Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|---| | | | | Product Status | Active | | Core Processor | PIC | | Core Size | 16-Bit | | Speed | 32MHz | | Connectivity | I ² C, IrDA, LINbus, SPI, UART/USART | | Peripherals | Brown-out Detect/Reset, LVD, POR, PWM, WDT | | Number of I/O | 69 | | Program Memory Size | 64KB (22K x 24) | | Program Memory Type | FLASH | | EEPROM Size | - | | RAM Size | 16K x 8 | | Voltage - Supply (Vcc/Vdd) | 2V ~ 3.6V | | Data Converters | A/D 16x10b | | Oscillator Type | Internal | | Operating Temperature | -40°C ~ 85°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 80-TQFP | | Supplier Device Package | 80-TQFP (12x12) | | Purchase URL | https://www.e-xfl.com/product-detail/microchip-technology/pic24fj64ga108-i-pt | ## 3.3 Arithmetic Logic Unit (ALU) The PIC24F ALU is 16 bits wide and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are 2's complement in nature. Depending on the operation, the ALU may affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the SR register. The C and DC Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations. The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is used. Data for the ALU operation can come from the W register array, or data memory, depending on the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W register array or a data memory location. The PIC24F CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware for 16-bit divisor division. #### 3.3.1 MULTIPLIER The ALU contains a high-speed, 17-bit x 17-bit multiplier. It supports unsigned, signed or mixed sign operation in several multiplication modes: - 1. 16-bit x 16-bit signed - 2. 16-bit x 16-bit unsigned - 3. 16-bit signed x 5-bit (literal) unsigned - 4. 16-bit unsigned x 16-bit unsigned - 5. 16-bit unsigned x 5-bit (literal) unsigned - 6. 16-bit unsigned x 16-bit signed - 7. 8-bit unsigned x 8-bit unsigned #### 3.3.2 DIVIDER The divide block supports signed and unsigned integer divide operations with the following data sizes: - 1. 32-bit signed/16-bit signed divide - 2. 32-bit unsigned/16-bit unsigned divide - 3. 16-bit signed/16-bit signed divide - 4. 16-bit unsigned/16-bit unsigned divide The quotient for all divide instructions ends up in W0 and the remainder in W1. Sixteen-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn), and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/16-bit and 16-bit/16-bit instructions take the same number of cycles to execute. ### 3.3.3 MULTI-BIT SHIFT SUPPORT The PIC24F ALU supports both single bit and single-cycle, multi-bit arithmetic and logic shifts. Multi-bit shifts are implemented using a shifter block, capable of performing up to a 15-bit arithmetic right shift, or up to a 15-bit left shift, in a single cycle. All multi-bit shift instructions only support Register Direct Addressing for both the operand source and result destination. A full summary of instructions that use the shift operation is provided below in Table 3-2. #### TABLE 3-2: INSTRUCTIONS THAT USE THE SINGLE AND MULTI-BIT SHIFT OPERATION | Instruction | Description | |-------------|---| | ASR | Arithmetic shift right source register by one or more bits. | | SL | Shift left source register by one or more bits. | | LSR | Logical shift right source register by one or more bits. | ### 4.0 MEMORY ORGANIZATION As Harvard architecture devices, PIC24F microcontrollers feature separate program and data memory spaces and busses. This architecture also allows the direct access of program memory from the data space during code execution. ### 4.1 Program Address Space The program address memory space of the PIC24FJ256GA110 family devices is 4M instructions. The space is addressable by a 24-bit value derived from either the 23-bit Program Counter (PC) during program execution, or from table operation or data space remapping, as described in **Section 4.3 "Interfacing Program and Data Memory Spaces"**. User access to the program memory space is restricted to the lower half of the address range (000000h to 7FFFFFh). The exception is the use of TBLRD/TBLWT operations which use TBLPAG<7> to permit access to the Configuration bits and Device ID sections of the configuration memory space. Memory maps for the PIC24FJ256GA110 family of devices are shown in Figure 4-1. FIGURE 4-1: PROGRAM SPACE MEMORY MAP FOR PIC24FJ256GA110 FAMILY DEVICES ### TABLE 4-8: OUTPUT COMPARE REGISTER MAP (CONTINUED) | File
Name | Addr | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | All
Resets | |--------------|------|--------|--|----------|---------|---------|---------|-------|-------------|-------------|---------------|--------|----------|----------|----------|----------|----------|---------------| | OC8CON1 | 01D6 | _ | _ | OCSIDL | OCTSEL2 | OCTSEL1 | OCTSEL0 | _ | _ | ENFLT0 | _ | _ | OCFLT0 | TRIGMODE | OCM2 | OCM1 | OCM0 | 0000 | | OC8CON2 | 01D8 | FLTMD | FLTOUT | FLTTRIEN | OCINV | _ | _ | _ | OC32 | OCTRIG | TRIGSTAT | OCTRIS | SYNCSEL4 | SYNCSEL3 | SYNCSEL2 | SYNCSEL1 | SYNCSEL0 | 000C | | OC8RS | 01DA | | | | | | | 0 | utput Compa | are 8 Secon | dary Register | , | | | | | | 0000 | | OC8R | 01DC | | | | | | | | Output 0 | Compare 8 F | Register | | | | | | | 0000 | | OC8TMR | 01DE | | | | | | | | Timer | Value 8 Req | gister | | | | | | | xxxx | | OC9CON1 | 01E0 | _ | I | OCSIDL | OCTSEL2 | OCTSEL1 | OCTSEL0 | _ | _ | ENFLT0 | _ | - | OCFLT0 | TRIGMODE | OCM2 | OCM1 | OCM0 | 0000 | | OC9CON2 | 01E2 | FLTMD | FLTOUT | FLTTRIEN | OCINV | - | _ | _ | OC32 | OCTRIG | TRIGSTAT | OCTRIS | SYNCSEL4 | SYNCSEL3 | SYNCSEL2 | SYNCSEL1 | SYNCSEL0 | 000C | | OC9RS | 01E4 | | Output Compare 9 Secondary Register 00 | | | | | | | | 0000 | | | | | | | | | OC9R | 01E6 | | Output Compare 9 Register 0 | | | | | | | | 0000 | | | | | | | | | OC9TMR | 01E8 | | Timer Value 9 Register xx | | | | | | | | xxxx | | | | | | | | **Legend:** — = unimplemented, read as '0'. Reset values are shown in hexadecimal. ## TABLE 4-9: I²C[~] REGISTER MAP | | | | | | | | | | | | 1 | | | | | | | | |--------------|------|---------|--------|---------|--------|--------|--------|--------------------------------|-------|-------|-------|------------|-------------|------------|-------|-------|-------|---------------| | File
Name | Addr | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | All
Resets | | I2C1RCV | 0200 | _ | _ | _ | _ | _ | _ | _ | _ | | | | Receive | Register | | | | 0000 | | I2C1TRN | 0202 | _ | _ | _ | _ | _ | _ | _ | _ | | | | Transmit | Register | | | | 00FF | | I2C1BRG | 0204 | _ | _ | _ | _ | _ | _ | _ | | | | Baud Rat | e Generato | r Register | | | | 0000 | | I2C1CON | 0206 | I2CEN | _ | I2CSIDL | SCLREL | IPMIEN | A10M | DISSLW | SMEN | GCEN | STREN | ACKDT | ACKEN | RCEN | PEN | RSEN | SEN | 1000 | | I2C1STAT | 0208 | ACKSTAT | TRSTAT | _ | _ | _ | BCL | GCSTAT | ADD10 | IWCOL | I2COV | D/A | Р | S | R/W | RBF | TBF | 0000 | | I2C1ADD | 020A | _ | _ | _ | _ | _ | _ | | | | | Address | Register | | | | | 0000 | | I2C1MSK | 020C | _ | _ | _ | _ | _ | _ | | | | 1 | Address Ma | isk Registe | r | | | | 0000 | | I2C2RCV | 0210 | _ | _ | _ | _ | _ | _ | _ | _ | | | | Receive | Register | | | | 0000 | | I2C2TRN | 0212 | _ | _ | _ | _ | _ | | _ | - | | | | Transmit | Register | | | | 00FF | | I2C2BRG | 0214 | _ | _ | _ | _ | _ | _ | _ | | | | Baud Rat | e Generato | r Register | | | | 0000 | | I2C2CON | 0216 | I2CEN | _ | I2CSIDL | SCLREL | IPMIEN | A10M | DISSLW | SMEN | GCEN | STREN | ACKDT | ACKEN | RCEN | PEN | RSEN | SEN | 1000 | | I2C2STAT | 0218 | ACKSTAT | TRSTAT | _ | _ | _ | BCL | GCSTAT | ADD10 | IWCOL | I2COV | D/Ā | Р | S | R/W | RBF | TBF | 0000 | | I2C2ADD | 021A | _ | _ | _ | _ | _ | - | | | • | | Address | Register | • | | • | | 0000 | | I2C2MSK | 021C | _ | _ | _ | _ | _ | _ | | | | 1 | Address Ma | isk Registe | r | | | | 0000 | | I2C3RCV | 0270 | _ | _ | _ | _ | _ | _ | _ | _ | | | | Receive | Register | | | | 0000 | | I2C3TRN | 0272 | _ | _ | _ | _ | _ | _ | _ | _ | | | | Transmit | Register | | | | 00FF | | I2C3BRG | 0274 | _ | _ | _ | _ | _ | _ | — Baud Rate Generator Register | | | | | | 0000 | | | | | | I2C3CON | 0276 | I2CEN | _ | I2CSIDL | SCLREL | IPMIEN | A10M | DISSLW | SMEN | GCEN | STREN | ACKDT | ACKEN | RCEN | PEN | RSEN | SEN | 1000 | | I2C3STAT | 0278 | ACKSTAT | TRSTAT | _ | _ | _ | BCL | GCSTAT | ADD10 | IWCOL | I2COV | D/A | Р | S | R/W | RBF | TBF | 0000 | | I2C3ADD | 027A | - | _ | _ | _ | _ | - | | | • | • | Address | Register | • | | • | | 0000 | | I2C3MSK | 027C | _ | _ | _ | _ | _ | | | | | | Address Ma | sk Registe | r | | | | 0000 | **Legend:** — = unimplemented, read as '0'. Reset values are shown in hexadecimal. | TABLE 4-20 : | ADC REGISTER MAP | |---------------------|------------------| | Eil- | | | File
Name | Addr | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | AII
Resets | |--------------|------|--------|--------|--------|--------|--------|--------|--------|----------|------------|-------|-------|--------|--------|--------|--------|--------|---------------| | ADC1BUF0 | 0300 | | | | | | | | ADC Data | a Buffer 0 | | | | | | | | xxxx | | ADC1BUF1 | 0302 | | | | | | | | ADC Data | a Buffer 1 | | | | | | | | xxxx | | ADC1BUF2 | 0304 | | | | | | | | ADC Data | a Buffer 2 | | | | | | | | xxxx | | ADC1BUF3 | 0306 | | | | | | | | ADC Data | a Buffer 3 | | | | | | | | xxxx | | ADC1BUF4 | 0308 | | | | | | | | ADC Data | a Buffer 4 | | | | | | | | xxxx | | ADC1BUF5 | 030A | | | | | | | | ADC Data | a Buffer 5 | | | | | | | | xxxx | | ADC1BUF6 | 030C | | | | | | | | ADC Data | a Buffer 6 | | | | | | | | xxxx | | ADC1BUF7 | 030E | | | | | | | | ADC Data | a Buffer 7 | | | | | | | | xxxx | | ADC1BUF8 | 0310 | | | | | | | | ADC Data | a Buffer 8 | | | | | | | | xxxx | | ADC1BUF9 | 0312 | | | | | | | | ADC Data | a Buffer 9 | | | | | | | | xxxx | | ADC1BUFA | 0314 | | | | | | | | ADC Data | Buffer 10 | | | | | | | | xxxx | | ADC1BUFB | 0316 | | | | | | | | ADC Data | Buffer 11 | | | | | | | | xxxx | | ADC1BUFC | 0318 | | | | | | | | ADC Data | Buffer 12 | | | | | | | | xxxx | | ADC1BUFD | 031A | | | | | | | | ADC Data | Buffer 13 | | | | | | | | xxxx | | ADC1BUFE | 031C | | | | | | | | ADC Data | Buffer 14 | | | | | | | | xxxx | | ADC1BUFF | 031E | | | | | | | | ADC Data | Buffer 15 | | | | | | | | xxxx | | AD1CON1 | 0320 | ADON | _ | ADSIDL | _ | - | _ | FORM1 | FORM0 | SSRC2 | SSRC1 | SSRC0 | _ | _ | ASAM | SAMP | DONE | 0000 | | AD1CON2 | 0322 | VCFG2 | VCFG1 | VCFG0 | r | ı | CSCNA | ı | _ | BUFS | ı | SMPI3 | SMPI2 | SMPI1 | SMPI0 | BUFM | ALTS | 0000 | | AD1CON3 | 0324 | ADRC | r | r | SAMC4 | SAMC3 | SAMC2 | SAMC1 | SAMC0 | ADCS7 | ADCS6 | ADCS5 | ADCS4 | ADCS3 | ADCS2 | ADCS1 | ADCS0 | 0000 | | AD1CHS | 0328 | CH0NB | _ | _ | CH0SB4 | CH0SB3 | CH0SB2 | CH0SB1 | CH0SB0 | CH0NA | - | - | CH0SA4 | CH0SA3 | CH0SA2 | CH0SA1 | CH0SA0 | 0000 | | AD1PCFGL | 032C | PCFG15 | PCFG14 | PCFG13 | PCFG12 | PCFG11 | PCFG10 | PCFG9 | PCFG8 | PCFG7 | PCFG6 | PCFG5 | PCFG4 | PCFG3 | PCFG2 | PCFG1 | PCFG0 | 0000 | | AD1PCFGH | 032A | | _ | | | 1 | _ | 1 | _ | _ | | - | _ | - | _ | PCFG17 | PCFG16 | 0000 | | AD1CSSL | 0330 | CSSL15 | CSSL14 | CSSL13 | CSSL12 | CSSL11 | CSSL10 | CSSL9 | CSSL8 | CSSL7 | CSSL6 | CSSL5 | CSSL4 | CSSL3 | CSSL2 | CSSL1 | CSSL0 | 0000 | **Legend:** — = unimplemented, read as '0', r = reserved, maintain as '0'. Reset values are shown in hexadecimal. ### TABLE 4-21: CTMU REGISTER MAP | File
Name | Addr | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | All
Resets | |--------------|------|--------|--------|----------|--------|--------|----------|---------|--------|---------|----------|----------|---------|----------|----------|----------|----------|---------------| | CTMUCON | 033C | CTMUEN | _ | CTMUSIDL | TGEN | EDGEN | EDGSEQEN | IDISSEN | CTTRIG | EDG2POL | EDG2SEL1 | EDG2SEL0 | EDG1POL | EDG1SEL1 | EDG1SEL0 | EDG2STAT | EDG1STAT | 0000 | | CTMUICON | 033E | ITRIM5 | ITRIM4 | ITRIM3 | ITRIM2 | ITRIM1 | ITRIM0 | IRNG1 | IRNG0 | _ | _ | _ | _ | _ | _ | 1 | _ | 0000 | **Legend:** — = unimplemented, read as '0'. Reset values are shown in hexadecimal. #### REGISTER 7-16: IEC5: INTERRUPT ENABLE CONTROL REGISTER 5 | U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | |--------|-----|-------|-------|--------|--------|--------|--------| | _ | _ | IC9IE | OC9IE | SPI3IE | SPF3IE | U4TXIE | U4RXIE | | bit 15 | | | | | | | bit 8 | | R/W-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | U-0 | |--------|-----|---------|---------|--------|--------|--------|-------| | U4ERIE | _ | MI2C3IE | SI2C3IE | U3TXIE | U3RXIE | U3ERIE | _ | | bit 7 | | | | | | | bit 0 | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-14 Unimplemented: Read as '0' bit 13 IC9IE: Input Capture Channel 9 Interrupt Enable bit 1 = Interrupt request enabled0 = Interrupt request not enabled bit 12 OC9IE: Output Compare Channel 9 Interrupt Enable bit 1 = Interrupt request enabled0 = Interrupt request not enabled bit 11 SPI3IE: SPI3 Event Interrupt Enable bit 1 = Interrupt request enabled0 = Interrupt request not enabled bit 10 SPF3IE: SPI3 Fault Interrupt Enable bit 1 = Interrupt request enabled0 = Interrupt request not enabled bit 9 **U4TXIE:** UART4 Transmitter Interrupt Enable bit 1 = Interrupt request enabled0 = Interrupt request not enabled bit 8 **U4RXIE:** UART4 Receiver Interrupt Enable bit 1 = Interrupt request enabled0 = Interrupt request not enabled bit 7 **U4ERIE:** UART4 Error Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled Unimplemented: Read as '0' bit 6 **Unimplemented:** Read as '0' bit 5 MI2C3IE: Master I2C3 Event Interrupt Enable bit 1 = Interrupt request enabled0 = Interrupt request not enabled bit 4 SI2C3IE: Slave I2C3 Event Interrupt Enable bit 1 = Interrupt request enabled0 = Interrupt request not enabled bit 3 U3TXIE: UART3 Transmitter Interrupt Enable bit 1 = Interrupt request enabled0 = Interrupt request not enabled bit 2 U3RXIE: UART3 Receiver Interrupt Enable bit 1 = Interrupt request enabled0 = Interrupt request not enabled bit 1 **U3ERIE:** UART3 Error Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled Unimplemented: Read as '0' bit 0 ### REGISTER 7-32: IPC16: INTERRUPT PRIORITY CONTROL REGISTER 16 | U-0 | R/W-1 | R/W-0 | R/W-0 | U-0 | R/W-1 | R/W-0 | R/W-0 | |--------|--------|--------|--------|-----|---------|---------|---------| | _ | CRCIP2 | CRCIP1 | CRCIP0 | _ | U2ERIP2 | U2ERIP1 | U2ERIP0 | | bit 15 | | | | | | | bit 8 | | U-0 | R/W-1 | R/W-0 | R/W-0 | U-0 | U-0 | U-0 | U-0 | |-------|---------|---------|---------|-----|-----|-----|-------| | _ | U1ERIP2 | U1ERIP1 | U1ERIP0 | _ | _ | _ | _ | | bit 7 | | | | | | | bit 0 | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 **Unimplemented:** Read as '0' bit 14-12 CRCIP<2:0>: CRC Generator Error Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 11 **Unimplemented:** Read as '0' bit 10-8 **U2ERIP<2:0>:** UART2 Error Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • . 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 7 **Unimplemented:** Read as '0' bit 6-4 **U1ERIP<2:0>:** UART1 Error Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 3-0 **Unimplemented:** Read as '0' **NOTES:** FIGURE 18-2: LEGACY PARALLEL SLAVE PORT EXAMPLE FIGURE 18-3: ADDRESSABLE PARALLEL SLAVE PORT EXAMPLE TABLE 18-1: SLAVE MODE ADDRESS RESOLUTION | PMA<1:0> | Output Register (Buffer) | Input Register (Buffer) | |----------|--------------------------|-------------------------| | 00 | PMDOUT1<7:0> (0) | PMDIN1<7:0> (0) | | 01 | PMDOUT1<15:8> (1) | PMDIN1<15:8> (1) | | 10 | PMDOUT2<7:0> (2) | PMDIN2<7:0> (2) | | 11 | PMDOUT2<15:8> (3) | PMDIN2<15:8> (3) | FIGURE 18-4: MASTER MODE, DEMULTIPLEXED ADDRESSING (SEPARATE READ AND WRITE STROBES, TWO CHIP SELECTS) ## REGISTER 19-1: RCFGCAL: RTCC CALIBRATION AND CONFIGURATION REGISTER⁽¹⁾ (CONTINUED) bit 7-0 CAL<7:0>: RTC Drift Calibration bits 01111111 = Maximum positive adjustment; adds 508 RTC clock pulses every one minute ... 00000001 = Minimum positive adjustment; adds 4 RTC clock pulses every one minute 00000000 = No adjustment 11111111 = Minimum negative adjustment; subtracts 4 RTC clock pulses every one minute --- 10000000 = Maximum negative adjustment; subtracts 512 RTC clock pulses every one minute **Note 1:** The RCFGCAL register is only affected by a POR. 2: A write to the RTCEN bit is only allowed when RTCWREN = 1. 3: This bit is read-only; it is cleared to '0' on a write to the lower half of the MINSEC register. ### REGISTER 19-2: PADCFG1: PAD CONFIGURATION CONTROL REGISTER | U-0 |--------|-----|-----|-----|-----|-----|-----|-------| | _ | _ | _ | _ | _ | | | _ | | bit 15 | | | | | | | bit 8 | | U-0 | U-0 | U-0 | U-0 | U-0 | U-0 | R/W-0 | R/W-0 | |-------|-----|-----|-----|-----|-----|-------------------------|--------| | _ | _ | _ | _ | _ | _ | RTSECSEL ⁽¹⁾ | PMPTTL | | bit 7 | | | | | | | bit 0 | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-2 **Unimplemented:** Read as '0' bit 1 RTSECSEL: RTCC Seconds Clock Output Select bit (1) 1 = RTCC seconds clock is selected for the RTCC pin0 = RTCC alarm pulse is selected for the RTCC pin bit 0 PMPTTL: PMP Module TTL Input Buffer Select bit 1 = PMP module inputs (PMDx, PMCS1) use TTL input buffers 0 = PMP module inputs use Schmitt Trigger input buffers Note 1: To enable the actual RTCC output, the RTCOE (RCFGCAL<10>) bit must also be set. #### REGISTER 21-4: AD1CHS: A/D INPUT SELECT REGISTER | R/W-0 | U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | |--------|-----|-----|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------| | CH0NB | _ | _ | CH0SB4 ⁽¹⁾ | CH0SB3 ⁽¹⁾ | CH0SB2 ⁽¹⁾ | CH0SB1 ⁽¹⁾ | CH0SB0 ⁽¹⁾ | | bit 15 | | | | | | | bit 8 | | R/W-0 | U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | |-------|-----|-----|--------|--------|--------|--------|--------| | CH0NA | _ | _ | CH0SA4 | CH0SA3 | CH0SA2 | CH0SA1 | CH0SA0 | | bit 7 | | | | | | | bit 0 | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 CHONB: Channel 0 Negative Input Select for MUX B Multiplexer Setting bit 1 = Channel 0 negative input is AN1 0 = Channel 0 negative input is VR- bit 14-13 Unimplemented: Read as '0' bit 12-8 CH0SB<4:0>: Channel 0 Positive Input Select for MUX B Multiplexer Setting bits⁽¹⁾ 10001 = Channel 0 positive input is internal band gap reference (VBG) 10000 = Channel 0 positive input is VBG/2 01111 = Channel 0 positive input is AN15 01110 = Channel 0 positive input is AN14 01101 = Channel 0 positive input is AN13 01100 = Channel 0 positive input is AN12 01011 = Channel 0 positive input is AN11 01010 = Channel 0 positive input is AN10 01001 = Channel 0 positive input is AN9 01000 = Channel 0 positive input is AN8 00111 = Channel 0 positive input is AN7 00110 = Channel 0 positive input is AN6 00101 = Channel 0 positive input is AN5 00100 = Channel 0 positive input is AN4 00011 = Channel 0 positive input is AN3 00010 = Channel 0 positive input is AN2 00001 = Channel 0 positive input is AN1 00000 = Channel 0 positive input is AN0 bit 7 CH0NA: Channel 0 Negative Input Select for MUX A Multiplexer Setting bit 1 = Channel 0 negative input is AN1 0 = Channel 0 negative input is VR- bit 6-5 **Unimplemented:** Read as '0' bit 4-0 CH0SA<4:0>: Channel 0 Positive Input Select for MUX A Multiplexer Setting bits Implemented combinations are identical to those for CHOSB<4:0> (above). **Note 1:** Combinations, '10010' through '11111', are unimplemented; do not use. ### REGISTER 21-7: AD1CSSL: A/D INPUT SCAN SELECT REGISTER (LOW) | R/W-0 |--------|--------|--------|--------|--------|--------|-------|-------| | CSSL15 | CSSL14 | CSSL13 | CSSL12 | CSSL11 | CSSL10 | CSSL9 | CSSL8 | | bit 15 | | | | | | | bit 8 | | R/W-0 |-------|-------|-------|-------|-------|-------|-------|-------| | CSSL7 | CSSL6 | CSSL5 | CSSL4 | CSSL3 | CSSL2 | CSSL1 | CSSL0 | | bit 7 | | | | | | | bit 0 | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-0 CSSL<15:0>: A/D Input Pin Scan Selection bits 1 = Corresponding analog channel selected for input scan 0 = Analog channel omitted from input scan ### REGISTER 25-2: CW2: FLASH CONFIGURATION WORD 2 (CONTINUED) bit 1-0 **POSCMD<1:0>:** Primary Oscillator Configuration bits 11 = Primary Oscillator disabled 10 = HS Oscillator mode selected 01 = XT Oscillator mode selected 00 = EC Oscillator mode selected Note 1: Implemented in 100-pin devices only; otherwise unimplemented, read as '1'. #### REGISTER 25-3: CW3: FLASH CONFIGURATION WORD 3 | R/PO-1 |--------|--------|--------|--------|--------|--------|--------|--------| | _ | _ | _ | _ | _ | _ | _ | _ | | bit 23 | | | | | | | bit 16 | | R/PO-1 |--------|--------|--------|--------|--------|--------|--------|--------| | WPEND | WPCFG | WPDIS | _ | _ | _ | _ | _ | | bit 15 | | | | | | | bit 8 | | R/PO-1 |--------|--------|--------|--------|--------|--------|--------|--------| | WPFP7 | WPFP6 | WPFP5 | WPFP4 | WPFP3 | WPFP2 | WPFP1 | WPFP0 | | bit 7 | | | | | | | bit 0 | #### Legend: R = Readable bit PO = Program Once bit U = Unimplemented bit, read as '0' -n = Value when device is unprogrammed '1' = Bit is set '0' = Bit is cleared ### bit 23-16 Reserved bit 15 WPEND: Segment Write Protection End Page Select bit - 1 = Protected code segment upper boundary is at the last page of program memory; lower boundary is the code page specified by WPFP<7:0> - 0 = Protected code segment lower boundary is at the bottom of program memory (000000h); upper boundary is the code page specified by WPFP<7:0> bit 14 WPCFG: Configuration Word Code Page Protection Select bit - 1 = Last page (at the top of program memory) and Flash Configuration Words are not protected if WPEND = 0 - 0 = Last page and Flash Configuration Words are code-protected if WPEND = 0 bit 13 WPDIS: Segment Write Protection Disable bit - 1 = Segmented code protection disabled - 0 = Segmented code protection enabled; protected segment defined by WPEND, WPCFG and WPFPx Configuration bits ### bit 12-8 Reserved bit 7-0 WPFP<7:0>: Protected Code Segment Boundary Page bits Designates the 512-word program code page that is the boundary of the protected code segment, starting with Page 0 at the bottom of program memory. If WPEND = 1: First address of designated code page is the lower boundary of the segment. If WPEND = 0: Last address of designated code page is the upper boundary of the segment. **NOTES:** ### 28.1 DC Characteristics FIGURE 28-1: PIC24FJ256GA110 FAMILY VOLTAGE-FREQUENCY GRAPH (INDUSTRIAL) For frequencies between 16 MHz and 32 MHz, FMAX = (64 MHz/V) * (VDDCORE - 2V) + 16 MHz. Note 1: When the voltage regulator is disabled, VDD and VDDCORE must be maintained so that VDDCORE \leq VDD \leq 3.6V. **TABLE 28-1: THERMAL OPERATING CONDITIONS** | Rating | Symbol | Min | Тур | Max | Unit | |---|--------|-------------|-------------|------|------| | PIC24FJ256GA110 Family: | | | | | | | Operating Junction Temperature Range | TJ | -40 | _ | +140 | °C | | Operating Ambient Temperature Range | TA | -40 | _ | +125 | °C | | Power Dissipation: Internal Chip Power Dissipation: $PINT = VDD \ x \ (IDD - \Sigma \ IOH)$ I/O Pin Power Dissipation: $PI/O = \Sigma \ (\{VDD - VOH\} \ x \ IOH) + \Sigma \ (VOL \ x \ IOL)$ | PD | PINT + PI/O | | | W | | Maximum Allowed Power Dissipation | PDMAX | (| ΓJ — TA)/θJ | Α | W | TABLE 28-2: THERMAL PACKAGING CHARACTERISTICS | Characteristic | Symbol | Тур | Max | Unit | Notes | |---|--------|------|-----|------|----------| | Package Thermal Resistance, 14x14x1 mm TQFP | θЈА | 50.0 | - | °C/W | (Note 1) | | Package Thermal Resistance, 12x12x1 mm TQFP | θЈА | 69.4 | _ | °C/W | (Note 1) | | Package Thermal Resistance, 10x10x1 mm TQFP | θЈА | 76.6 | _ | °C/W | (Note 1) | | Package Thermal Resistance, 9x9x0.9 mm QFN | θЈА | 28.0 | _ | °C/W | (Note 1) | **Note 1:** Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations. FIGURE 28-21: PARALLEL SLAVE PORT TIMING **TABLE 28-34: PARALLEL SLAVE PORT REQUIREMENTS** | AC CHARACTERISTICS | | | Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated) Operating temperature -40°C \leq TA \leq +85°C for Industrial | | | | | | |--------------------|----------|---|---|-----|-----|-------|------------|--| | Param.
No. | Symbol | Characteristic | Min | Тур | Max | Units | Conditions | | | PS1 | TdtV2wrH | Data In Valid before WR or CS Inactive (setup time) | 20 | _ | _ | ns | | | | PS2 | TwrH2dtl | WR or CS Inactive to Data–In Invalid (hold time) | 20 | _ | _ | ns | | | | PS3 | TrdL2dtV | RD and CS Active to Data–Out Valid | _ | _ | 80 | ns | | | | PS4 | TrdH2dtl | RD Active or CS Inactive to Data–Out Invalid | 10 | _ | 30 | ns | | | ## 64-Lead Plastic Quad Flat, No Lead Package (MR) - 9x9x0.9 mm Body [QFN] **ote:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging | | Units | MILLIMETERS | | | | |------------------------|------------------|----------------|----------|------|--| | | Dimension Limits | MIN | NOM | MAX | | | Number of Pins | N | 64 | | | | | Pitch | е | | 0.50 BSC | | | | Overall Height | A | 0.80 | 0.90 | 1.00 | | | Standoff | A1 | 0.00 | 0.02 | 0.05 | | | Contact Thickness | A3 | 0.20 REF | | | | | Overall Width | E | 9.00 BSC | | | | | Exposed Pad Width | E2 | 7.05 7.15 7.50 | | | | | Overall Length | D | 9.00 BSC | | | | | Exposed Pad Length | D2 | 7.05 | 7.15 | 7.50 | | | Contact Width | b | 0.18 | 0.25 | 0.30 | | | Contact Length | L | 0.30 | 0.40 | 0.50 | | | Contact-to-Exposed Pad | K | 0.20 | _ | - | | #### Notes: - 1. Pin 1 visual index feature may vary, but must be located within the hatched area. - 2. Package is saw singulated. - 3. Dimensioning and tolerancing per ASME Y14.5M. BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only. Microchip Technology Drawing C04-149B Sheet 2 of 2 ## 80-Lead Plastic Thin Quad Flatpack (PT) - 12x12x1 mm Body, 2.00 mm [TQFP] **Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging | | Units | | MILLIMETERS | | | |--------------------------|-------------|-----------|-------------|------|--| | Dimens | sion Limits | MIN | NOM | MAX | | | Number of Leads | N | 80 | | | | | Lead Pitch | е | 0.50 BSC | | | | | Overall Height | Α | - | _ | 1.20 | | | Molded Package Thickness | A2 | 0.95 | 1.00 | 1.05 | | | Standoff | A1 | 0.05 | - | 0.15 | | | Foot Length | L | 0.45 | 0.60 | 0.75 | | | Footprint | L1 | 1.00 REF | | | | | Foot Angle | ф | 0° | 3.5° | 7° | | | Overall Width | Е | 14.00 BSC | | | | | Overall Length | D | 14.00 BSC | | | | | Molded Package Width | E1 | 12.00 BSC | | | | | Molded Package Length | D1 | 12.00 BSC | | | | | Lead Thickness | С | 0.09 | _ | 0.20 | | | Lead Width | b | 0.17 | 0.22 | 0.27 | | | Mold Draft Angle Top | α | 11° | 12° | 13° | | | Mold Draft Angle Bottom | β | 11° | 12° | 13° | | #### Notes: - 1. Pin 1 visual index feature may vary, but must be located within the hatched area. - 2. Chamfers at corners are optional; size may vary. - 3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side. - 4. Dimensioning and tolerancing per ASME Y14.5M. - BSC: Basic Dimension. Theoretically exact value shown without tolerances. - REF: Reference Dimension, usually without tolerance, for information purposes only. Microchip Technology Drawing C04-092B ## 100-Lead Plastic Thin Quad Flatpack (PT) - 12x12x1 mm Body, 2.00 mm [TQFP] **Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging | Units | | MILLIMETERS | | | |---------------------------|----|-------------|----------|------| | Dimension Limits | | MIN | NOM | MAX | | Contact Pitch | Е | | 0.40 BSC | | | Contact Pad Spacing | C1 | | 13.40 | | | Contact Pad Spacing | C2 | | 13.40 | | | Contact Pad Width (X100) | X1 | | | 0.20 | | Contact Pad Length (X100) | Y1 | | | 1.50 | | Distance Between Pads | G | 0.20 | | | #### Notes: 1. Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. Microchip Technology Drawing No. C04-2100A ## 100-Lead Plastic Thin Quad Flatpack (PF) - 14x14x1 mm Body, 2.00 mm [TQFP] **Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging | | Units | | MILLIMETERS | | | |--------------------------|----------|-----------|-------------|------|--| | Dimensio | n Limits | MIN | NOM | MAX | | | Number of Leads | N | 100 | | | | | Lead Pitch | е | 0.50 BSC | | | | | Overall Height | Α | - | _ | 1.20 | | | Molded Package Thickness | A2 | 0.95 | 1.00 | 1.05 | | | Standoff | A1 | 0.05 | _ | 0.15 | | | Foot Length | L | 0.45 | 0.60 | 0.75 | | | Footprint | L1 | 1.00 REF | | | | | Foot Angle | ф | 0° | 3.5° | 7° | | | Overall Width | Е | 16.00 BSC | | | | | Overall Length | D | 16.00 BSC | | | | | Molded Package Width | E1 | 14.00 BSC | | | | | Molded Package Length | D1 | 14.00 BSC | | | | | Lead Thickness | С | 0.09 | _ | 0.20 | | | Lead Width | b | 0.17 | 0.22 | 0.27 | | | Mold Draft Angle Top | α | 11° | 12° | 13° | | | Mold Draft Angle Bottom | β | 11° | 12° | 13° | | #### Notes: - 1. Pin 1 visual index feature may vary, but must be located within the hatched area. - 2. Chamfers at corners are optional; size may vary. - 3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side. - 4. Dimensioning and tolerancing per ASME Y14.5M. BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only. Microchip Technology Drawing C04-110B | Timing Requirements | | |---|------| | Comparator | 303 | | DC | 303 | | I ² C Bus Data (Master Mode)29 | | | I ² C Bus Data (Slave Mode) | | | I ² C Bus Start/Stop Bit (Slave Mode) | | | Input Capture | | | Output Compare | | | Parallel Master Port Read | 301 | | Parallel Master Port Write | 302 | | Parallel Slave Port | 300 | | SPIx Master Mode (CKE = 0) | 291 | | SPIx Master Mode (CKE = 1) | 292 | | SPIx Slave Mode (CKE = 0) | 293 | | SPIx Slave Mode (CKE = 1) | 294 | | Triple Comparator Module | 235 | | U | | | UART | 193 | | Baud Rate Generator (BRG) | | | IrDA Support | 195 | | Operation of UxCTS and UxRTS Pins | | | Receiving | 195 | | Transmitting | | | 8-Bit Data Mode | 195 | | 9-Bit Data Mode | 195 | | Break and Sync Sequence | 195 | | Universal Asynchronous Receiver Transmitter. See UA | ART. | | V | | |-----------------------------|-----| | VDDCORE/VCAP Pin | 251 | | Voltage Regulator (On-Chip) | 251 | | and BOR | 252 | | and POR | 252 | | Standby Mode | 252 | | Tracking Mode | 251 | | W | | | Watchdog Timer (WDT) | 252 | | Control Register | 253 | | Windowed Operation | 253 | | WWW Address | 326 | | WWW, On-Line Support | 8 |