated with the CPU and peripherals are forced to a known Reset state. Most registers are unaffected by a Reset; their status is unknown on POR and unchanged by all other Resets.

Refer to the specific peripheral or CPU Note: section of this manual for register Reset states.

All types of device Reset will set a corresponding status bit in the RCON register to indicate the type of Reset (see Register 6-1). A Power-on Reset will clear all bits except for the BOR and POR bits (RCON<1:0>) which are set. The user may set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software will not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in other sections of this data sheet.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset will be meaningful.

R/W-0

OC4IP0

U-0

bit 8

U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 T4IP2 T4IP1 T4IP0 OC4IP2 OC4IP1 ____ _ bit 15 U-0 R/W-1 R/W-0 R/W-0 U-0 U-0 U-0 ___ OC3IP2 OC3IP1 OC3IP0 ___ ___ ____

bit 7					bit 0						
Legend:											
R = Readal	ble bit	W = Writable bit	U = Unimplemented bit,	, read as '0'							
-n = Value a	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown							
bit 15	Unimple	mented: Read as '0'									
bit 14-12	T4IP<2:0	>: Timer4 Interrupt Priority b	pits								
	111 = Int	errupt is priority 7 (highest p	riority interrupt)								
	•										
	•										
	• 001 = Int	errupt is priority 1									
	000 = Int	errupt source is disabled									
bit 11	Unimple	mented: Read as '0'									
bit 10-8	OC4IP<2:0>: Output Compare Channel 4 Interrupt Priority bits										
	111 = Int	errupt is priority 7 (highest p	riority interrupt)								
	•										
	•										
	001 = Int	errupt is priority 1									
	000 = Int	errupt source is disabled									
bit 7	Unimple	mented: Read as '0'									
bit 6-4	OC3IP<2	:0>: Output Compare Chan	nel 3 Interrupt Priority bits								
	111 = Int	errupt is priority 7 (highest p	riority interrupt)								
	•										
	•										
	- 001 = Int	errupt is priority 1									
	000 = Int	errupt source is disabled									
bit 3-0	Unimple	mented: Read as '0'									

R-0	U-0	R/W-0	U-0	R-0	R-0	R-0	R-0
CPUIRQ	—	VHOLD	—	ILR3	ILR2	ILR1	ILR0
bit 15							bit 8
U-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
_	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15	CPUIRQ: Inte	errupt Request f	from Interrupt (Controller CPU	bit		
	1 = An interru	upt request has	occurred but	has not yet bee	en Acknowledg	ed by the CPU	I; this happens
	when the 0 = No interr	CPU priority is	higher than th	e interrupt prio d	rity		
hit 14		ed: Read as '0'	naeimewieage	G			
bit 13		or Number Car	oture Configura	tion bit			
bit 10	1 = VECNUM	bits contain th	e value of the	highest priority	pending interri	upt	
	0 = VECNUM	I bits contain th	e value of the	last Acknowled	lged interrupt (i	i.e., the last int	errupt that has
	occurred	with higher price	ority than the C	PU, even if oth	er interrupts ar	e pending)	
bit 12	Unimplemen	ted: Read as 'o)'				
bit 11-8	ILR<3:0>: Ne	w CPU Interrup	ot Priority Leve	l bits			
	1111 = CPU i	interrupt priority	/ level is 15				
	•						
	•						
	0001 = CPU i	interrupt priority	/ level is 1				
	0000 = CPU i	interrupt priority	/ level is 0				
bit 7	Unimplemente	ed: Read as '0'					
bit 6-0	VECNUM<6:0)>: Pending Int	errupt Vector II	D bits (pending	vector number	r is VECNUM +	⊦8)
	0111111 = In	iterrupt vector p	bending is num	ber 135			
	•						
	•						
	0000001 = In	iterrupt vector p	pending is num	ber 9 ber 9			
	0000000 = In						

REGISTER 7-39: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP5R5 ⁽¹⁾	RP5R4 ⁽¹⁾	RP5R3 ⁽¹⁾	RP5R2 ⁽¹⁾	RP5R1 ⁽¹⁾	RP5R0 ⁽¹⁾
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP4R5	RP4R4	RP4R3	RP4R2	RP4R1	RP4R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP5R<5:0>: RP5 Output Pin Mapping bits ⁽¹⁾

Peripheral output number n is assigned to pin, RP5 (see Table 10-3 for peripheral function numbers).bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP4R<5:0>:** RP4 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP4 (see Table 10-3 for peripheral function numbers).

Note 1: Unimplemented in 64-pin devices; read as '0'.

REGISTER 10-25: RPOR3: PERIPHERAL PIN SELECT OUTPUT REGISTER 3

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP7R5	RP7R4	RP7R3	RP7R2	RP7R1	RP7R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		RP6R5	RP6R4	RP6R3	RP6R2	RP6R1	RP6R0

bit 7

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP7R<5:0>:** RP7 Output Pin Mapping bits

Peripheral output number n is assigned to pin, RP7 (see Table 10-3 for peripheral function numbers).

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP6R<5:0>:** RP6 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP6 (see Table 10-3 for peripheral function numbers).

bit 0

NOTES:

FIGURE 14-2: OUTPUT COMPARE BLOCK DIAGRAM (DOUBLE-BUFFERED, 16-BIT PWM MODE)

14.3.1 PWM PERIOD

The PWM period is specified by writing to PRy, the Timer Period register. The PWM period can be calculated using Equation 14-1.

EQUATION 14-1: CALCULATING THE PWM PERIOD⁽¹⁾

PWM Period = $[(PRy) + 1] \bullet TCY \bullet (Timer Prescale Value)$

where: PWM Frequency = 1/[PWM Period]

- **Note 1:** Based on TCY = TOSC * 2, Doze mode and PLL are disabled.
- Note: A PRy value of N will produce a PWM period of N + 1 time base count cycles. For example, a value of 7 written into the PRy register will yield a period consisting of 8 time base cycles.

14.3.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the OCxRS and OCxR registers. The OCxRS and OCxR registers can be written to at any time, but the duty cycle value is not latched until a match between PRy and TMRy occurs (i.e., the period is complete). This provides a double buffer for the PWM duty cycle and is essential for glitchless PWM operation.

Some important boundary parameters of the PWM duty cycle include:

- If OCxR, OCxRS and PRy are all loaded with 0000h, the OCx pin will remain low (0% duty cycle).
- If OCxRS is greater than PRy, the pin will remain high (100% duty cycle).

See Example 14-1 for PWM mode timing details. Table 14-1 and Table 14-2 show example PWM frequencies and resolutions for a device operating at 4 MIPS and 10 MIPS, respectively.

FIGURE 15-3: SPI MASTER/SLAVE CONNECTION (STANDARD MODE)

FIGURE 15-4: SPI MASTER/SLAVE CONNECTION (ENHANCED BUFFER MODES)

REGISTER 17-2: UxSTA: UARTX STATUS AND CONTROL REGISTER

R/W-0	R/W-0	R/W-0	U-0	R/W-0 HC	R/W-0	R-0	R-1				
UTXISEL1	UTXINV ⁽¹⁾	UTXISEL0	_	UTXBRK	UTXEN ⁽²⁾	UTXBF	TRMT				
bit 15	-				•		bit 8				
R/W-0	R/W-0	R/W-0	R-1	R-0	R-0	R/C-0	R-0				
URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA				
bit 7							bit 0				
Legend:		C = Clearable	bit	HC = Hardwa	re Clearable bi	it					
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown				
	11 = Reserv 10 = Interrup the tran 01 = Interrup operation 00 = Interrup least or	ed; do not use of when a chara ismit buffer beco of when the la ons are comple of when a chara he character op	acter is transfe comes empty st character i ted acter is transfe en in the trans	erred to the Tra s shifted out c erred to the Tra smit buffer)	nsmit Shift Reg of the Transmi nsmit Shift Re	gister (TSR), a t Shift Registe gister (this imp	nd as a result, er; all transmit lies there is at				
bit 14	UTXINV: IrDA <u>IREN = 0:</u> 1 = UxTX Idle 0 = UxTX Idle <u>IREN = 1:</u> 1 = UxTX Idle 0 = UxTX Idle	" Encoder Tra ' ' 0' ' ' 1' ' ' 1' ' ' 0'	nsmit Polarity	Inversion bit ⁽¹⁾							
bit 12	Unimplemen	ted: Read as '	כי								
bit 11	UTXBRK: Tra	ansmit Break bi	t								
	1 = Send Svr	1 - Send Sync Break on part transmission – Start hit followed by twelve (0) hits followed by Stop hit									

- 1 = Send Sync Break on next transmission Start bit, followed by twelve '0' bits, followed by Stop bit; cleared by hardware upon completion
 0 = Sync Break transmission disabled or completed
- bit 10 UTXEN: Transmit Enable bit⁽²⁾
 - 1 = Transmit enabled; UxTX pin controlled by UARTx
 - Transmit disabled; any pending transmission is aborted and the buffer is reset, UxTX pin controlled by port
- bit 9 UTXBF: Transmit Buffer Full Status bit (read-only)
 - 1 = Transmit buffer is full
 - 0 = Transmit buffer is not full; at least one more character can be written
- bit 8 **TRMT:** Transmit Shift Register Empty bit (read-only)
 - 1 = Transmit Shift Register is empty and transmit buffer is empty (the last transmission has completed)
 0 = Transmit Shift Register is not empty, a transmission is in progress or queued
- bit 7-6 URXISEL<1:0>: Receive Interrupt Mode Selection bits
 - 11 = Interrupt is set on RSR transfer, making the receive buffer full (i.e., has 4 data characters)
 - 10 = Interrupt is set on RSR transfer, making the receive buffer 3/4 full (i.e., has 3 data characters)
 - 0x = Interrupt is set when any character is received and transferred from the RSR to the receive buffer. Receive buffer has one or more characters.
- **Note 1:** Value of bit only affects the transmit properties of the module when the IrDA[®] encoder is enabled (IREN = 1).
 - 2: If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn pin. See Section 10.4 "Peripheral Pin Select" for more information.

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
CTMUEN	—	CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN	CTTRIG	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
EDG2POL	EDG2SEL1	EDG2SEL0	EDG1POL	EDG1SEL1	EDG1SEL0	EDG2STAT	EDG1STAT	
bit 7		-		•			bit 0	
Legend:								
R = Readabl	le bit	W = Writable	oit	U = Unimplen	nented bit, read	as '0'		
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown	
bit 15	CTMUEN: CT	MU Enable bit						
	1 = Module is	s enabled						
	0 = Module is	s disabled						
bit 14	Unimplemen	ted: Read as 'o)'					
bit 13	CTMUSIDL: S	Stop in Idle Moo	de bit					
	1 = Discontin	ue module ope	ration when de	evice enters Idi	e mode			
hit 12		Generation Ena	ible hit(1)					
SICIE	1 = Enables	edge delav gen	eration					
	0 = Disables	edge delay ger	neration					
bit 11	EDGEN: Edg	e Enable bit						
	1 = Edges ar	e not blocked						
	0 = Edges ar	e blocked						
bit 10	EDGSEQEN:	Edge Sequence	e Enable bit	_				
	1 = Edge 1 e	vent must occu	r before Edge	2 event can oc	cur			
hit Q		alog Current Sc	urce Control h	sit				
bit 5	1 = Analog ci	urrent source o	utput is around	ded				
	0 = Analog c	urrent source o	utput is not gro	ounded				
bit 8	CTTRIG: Trig	ger Control bit						
	1 = Trigger o	utput is enabled	t					
	0 = Trigger o	utput is disable	d					
bit 7	EDG2POL: E	dge 2 Polarity	Select bit					
	1 = Edge 2 p	rogrammed for	a positive edg	le response				
bit 6 5			a negative eu	geresponse				
DIL 0-5	11 = CTED1	. 0>. Euge 2 30 nin		5				
	10 = CTED1	pin						
	01 = OC1 mo	dule						
	00 = Timer1 r	nodule						
bit 4	EDG1POL: Edge 1 Polarity Select bit							
	1 = Edge 1 p 0 = Edge 1 p	rogrammed for	a positive edg	le response				
			a negative eu	ge response				
Note 1: If	TGEN = 1, the	CTEDGx inputs	and CTPLS of	utputs must be	assigned to available	ailable RPn pir	ns before use.	

See Section 10.4 "Peripheral Pin Select" for more information.

REGISTER 24-1: CTMUCON: CTMU CONTROL REGISTER

© 2010 Microchip Technology Inc.

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None
	BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None
BTST	BTST	f,#bit4	Bit Test f	1	1	Z
	BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С
	BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z
	BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С
	BTST.Z	Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z
BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z
	BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С
	BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z
CALL	CALL	lit23	Call Subroutine	2	2	None
	CALL	Wn	Call Indirect Subroutine	1	2	None
CLR	CLR	f	f = 0x0000	1	1	None
	CLR	WREG	WREG = 0x0000	1	1	None
	CLR	Ws	Ws = 0x0000	1	1	None
CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO, Sleep
COM	СОМ	f	f = f	1	1	N, Z
	СОМ	f,WREG	WREG = f	1	1	N, Z
	COM	Ws.Wd	$Wd = \overline{Ws}$	1	1	N. Z
CP	CP	f	Compare f with WREG	1	1	C DC N OV Z
01	CP	- Wb.#lit5	Compare Wb with lit5	1	1	C DC N OV Z
	CP	Wb.Ws	Compare Wb with Ws (Wb – Ws)	1	1	C DC N OV Z
CPO	CPO	f	Compare f with 0x0000	1	1	C DC N OV Z
010	CPO	WS	Compare Ws with 0x0000	1	1	C DC N OV Z
CPB	CPB	f	Compare f with WREG with Borrow	1	1	C DC N OV Z
01.2	CPB	- Wb.#lit5	Compare Wb with lit5 with Borrow	1	1	C DC N OV Z
	CPB	Wb,Ws	Compare Wb with Ws, with Borrow	1	1	C, DC, N, OV, Z
CPSEQ	CPSEQ	Wb,Wn	Compare Wb with Wn, Skip if =	1	1 (2 or 3)	None
CPSGT	CPSGT	Wb,Wn	Compare Wb with Wn, Skip if >	1	1 (2 or 3)	None
CPSLT	CPSLT	Wb,Wn	Compare Wb with Wn, Skip if <	1	1 (2 or 3)	None
CPSNE	CPSNE	Wb,Wn	Compare Wb with Wn, Skip if ≠	1	1 (2 or 3)	None
DAW	DAW.b	Wn	Wn = Decimal Adjust Wn	1	1	С
DEC	DEC	f	f = f - 1	1	1	C, DC, N, OV, Z
	DEC	f,WREG	WREG = f – 1	1	1	C, DC, N, OV, Z
	DEC	Ws,Wd	Wd = Ws - 1	1	1	C, DC, N, OV, Z
DEC2	DEC2	f	f = f - 2	1	1	C, DC, N, OV, Z
	DEC2	f,WREG	WREG = f – 2	1	1	C, DC, N, OV, Z
	DEC2	Ws,Wd	Wd = Ws - 2	1	1	C, DC, N, OV, Z
DISI	DISI	#lit14	Disable Interrupts for k Instruction Cycles	1	1	None
DIV	DIV.SW	Wm,Wn	Signed 16/16-bit Integer Divide	1	18	N, Z, C, OV
	DIV.SD	Wm,Wn	Signed 32/16-bit Integer Divide	1	18	N, Z, C, OV
	DIV.UW	Wm,Wn	Unsigned 16/16-bit Integer Divide	1	18	N, Z, C, OV
	DIV.UD	Wm,Wn	Unsigned 32/16-bit Integer Divide	1	18	N, Z, C, OV
EXCH	EXCH	Wns,Wnd	Swap Wns with Wnd	1	1	None
FF1L	FF1L	Ws,Wnd	Find First One from Left (MSb) Side	1	1	С
FF1R	FF1R	Ws,Wnd	Find First One from Right (LSb) Side	1	1	С

TABLE 26-2: INSTRUCTION SET OVERVIEW (CONTINUED)

TABLE 28-5: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

DC CHARACTERISTICS			$ \begin{array}{l} \mbox{Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \\ \end{array} $					
Parameter No.	Typical ⁽¹⁾	Мах	Units	Conditions				
Idle Current (I	IDLE): Core O	ff, Clock On	Base Current,	PMD Bits are Set ⁽²⁾				
DC40	220	310	μA	-40°C				
DC40a	220	310	μA	+25°C	2 OV(3)			
DC40b	220	310	μA	+85°C	2.000			
DC40c	260	350	μA	+125°C				
DC40d	300	390	μA	-40°C				
DC40e	300	390	μA	+25°C	2 21/(4)			
DC40f	320	420	μA	+85°C	5.50 (7			
DC40g	340	450	μA	+125°C				
DC43	0.85	1.1	mA	-40°C		- 4 MIPS		
DC43a	0.85	1.1	mA	+25°C	2 01/(3)			
DC43b	0.87	1.2	mA	+85°C	2.000			
DC43c	0.87	1.2	mA	+125°C				
DC43d	1.1	1.4	mA	-40°C				
DC43e	1.1	1.4	mA	+25°C	3 3/(4)			
DC43f	1.1	1.4	mA	+85°C	5.50			
DC43g	1.1	1.5	mA	+125°C				
DC47	4.4	5.6	mA	-40°C				
DC47a	4.4	5.6	mA	+25°C	2 5/(3)			
DC47b	4.4	5.6	mA	+85°C	2.50			
DC47c	4.4	5.6	mA	+125°C		16 MIDS		
DC47d	4.4	5.6	mA	-40°C				
DC47e	4.4	5.6	mA	+25°C	3 3\/(4)			
DC47f	4.4	5.6	mA	+85°C	3.50			
DC47g	4.4	5.6	mA	+125°C				
DC50	1.1	1.4	mA	-40°C				
DC50a	1.1	1.4	mA	+25°C	2 01/(3)			
DC50b	1.1	1.4	mA	+85°C	2.000			
DC50c	1.2	1.5	mA	+125°C				
DC50d	1.4	1.8	mA	-40°C				
DC50e	1.4	1.8	mA	+25°C	3 3//(4)			
DC50f	1.4	1.8	mA	+85°C	0.0017			
DC50g	1.4	1.8	mA	+125°C				

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Base IIDLE current is measured with core off, clock on, all modules off and all of the Peripheral Module Disable (PMD) bits are set.

3: On-chip voltage regulator disabled (ENVREG tied to Vss).

4: On-chip voltage regulator enabled (ENVREG tied to VDD).

FIGURE 28-7: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING CHARACTERISTICS

TABLE 28-21:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER
AND BROWN-OUT RESET TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 2.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions	
SY10	TmcL	MCLR Pulse Width (low)	2	_	_	μS		
SY11	TPWRT	Power-up Timer Period	_	64	—	ms		
SY12	TPOR	Power-on Reset Delay	1	5	10	μs		
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	_	_	100	ns		
SY20	TWDT	Watchdog Timer Time-out Period	0.85	1.0	1.15	ms	1:32 prescaler	
			3.4	4.0	4.6	ms	1:128 prescaler	
SY25	TBOR	Brown-out Reset Pulse Width	1	_	_	μS	$VDD \le VBOR$, voltage regulator disabled	

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

NOTES:

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-149B Sheet 1 of 2

100-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-100B

NOTES: