

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	85
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj64ga110-i-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Pin Number					
Function	64-Pin TQFP, QFN	80-Pin TQFP	100-Pin TQFP	I/O	Input Buffer	Description
RA0	_	-	17	I/O	ST	PORTA Digital I/O.
RA1	—	_	38	I/O	ST	
RA2	_	_	58	I/O	ST	
RA3	_	_	59	I/O	ST	
RA4	—	_	60	I/O	ST	
RA5	_	_	61	I/O	ST	
RA6	_	_	91	I/O	ST	
RA7	_		92	I/O	ST	
RA9	_	23	28	I/O	ST	
RA10	—	24	29	I/O	ST	
RA14	—	52	66	I/O	ST	
RA15	_	53	67	I/O	ST	
RB0	16	20	25	I/O	ST	PORTB Digital I/O.
RB1	15	19	24	I/O	ST	
RB2	14	18	23	I/O	ST	
RB3	13	17	22	I/O	ST	
RB4	12	16	21	I/O	ST	
RB5	11	15	20	I/O	ST	
RB6	17	21	26	I/O	ST	
RB7	18	22	27	I/O	ST	
RB8	21	27	32	I/O	ST	
RB9	22	28	33	I/O	ST	
RB10	23	29	34	I/O	ST	
RB11	24	30	35	I/O	ST	
RB12	27	33	41	I/O	ST	
RB13	28	34	42	I/O	ST	-
RB14	29	35	43	I/O	ST	
RB15	30	36	44	I/O	ST	
RC1	—	4	6	I/O	ST	PORTC Digital I/O.
RC2	—	_	7	I/O	ST	
RC3	—	5	8	I/O	ST	
RC4	_		9	I/O	ST	
RC12	39	49	63	I/O	ST	
RC13	47	59	73	I/O	ST	
RC14	48	60	74	I/O	ST	
RC15	40	50	64	I/O	ST	

ΤΔRI F 1-4·	PIC24EJ256GA110 FAMILY PINOUT DESCRIPTIONS (
IADLE 1-4.	FIC24FJ250GATTO FAMILI FINOUT DESCRIFTIONS	CONTINUED)

Legend: TTL = TTL input buffer ANA = Analog level input/output ST = Schmitt Trigger input buffer

I²C[™] = I²C/SMBus input buffer

TABLE 4-8:	OUTPUT COMPARE REGISTER MAP (CONTINUED)
------------	---

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
OC8CON1	01D6	_	_	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0		_	ENFLT0	_	-	OCFLT0	TRIGMODE	OCM2	OCM1	OCM0	0000
OC8CON2	01D8	FLTMD	ITMD FLTOUT FLTTRIEN OCINV OC32 OCTRIG TRIGSTAT OCTRIS SYNCSEL4 SYNCSEL3 SYNCSEL2 SYNCSEL1 SYNCSEL0										000C					
OC8RS	01DA		Output Compare 8 Secondary Register 0000										0000					
OC8R	01DC		Output Compare 8 Register 00										0000					
OC8TMR	01DE								Timer	Value 8 Reg	gister							xxxx
OC9CON1	01E0	_	_	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	_	_	ENFLT0	_	-	OCFLT0	TRIGMODE	OCM2	OCM1	OCM0	0000
OC9CON2	01E2	FLTMD	FLTOUT	FLTTRIEN	OCINV	—	—	—	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC9RS	01E4							0	utput Compa	are 9 Secon	dary Register	-						0000
OC9R	01E6		Output Compare 9 Register 000										0000					
OC9TMR	01E8								Timer	Value 9 Reg	gister							xxxx

- = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

I²C[~] REGISTER MAP TABLE 4-9:

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
I2C1RCV	0200	_	—	—	_	_	-	-	—				Receive	Register				0000
I2C1TRN	0202	—	_	_	—	_	_	—	_				Transmit	Register				OOFF
I2C1BRG	0204	—	_	_	—	_	_	—				Baud Rat	e Generato	r Register				0000
I2C1CON	0206	I2CEN	—	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C1STAT	0208	ACKSTAT	TRSTAT	_	_	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF	0000
I2C1ADD	020A	_	_	_	—	_						Address	Register					0000
I2C1MSK	020C	_	_	_	—	_						Address Ma	ask Registe	r				0000
I2C2RCV	0210	-	—	—	-	—	-	-	—				Receive	Register				0000
I2C2TRN	0212	_	_	_	—	_		_	_				Transmit	Register				00FF
I2C2BRG	0214	_	_	_	—	_		_				Baud Rat	e Generato	r Register				0000
I2C2CON	0216	I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C2STAT	0218	ACKSTAT	TRSTAT	_	-	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF	0000
I2C2ADD	021A	—	—	—	—	_	—					Address	Register					0000
I2C2MSK	021C	—	—	—	—	—	—					Address Ma	ask Registe	r				0000
I2C3RCV	0270	—	_	_	—	_	_	-	_				Receive	Register				0000
I2C3TRN	0272	—	—	—	—	_	—	_	—				Transmit	Register				00FF
I2C3BRG	0274	—	—	—	—	—	—	-				Baud Rat	e Generato	r Register				0000
I2C3CON	0276	I2CEN	—	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW SMEN GCEN STREN ACKDT ACKEN RCEN PEN RSEN SEN							1000			
I2C3STAT	0278	ACKSTAT	TRSTAT	_	—	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF	0000
I2C3ADD	027A	—	—	—	—	—	—					Address	Register					0000
I2C3MSK	027C	—	—		—	_	—					Address Ma	ask Registe	r				0000

DS39905E-page 45

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

5.2 RTSP Operation

The PIC24F Flash program memory array is organized into rows of 64 instructions or 192 bytes. RTSP allows the user to erase blocks of eight rows (512 instructions) at a time and to program one row at a time. It is also possible to program single words.

The 8-row erase blocks and single row write blocks are edge-aligned, from the beginning of program memory, on boundaries of 1536 bytes and 192 bytes, respectively.

When data is written to program memory using TBLWT instructions, the data is not written directly to memory. Instead, data written using table writes is stored in holding latches until the programming sequence is executed.

Any number of TBLWT instructions can be executed and a write will be successfully performed. However, 64 TBLWT instructions are required to write the full row of memory.

To ensure that no data is corrupted during a write, any unused addresses should be programmed with FFFFFFh. This is because the holding latches reset to an unknown state, so if the addresses are left in the Reset state, they may overwrite the locations on rows which were not rewritten.

The basic sequence for RTSP programming is to set up a Table Pointer, then do a series of TBLWT instructions to load the buffers. Programming is performed by setting the control bits in the NVMCON register.

Data can be loaded in any order and the holding registers can be written to multiple times before performing a write operation. Subsequent writes, however, will wipe out any previous writes.

Note: Writing to a location multiple times without erasing is *not* recommended.

All of the table write operations are single-word writes (2 instruction cycles), because only the buffers are written. A programming cycle is required for programming each row.

5.3 JTAG Operation

The PIC24F family supports JTAG boundary scan. Boundary scan can improve the manufacturing process by verifying pin to PCB connectivity.

5.4 Enhanced In-Circuit Serial Programming

Enhanced In-Circuit Serial Programming uses an on-board bootloader, known as the program executive, to manage the programming process. Using an SPI data frame format, the program executive can erase, program and verify program memory. For more information on Enhanced ICSP, see the device programming specification.

5.5 Control Registers

There are two SFRs used to read and write the program Flash memory: NVMCON and NVMKEY.

The NVMCON register (Register 5-1) controls which blocks are to be erased, which memory type is to be programmed and when the programming cycle starts.

NVMKEY is a write-only register that is used for write protection. To start a programming or erase sequence, the user must consecutively write 55h and AAh to the NVMKEY register. Refer to **Section 5.6 "Programming Operations"** for further details.

5.6 Programming Operations

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. During a programming or erase operation, the processor stalls (waits) until the operation is finished. Setting the WR bit (NVMCON<15>) starts the operation and the WR bit is automatically cleared when the operation is finished.

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0
_		CTMUIF	_	_	_	—	LVDIF
bit 15							bit 8
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	U-0
_	—			CRCIF	U2ERIF	U1ERIF	
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	oit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15-14	Unimplemen	ted: Read as '0)'				
bit 13	CTMUIF: CTM	MU Interrupt Fla	ag Status bit				
	1 = Interrupt r 0 = Interrupt r	equest has occ equest has not	urred occurred				
bit 12-9	Unimplemen	ted: Read as 'd)'				
bit 8	LVDIF: Low-V	/oltage Detect I	nterrupt Flag S	Status bit			
	1 = Interrupt r 0 = Interrupt r	equest has occ equest has not	urred occurred				
bit 7-4	Unimplemen	ted: Read as 'd)'				
bit 3	CRCIF: CRC	Generator Inte	rrupt Flag Stat	us bit			
	1 = Interrupt r 0 = Interrupt r	equest has occ equest has not	urred occurred				
bit 2	U2ERIF: UAF	RT2 Error Interr	upt Flag Status	s bit			
	1 = Interrupt r 0 = Interrupt r	equest has occ equest has not	urred occurred				
bit 1	U1ERIF: UAF	RT1 Error Interr	upt Flag Status	s bit			
	1 = Interrupt r	equest has occ	urred				
	0 = Interrupt r	equest has not	occurred				
bit 0	Unimplemen	ted: Read as '0)'				

REGISTER 7-9: IFS4: INTERRUPT FLAG STATUS REGISTER 4

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		AD1IE	U1TXIE	U1RXIE	SPI1IE	SPF1IE	T3IE
bit 15							bit 8
R/\/_0	R/W-0	R///-0	11-0	R/M_0	R/\/_0	R/W-0	R/M_0
T2IE	OC2IE	IC2IE	<u> </u>	T1IE	OC1IE		INTOIE
bit 7	00111						bit 0
Legend:							
R = Readab		W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
		I - DILIS SEL			areu	X – DIL IS ULIKI	IUWII
bit 15-14	Unimplement	ted: Read as '	D'				
bit 13	AD1IE: A/D C	onversion Cor	nplete Interrupt	Enable bit			
	1 = Interrupt r	equest enable	d bled				
hit 12		T1 Transmitte	Interrunt Enab	le hit			
511 12	1 = Interrupt r	equest enable	d				
	0 = Interrupt r	equest not ena	bled				
bit 11	U1RXIE: UAF	RT1 Receiver Ir	nterrupt Enable	bit			
	0 = Interrupt r	equest not ena	ibled				
bit 10	SPI1IE: SPI1	Transfer Comp	olete Interrupt E	nable bit			
	1 = Interrupt r	equest enable	d				
hit Q		Equest not ena	IDIEO t Enable bit				
DIL 9	1 = Interrupt r	equest enable	d				
	0 = Interrupt r	equest not ena	bled				
bit 8	T3IE: Timer3	Interrupt Enab	le bit				
	0 = Interrupt r	equest enable equest not ena	ubled				
bit 7	T2IE: Timer2	Interrupt Enab	e bit				
	1 = Interrupt r	equest enable	d Internet				
bit 6		equest not ena	IDIEO	at Enable bit			
DILO	1 = Interrupt r	equest enable	d niner z miterruj				
	0 = Interrupt r	equest not ena	bled				
bit 5	IC2IE: Input C	Capture Channe	el 2 Interrupt Ei	nable bit			
	\perp = Interrupt r 0 = Interrupt r	equest enable	u bled				
bit 4	Unimplement	ted: Read as '	D'				
bit 3	T1IE: Timer1	Interrupt Enab	le bit				
	1 = Interrupt r	equest enable	d				
hit 2		It Compare Ch	annel 1 Interru	nt Enable bit			
	1 = Interrupt r	equest enable	d				
	0 = Interrupt r	equest not ena	bled				
bit 1	IC1IE: Input C	Capture Chann	el 1 Interrupt Ei	nable bit			
	$\perp = interrupt r$ 0 = Interrupt r	equest enable	u Ibled				
bit 0	INTOIE: Exter	nal Interrupt 0	Enable bit				
	1 = Interrupt r	equest enable	d				
	0 = Interrupt r	equest not ena	Died				

REGISTER 7-11: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0

8.5 Reference Clock Output

In addition to the CLKO output (Fosc/2) available in certain oscillator modes, the device clock in the PIC24FJ256GA110 family devices can also be configured to provide a reference clock output signal to a port pin. This feature is available in all oscillator configurations and allows the user to select a greater range of clock submultiples to drive external devices in the application.

This reference clock output is controlled by the REFOCON register (Register 8-4). Setting the ROEN bit (REFOCON<15>) makes the clock signal available on the REFO pin. The RODIV bits (REFOCON<11:8>) enable the selection of 16 different clock divider options.

The ROSSLP and ROSEL bits (REFOCON<13:12>) control the availability of the reference output during Sleep mode. The ROSEL bit determines if the oscillator on OSC1 and OSC2, or the current system clock source, is used for the reference clock output. The ROSSLP bit determines if the reference source is available on REFO when the device is in Sleep mode.

To use the reference clock output in Sleep mode, both the ROSSLP and ROSEL bits must be set. The device clock must also be configured for one of the Primary Oscillator modes (EC, HS or XT); otherwise, if the POSCEN bit is also not set, the oscillator on OSC1 and OSC2 will be powered down when the device enters Sleep mode. Clearing the ROSEL bit allows the reference output frequency to change as the system clock changes during any clock switches.

Input Name	Function Name	Register	Function Mapping Bits
External Interrupt 1	INT1	RPINR0	INT1R<5:0>
External Interrupt 2	INT2	RPINR1	INT2R<5:0>
External Interrupt 3	INT3	RPINR1	INT3R<5:0>
External Interrupt 4	INT4	RPINR2	INT4R<5:0>
Input Capture 1	IC1	RPINR7	IC1R<5:0>
Input Capture 2	IC2	RPINR7	IC2R<5:0>
Input Capture 3	IC3	RPINR8	IC3R<5:0>
Input Capture 4	IC4	RPINR8	IC4R<5:0>
Input Capture 5	IC5	RPINR9	IC5R<5:0>
Input Capture 6	IC6	RPINR9	IC6R<5:0>
Input Capture 7	IC7	RPINR10	IC7R<5:0>
Input Capture 8	IC8	RPINR10	IC8R<5:0>
Input Capture 9	IC9	RPINR15	IC9R<5:0>
Output Compare Fault A	OCFA	RPINR11	OCFAR<5:0>
Output Compare Fault B	OCFB	RPINR11	OCFBR<5:0>
SPI1 Clock Input	SCK1IN	RPINR20	SCK1R<5:0>
SPI1 Data Input	SDI1	RPINR20	SDI1R<5:0>
SPI1 Slave Select Input	SS1IN	RPINR21	SS1R<5:0>
SPI2 Clock Input	SCK2IN	RPINR22	SCK2R<5:0>
SPI2 Data Input	SDI2	RPINR22	SDI2R<5:0>
SPI2 Slave Select Input	SS2IN	RPINR23	SS2R<5:0>
SPI3 Clock Input	SCK3IN	RPINR23	SCK3R<5:0>
SPI3 Data Input	SDI3	RPINR28	SDI3R<5:0>
SPI3 Slave Select Input	SS3IN	RPINR29	SS3R<5:0>
Timer2 External Clock	T2CK	RPINR3	T2CKR<5:0>
Timer3 External Clock	T3CK	RPINR3	T3CKR<5:0>
Timer4 External Clock	T4CK	RPINR4	T4CKR<5:0>
Timer5 External Clock	T5CK	RPINR4	T5CKR<5:0>
UART1 Clear To Send	U1CTS	RPINR18	U1CTSR<5:0>
UART1 Receive	U1RX	RPINR18	U1RXR<5:0>
UART2 Clear To Send	U2CTS	RPINR19	U2CTSR<5:0>
UART2 Receive	U2RX	RPINR19	U2RXR<5:0>
UART3 Clear To Send	U3CTS	RPINR21	U3CTSR<5:0>
UART3 Receive	U3RX	RPINR17	U3RXR<5:0>
UART4 Clear To Send	U4CTS	RPINR27	U4CTSR<5:0>
UART4 Receive	U4RX	RPINR27	U4RXR<5:0>

TABLE 10-2: SELECTABLE INPUT SOURCES (MAPS INPUT TO FUNCTION)⁽¹⁾

Note 1: Unless otherwise noted, all inputs use the Schmitt Trigger input buffers.

REGISTER 10-22: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	RP1R5	RP1R4	RP1R3	RP1R2	RP1R1	RP1R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP0R5	RP0R4	RP0R3	RP0R2	RP0R1	RP0R0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-14	Unimplement	ted: Read as 'd	כי				
bit 13-8	RP1R<5:0>:	RP1 Output Pir	n Mapping bits				
	Peripheral out	tput number n i	s assigned to	pin, RP1 (see T	able 10-3 for p	eripheral functi	ion numbers).

- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP0R<5:0>:** RP0 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP0 (see Table 10-3 for peripheral function numbers).

REGISTER 10-23: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP3R5	RP3R4	RP3R3	RP3R2	RP3R1	RP3R0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP2R5	RP2R4	RP2R3	RP2R2	RP2R1	RP2R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP3R<5:0>:** RP3 Output Pin Mapping bits

Peripheral output number n is assigned to pin, RP3 (see Table 10-3 for peripheral function numbers).

- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP2R<5:0>:** RP2 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP2 (see Table 10-3 for peripheral function numbers).

13.1.2 CASCADED (32-BIT) MODE

By default, each module operates independently with its own 16-bit timer. To increase resolution, adjacent even and odd modules can be configured to function as a single 32-bit module. (For example, modules 1 and 2 are paired, as are modules 3 and 4, and so on.) The odd-numbered module (ICx) provides the Least Significant 16 bits of the 32-bit register pairs, and the even module (ICy) provides the Most Significant 16 bits. Wraparounds of the ICx registers cause an increment of their corresponding ICy registers.

Cascaded operation is configured in hardware by setting the IC32 bits (ICxCON2<8>) for both modules.

13.2 Capture Operations

The enhanced input capture module can be configured to capture timer values and generate interrupts on rising edges on ICx, or all transitions on ICx. Captures can be configured to occur on all rising edges or just some (every 4th or 16th). Interrupts can be independently configured to generate on each event or a subset of events.

To set up the module for capture operations:

- 1. Configure the ICx input for one of the available Peripheral Pin Select pins.
- 2. If Synchronous mode is to be used, disable the sync source before proceeding.
- Make sure that any previous data has been removed from the FIFO by reading ICxBUF until the ICBNE bit (ICxCON1<3>) is cleared.
- 4. Set the SYNCSEL bits (ICxCON2<4:0>) to the desired sync/trigger source.
- 5. Set the ICTSEL bits (ICxCON1<12:10>) for the desired clock source.
- 6. Set the ICI bits (ICxCON1<6:5>) to the desired interrupt frequency
- 7. Select Synchronous or Trigger mode operation:
 - a) Check that the SYNCSEL bits are not set to '00000'.
 - b) For Synchronous mode, clear the ICTRIG bit (ICxCON2<7>).
 - c) For Trigger mode, set ICTRIG and clear the TRIGSTAT bit (ICxCON2<6>).
- 8. Set the ICM bits (ICxCON1<2:0>) to the desired operational mode.
- 9. Enable the selected trigger/sync source.

For 32-bit cascaded operations, the setup procedure is slightly different:

- 1. Set the IC32 bits for both modules (ICyCON2<8> and (ICxCON2<8>), enabling the even-numbered module first. This ensures the modules will start functioning in unison.
- 2. Set the ICTSEL and SYNCSEL bits for both modules to select the same sync/trigger and time base source. Set the even module first, then the odd module. Both modules must use the same ICTSEL and SYNCSEL settings.
- Clear the ICTRIG bit of the even module (ICyCON2<7>); this forces the module to run in Synchronous mode with the odd module, regardless of its trigger setting.
- 4. Use the odd module's ICI bits (ICxCON1<6:5>) to the desired interrupt frequency.
- 5. Use the ICTRIG bit of the odd module (ICxCON2<7>) to configure Trigger or Synchronous mode operation.
- **Note:** For Synchronous mode operation, enable the sync source as the last step. Both input capture modules are held in Reset until the sync source is enabled.
- 6. Use the ICM bits of the odd module (ICxCON1<2:0>) to set the desired capture mode.

The module is ready to capture events when the time base and the trigger/sync source are enabled. When the ICBNE bit (ICxCON1<3>) becomes set, at least one capture value is available in the FIFO. Read input capture values from the FIFO until the ICBNE clears to '0'.

For 32-bit operation, read both the ICxBUF and ICyBUF for the full 32-bit timer value (ICxBUF for the Isw, ICyBUF for the msw). At least one capture value is available in the FIFO buffer when the odd module's ICBNE bit (ICxCON1<3>) becomes set. Continue to read the buffer registers until ICBNE is cleared (perform automatically by hardware).

REGISTER 13-1: ICxCON1: INPUT CAPTURE x CONTROL REGISTER 1

11-0	1_0	R/\\/_0	R/\\/_0	R///-0	R/\//_0	U-0	U-0		
							_		
bit 15		ICOIDE	ICTOLLZ	ICTOLLI	ICTOLLO				
DIL 15							Dit 0		
U-0	R/W-0	R/W-0	R-0, HCS	R-0, HCS	R/W-0	R/W-0	R/W-0		
_	ICI1	ICI0	ICOV	ICBNE	ICM2 ⁽¹⁾	ICM1 ⁽¹⁾	ICM0 ⁽¹⁾		
bit 7	bit 0								
Legend:		HCS = Hardw	/are Clearable/	Settable bit					
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown		
bit 15-14	Unimplemen	ted: Read as '	0'						
bit 13	ICSIDL: Input	t Capture x Mo	dule Stop in Idl	e Control bit					
	1 = Input capt	ture module ha	Its in CPU Idle	mode	mada				
hit 10 10			nunues to oper		emoue				
DIL 12-10		alaak (Eeee/		DIIS					
	111 = System 110 = Reserv	red	2)						
	101 = Reserv	/ed							
	100 = Timer1								
	011 = Timer5	5							
	010 = Timer4 001 = Timer2	+)							
	000 = Timer3	3							
bit 9-7	Unimplemen	ted: Read as '	0'						
bit 6-5	ICI<1:0>: Sel	ect Number of	Captures per l	nterrupt bits					
	11 = Interrupt	on every fourt	h capture even	t					
	10 = Interrupt	on every third	capture event						
	01 = Interrupt	on every sect	ure event						
bit 4		Capture x Over	flow Status Flag	n bit (read-only)				
	1 = Input capt	ture overflow o	ccurred		/				
	0 = No input o	capture overflo	w occurred						
bit 3	ICBNE: Input	Capture x Buf	fer Empty Statu	is bit (read-only	/)				
	1 = Input capt	ture buffer is no	ot empty, at lea	st one more ca	pture value car	n be read			
	0 = Input capt	ture buffer is ei	mpty						
bit 2-0	ICM<2:0>: In	put Capture Mo	ode Select bits	1)					
	111 = Interru	pt mode: Input	capture functio	ns as interrupt	pin only when d	levice is in Slee	p or Idle mode		
	(rising edge detect only, all other control bits are not applicable)								
	101 = Presca	aler Capture m	ode: Capture o	n every 16th ris	sing edge				
	100 = Presca	aler Capture m	ode: Capture o	n every 4th risi	ng edge				
	011 = Simple	e Capture mod	e: Capture on e	every rising edg	je				
	010 = Simple	e Capture mod	e: Capture on e	every falling ede	ge Ige (rising and	falling) ICI-1.	0> hits do not		
	contro	l interrupt gene	eration for this r	node	ige (namy and	anny), 101×1.			
	000 = Input capture module turned off								

Note 1: The ICx input must also be configured to an available RPn pin. For more information, see Section 10.4 "Peripheral Pin Select".

15.0 SERIAL PERIPHERAL INTERFACE (SPI)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"PIC24F Family Reference Manual"*, Section 23. "Serial Peripheral Interface (SPI)" (DS39699).

The Serial Peripheral Interface (SPI) module is a synchronous serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, display drivers, A/D Converters, etc. The SPI module is compatible with Motorola's SPI and SIOP interfaces. All devices of the PIC24FJ256GA110 family include three SPI modules

The module supports operation in two buffer modes. In Standard mode, data is shifted through a single serial buffer. In Enhanced Buffer mode, data is shifted through an 8-level FIFO buffer.

Note: Do not perform read-modify-write operations (such as bit-oriented instructions) on the SPIxBUF register in either Standard or Enhanced Buffer mode.

The module also supports a basic framed SPI protocol while operating in either Master or Slave mode. A total of four framed SPI configurations are supported. The SPI serial interface consists of four pins:

- SDIx: Serial Data Input
- SDOx: Serial Data Output
- SCKx: Shift Clock Input or Output
- SSx: Active-Low Slave Select or Frame Synchronization I/O Pulse

The SPI module can be configured to operate using 2, 3 or 4 pins. In the 3-pin mode, SSx is not used. In the 2-pin mode, both SDOx and SSx are not used.

Block diagrams of the module in Standard and Enhanced modes are shown in Figure 15-1 and Figure 15-2.

Note: In this section, the SPI modules are referred to together as SPIx or separately as SPI1, SPI2 or SPI3. Special Function Registers will follow a similar notation. For example, SPIxCON1 and SPIxCON2 refer to the control registers for any of the 3 SPI modules.

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	_	—	DISSCK ⁽¹⁾	DISSDO ⁽²⁾	MODE16	SMP	CKE ⁽³⁾			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
SSEN	" СКР	MSTEN	SPRE2	SPRE1	SPRE0	PPRE1	PPRE0			
DIT /							DIT U			
Legend:										
R = Read	able bit	W = Writable	bit	U = Unimplem	nented bit read	l as '0'				
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	lown			
		1 Bit io cot				X Dicio unia				
bit 15-13	Unimplemen	ted: Read as '	0'							
bit 12	DISSCK: Dis	able SCKx pin	bit (SPI Master	modes only) ⁽¹⁾)					
	1 = Internal S	SPI clock is dis	abled; pin func	tions as I/O						
	0 = Internal S	SPI clock is ena	abled							
bit 11	DISSDO: Dis	able SDOx pin	bit ⁽²⁾							
	1 = SDOx pir0 = SDOx pir	n is not used by n is controlled l	y module; pin fi by the module	unctions as I/O						
bit 10	MODE16: Wo	ord/Byte Comm	unication Sele	ct bit						
	1 = Commun	1 = Communication is word-wide (16 bits)								
	0 = Commun	ication is byte-	wide (8 bits)							
bit 9	SMP: SPIx D	ata Input Samp	ole Phase bit							
	Master mode	: a sampled at e	nd of data outr	ut time						
	0 = Input dat	a sampled at e	hiddle of data o	utput time						
	Slave mode:									
	SMP must be	cleared when	SPIx is used in	n Slave mode.						
bit 8	CKE: SPIx C	lock Edge Sele	ect bit ⁽³⁾	n from ontivo o	la alí atata ta Idl	a alaak atata (r	hit ()			
	1 = Serial ou 0 = Serial ou	tput data chang	ges on transitio des on transitio	on from active c	ck state to activ	e clock state (s e clock state (s	see bit 6)			
bit 7	SSEN: Slave	Select Enable	(Slave mode)	bit ⁽⁴⁾			,			
	$1 = \overline{SSx}$ pin u	used for Slave	mode							
	0 = SSx pin r	not used by mo	odule; pin contro	olled by port fur	nction					
bit 6	CKP: Clock F	Polarity Select I	pit		11					
	1 = Idle state 0 = Idle state	for clock is a l	ngn level; activ	e state is a low	level					
bit 5	MSTEN: Mas	ter Mode Enab	le bit	, etato io a ingli						
	1 = Master m	node								
	0 = Slave mo	ode								
Note 1:	If DISSCK = 0, S	CKx must be c	onfigured to an	available RPn	pin (or to ASCI	K1 for SPI1). S	ee			
2:	If DISSDO = 0.5	DOx must be c	configured to an	available RPn	pin. See Sect i	on 10.4 "Perin	oheral Pin			
	Select" for more	information.								
3:	The CKE bit is no SPI modes (FRM	ot used in the F EN = 1).	ramed SPI mo	des. The user s	hould program	this bit to '0' fo	or the Framed			
4:	If SSEN = 1, \overline{SSx} for more informat	must be config ion.	jured to an ava	ilable RPn pin.	See Section 1	0.4 "Periphera	al Pin Select"			

REGISTER 18-5: PMSTAT: PARALLEL MASTER PORT STATUS REGISTER

R-0	R/W-0, HS	U-0	U-0	R-0	R-0	R-0	R-0		
IBF	IBOV	—	—	IB3F	IB2F	IB1F	IB0F		
bit 15				•	•	•	bit 8		
R-1	R/W-0, HS	U-0	U-0						
OBE	OBUF	—	—	OB3E	E OB2E OB1E OB0E				
bit 7				•			bit 0		
Legend:		HS = Hardwar	e Settable bit						
R = Readable	e bit	W = Writable	oit	U = Unimplem	nented bit, read	l as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown		
bit 15	IBF: Input Buffer Full Status bit								
	1 = All writable	le input buffer r	egisters are ful	 					
	0 = Some or	all of the writad		registers are el	mpty				
DIT 14		uffer Overflow	Status bit	tor courred (n	aust he aleeree	lin coffwore)			
	1 = A write at 0 = No overfle	ow occurred	nput byte regis	ster occurred (in	nust be cleared	i in soltware)			
bit 13-12	Unimplement	ted: Read as '()'						
bit 11-8	IB3F:IB0F Ing	out Buffer x Sta	tus Full bits						
	1 = Input buff	er contains dat	a that has not	been read (rea	ding buffer will	clear this bit)			
	0 = Input buff	er does not co	ntain any unrea	ad data	-				
bit 7	OBE: Output	Buffer Empty S	tatus bit						
	1 = All readat	ble output buffe	r registers are	empty	e				
	0 = Some or	all of the reada	ble output buff	er registers are	full				
bit 6	OBUF: Outpu	t Buffer Underf	low Status bit						
	1 = A read oc 0 = No under	curred from an flow occurred	empty output	byte register (r	nust be cleared	i in software)			
bit 5-4	Unimplement	ted: Read as 'd)'						
bit 3-0	OB3E:OB0E	Output Buffer x	Status Empty	bits					
	1 = Output bu	uffer is empty (\	writing data to t	the buffer will c	lear this bit)				
	0 = Output bu	uffer contains d	ata that has no	ot been transmi	tted				

REGISTER 21-2: AD1CON2: A/D CONTROL REGISTER 2

R/W-0	R/W-0	R/W-0	r-0	U-0	R/W-0	U-0	U-0
VCFG2	VCFG1	VCFG0	r	—	CSCNA	—	—
bit 15							bit 8

R-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
BUFS	—	SMPI3	SMPI2	SMPI1	SMPI0	BUFM	ALTS
bit 7							bit 0

Legend:	r = Reserved bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-13

VCFG<2:0>: Voltage Reference Configuration bits

VCFG<2:0>	VR+	VR-	
000	AVDD	AVss	
001	External VREF+ pin	AVss	
010	AVDD	External VREF- pin	
011	External VREF+ pin	External VREF- pin	
1xx	AVdd	AVss	

- bit 12 Reserved: Maintain as '0'
- bit 11 Unimplemented: Read as '0'
- bit 10 **CSCNA:** Scan Input Selections for S/H Positive Input for MUX A Input Multiplexer Setting bit 1 = Scan inputs 0 = Do not scan inputs
- bit 9-8 Unimplemented: Read as '0'
- bit 7 **BUFS:** Buffer Fill Status bit (valid only when BUFM = 1)
 - 1 = A/D is currently filling buffer 08-0F, user should access data in 00-07
 - 0 = A/D is currently filling buffer 00-07, user should access data in 08-0F
- bit 6 Unimplemented: Read as '0'
- bit 5-2 SMPI<3:0>: Sample/Convert Sequences Per Interrupt Selection bits
 - 1111 = Interrupts at the completion of conversion for each 16th sample/convert sequence
 - 1110 = Interrupts at the completion of conversion for each 15th sample/convert sequence
 - 0001 = Interrupts at the completion of conversion for each 2nd sample/convert sequence
 0000 = Interrupts at the completion of conversion for each sample/convert sequence
- bit 1 BUFM: Buffer Mode Select bit
 - 1 = Buffer configured as two 8-word buffers (ADC1BUFn<15:8> and ADC1BUFn<7:0>)
 - 0 = Buffer configured as one 16-word buffer (ADC1BUFn<15:0>)
- bit 0 ALTS: Alternate Input Sample Mode Select bit
 - 1 = Uses MUX A input multiplexer settings for first sample, then alternates between MUX B and MUX A input multiplexer settings for all subsequent samples
 - 0 = Always uses MUX A input multiplexer settings

24.0 CHARGE TIME MEASUREMENT UNIT (CTMU)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "PIC24F Family Reference Manual", Section 11. "Charge Time Measurement Unit (CTMU)" (DS39724).

The Charge Time Measurement Unit is a flexible analog module that provides accurate differential time measurement between pulse sources, as well as asynchronous pulse generation. Its key features include:

- · Four edge input trigger sources
- Polarity control for each edge source
- · Control of edge sequence
- · Control of response to edges
- · Time measurement resolution of 1 nanosecond
- Accurate current source suitable for capacitive measurement

Together with other on-chip analog modules, the CTMU can be used to precisely measure time, measure capacitance, measure relative changes in capacitance or generate output pulses that are independent of the system clock. The CTMU module is ideal for interfacing with capacitive-based sensors.

The CTMU is controlled through two registers: CTMUCON and CTMUICON. CTMUCON enables the module and controls edge source selection, edge source polarity selection, and edge sequencing. The CTMUICON register controls the selection and trim of the current source.

24.1 Measuring Capacitance

The CTMU module measures capacitance by generating an output pulse, with a width equal to the time, between edge events on two separate input channels. The pulse edge events to both input channels can be selected from four sources: two internal peripheral modules (OC1 and Timer1) and two external pins (CTEDG1 and CTEDG2). This pulse is used with the module's precision current source to calculate capacitance according to the relationship

$$\mathbf{I} = \mathbf{C} \bullet \frac{\mathrm{d}\mathbf{V}}{\mathrm{d}\mathbf{T}}$$

For capacitance measurements, the A/D Converter samples an external capacitor (CAPP) on one of its input channels after the CTMU output's pulse. A Precision Resistor (RPR) provides current source calibration on a second A/D channel. After the pulse ends, the converter determines the voltage on the capacitor. The actual calculation of capacitance is performed in software by the application.

Figure 24-1 shows the external connections used for capacitance measurements, and how the CTMU and A/D modules are related in this application. This example also shows the edge events coming from Timer1, but other configurations using external edge sources are possible. A detailed discussion on measuring capacitance and time with the CTMU module is provided in the *"PIC24F Family Reference Manual"*.

FIGURE 24-1: TYPICAL CONNECTIONS AND INTERNAL CONFIGURATION FOR CAPACITANCE MEASUREMENT

FIGURE 28-10: INPUT CAPTURE TIMINGS

TABLE 28-23: INPUT CAPTURE

Param. No.	Symbol	Characteristic		Min	Мах	Units	Conditions
IC10	TccL	ICx Input Low Time –	No Prescaler	Tcy + 20		ns	Must also meet
		Synchronous Timer	With Prescaler	20	—	ns	parameter IC15
IC11	TccH	ICx Input Low Time –	No Prescaler	Tcy + 20	—	ns	Must also meet
		Synchronous Timer	With Prescaler	20	—	ns	parameter IC15
IC15	TccP	ICx Input Period – Synd	chronous Timer	<u>2 * Tcy + 40</u> N	—	ns	N = prescale value (1, 4, 16)

FIGURE 28-15: OUTPUT COMPARE TIMINGS

TABLE 28-28: OUTPUT COMPARE

Param. No.	Symbol	Characteristic	Min	Мах	Unit	Condition
OC11	TCCR	OC1 Output Rise Time	—	10	ns	—
			—	—	ns	—
OC10	TCCF	OC1 Output Fall Time	—	10	ns	—
			—	—	ns	—

FIGURE 28-16: PWM MODULE TIMING REQUIREMENTS

TABLE 28-29: PWM TIMING REQUIREMENTS

Param. No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Unit	Condition
OC15	Tfd	Fault Input to PWM I/O Change	_	_	25	ns	VDD = 3.0V, -40°C to +85°C
OC20	Тғн	Fault Input Pulse Width	50	_	_	ns	VDD = 3.0V, -40°C to +85°C

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Comments
300	TRESP	Response Time* ⁽¹⁾	_	150	400	ns	
301	Тмс2о∨	Comparator Mode Chance to Output Valid*	_	—	10	μS	
	* Param	eters are characterized but not tested					

TABLE 28-37: COMPARATOR TIMINGS

Parameters are characterized but not tested.

Note 1: Response time measured with one comparator input at (VDD - 1.5)/2, while the other input transitions from Vss to VDD.

TABLE 28-38: DC SPECIFICATIONS

Operating Conditions: 2.0V < VDD < 3.6V, -40°C < TA < +85°C (unless otherwise stated)							
Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Comments
VRD310	CVRES	Resolution	CVRSRC/24	_	CVRSRC/32	LSb	
VRD311	CVRAA	Absolute Accuracy	—	—	TBD	LSb	
VRD312	CVRur	Unit Resistor Value (R)	—	2k	—	Ω	

Legend: TBD = To Be Determined

100-Lead TQFP (12x12x1 mm)

100-Lead TQFP (14x14x1 mm)

Example

NOTES: