

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	85
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj64ga110t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagram (80-Pin TQFP)

TABLE 4-5: INTERRUPT CONTROLLER REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON1	0080	NSTDIS	—	_	_			—	—	—		_	MATHERR	ADDRERR	STKERR	OSCFAIL		0000
INTCON2	0082	ALTIVT	DISI	_	—	_	_	_	_	_	_	_	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP	0000
IFS0	0084	_	_	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPF1IF	T3IF	T2IF	OC2IF	IC2IF		T1IF	OC1IF	IC1IF	INT0IF	0000
IFS1	0086	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	_	IC8IF	IC7IF	_	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF	0000
IFS2	0088	_	_	PMPIF	OC8IF	OC7IF	OC6IF	OC5IF	IC6IF	IC5IF	IC4IF	IC3IF		_	_	SPI2IF	SPF2IF	0000
IFS3	008A	_	RTCIF		_		_	_	_	_	INT4IF	INT3IF		_	MI2C2IF	SI2C2IF		0000
IFS4	008C	—	—	CTMUIF	—	_	_	—	LVDIF	_	—	—	_	CRCIF	U2ERIF	U1ERIF	-	0000
IFS5	008E	_	_	IC9IF	OC9IF	SPI3IF	SPF3IF	U4TXIF	U4RXIF	U4ERIF		MI2C3IF	SI2C3IF	U3TXIF	U3RXIF	U3ERIF		0000
IEC0	0094	—	—	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPF1IE	T3IE	T2IE	OC2IE	IC2IE	_	T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1	0096	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	—	IC8IE	IC7IE	—	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	0000
IEC2	0098	_	_	PMPIE	OC8IE	OC7IE	OC6IE	OC5IE	IC6IE	IC5IE	IC4IE	IC3IE		_	-	SPI2IE	SPF2IE	0000
IEC3	009A	—	RTCIE	_	—	_	_	—	—	—	INT4IE	INT3IE	_	—	MI2C2IE	SI2C2IE	-	0000
IEC4	009C	—	—	CTMUIE	—	_	_	—	LVDIE	_	—	—	_	CRCIE	U2ERIE	U1ERIE	-	0000
IEC5	009E	—	—	IC9IE	OC9IE	SPI3IE	SPF3IE	U4TXIE	U4RXIE	U4ERIE	_	MI2C3IE	SI2C3IE	U3TXIE	U3RXIE	U3ERIE	-	0000
IPC0	00A4	—	T1IP2	T1IP1	T1IP0	_	OC1IP2	OC1IP1	OC1IP0	—	IC1IP2	IC1IP1	IC1IP0	—	INT0IP2	INT0IP1	INT0IP0	4444
IPC1	00A6	—	T2IP2	T2IP1	T2IP0	_	OC2IP2	OC2IP1	OC2IP0	_	IC2IP2	IC2IP1	IC2IP0	—	—	—	-	4440
IPC2	00A8	—	U1RXIP2	U1RXIP1	U1RXIP0	_	SPI1IP2	SPI1IP1	SPI1IP0	—	SPF1IP2	SPF1IP1	SPF1IP0	—	T3IP2	T3IP1	T3IP0	4444
IPC3	00AA	_	_	_	—	_	_	—	_	_	AD1IP2	AD1IP1	AD1IP0	—	U1TXIP2	U1TXIP1	U1TXIP0	0044
IPC4	00AC	—	CNIP2	CNIP1	CNIP0	_	CMIP2	CMIP1	CMIP0	_	MI2C1IP2	MI2C1IP1	MI2C1IP0	—	SI2C1IP2	SI2C1IP1	SI2C1IP0	4444
IPC5	00AE	_	IC8IP2	IC8IP1	IC8IP0	_	IC7IP2	IC7IP1	IC7IP0	_	_	—	_	—	INT1IP2	INT1IP1	INT1IP0	4404
IPC6	00B0	—	T4IP2	T4IP1	T4IP0	_	OC4IP2	OC4IP1	OC4IP0	_	OC3IP2	OC3IP1	OC3IP0		_	_	_	4440
IPC7	00B2	—	U2TXIP2	U2TXIP1	U2TXIP0	_	U2RXIP2	U2RXIP1	U2RXIP0	_	INT2IP2	INT2IP1	INT2IP0	—	T5IP2	T5IP1	T5IP0	4444
IPC8	00B4	—	—	_	—	_	—	_	—	_	SPI2IP2	SPI2IP1	SPI2IP0		SPF2IP2	SPF2IP1	SPF2IP0	0044
IPC9	00B6	_	IC5IP2	IC5IP1	IC5IP0	_	IC4IP2	IC4IP1	IC4IP0	_	IC3IP2	IC3IP1	IC3IP0	—	—	—	_	4440
IPC10	00B8	—	OC7IP2	OC7IP1	OC7IP0	_	OC6IP2	OC6IP1	OC6IP0	_	OC5IP2	OC5IP1	OC5IP0	—	IC6IP2	IC6IP1	IC6IP0	4444
IPC11	00BA	_	_	_	—	_	_	—	_	_	PMPIP2	PMPIP1	PMPIP0	—	OC8IP2	OC8IP1	OC8IP0	0044
IPC12	00BC	—	—	_	—	_	MI2C2IP2	MI2C2IP1	MI2C2IP0	_	SI2C2IP2	SI2C2IP1	SI2C2IP0		_	_	_	0440
IPC13	00BE	—	—		—	_	INT4IP2	INT4IP1	INT4IP0	_	INT3IP2	INT3IP1	INT3IP0	—	—	—	_	0440
IPC15	00C2	—	—	_	—	_	RTCIP2	RTCIP1	RTCIP0	_	_	_	_		_	_	_	0400
IPC16	00C4	—	CRCIP2	CRCIP1	CRCIP0	_	U2ERIP2	U2ERIP1	U2ERIP0	_	U1ERIP2	U1ERIP1	U1ERIP0		_	_	_	4440
IPC18	00C8	—	—		—		_	—	—	_		—		—	LVDIP2	LVDIP1	LVDIP0	0004
IPC19	00CA	_	_	_	—	_	_	—	_	_	CTMUIP2	CTMUIP1	CTMUIP0	—	—	—	_	0040
IPC20	00CC	_	U3TXIP2	U3TXIP1	U3TXIP0	_	U3RXIP2	U3RXIP1	U3RXIP0	_	U3ERIP2	U3ERIP1	U3ERIP0	—	—	—	_	4440
IPC21	00CE	—	U4ERIP2	U4ERIP1	U4ERIP0	_	_	—	—	_	MI2C3IP2	MI2C3IP1	MI2C3IP0	—	SI2C3IP2	SI2C3IP1	SI2C3IP0	4044
IPC22	00D0	_	SPI3IP2	SPI3IP1	SPI3IP0	_	SPF3IP2	SPF3IP1	SPF3IP0	_	U4TXIP2	U4TXIP1	U4TXIP0	_	U4RXIP2	U4RXIP1	U4RXIP0	4444
IPC23	00D2	_	—	_	_	_	_	_	_	_	IC9IP2	IC9IP1	IC9IP0	_	OC9IP2	OC9IP1	OC9IP0	0044
INTTREG	00E0	CPUIRQ	_	VHOLD	_	ILR3	ILR2	ILR1	ILR0	_	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

DS39905E-page 41

6.0 RESETS

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "PIC24F Family Reference Manual", Section 7. "Reset" (DS39712).

The Reset module combines all Reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

- POR: Power-on Reset
- MCLR: Pin Reset
- SWR: RESET Instruction
- · WDT: Watchdog Timer Reset
- · BOR: Brown-out Reset
- CM: Configuration Mismatch Reset
- TRAPR: Trap Conflict Reset
- IOPUWR: Illegal Opcode Reset
- UWR: Uninitialized W Register Reset

A simplified block diagram of the Reset module is shown in Figure 6-1.

Any active source of Reset will make the SYSRST signal active. Many registers associated with the CPU and peripherals are forced to a known Reset state. Most registers are unaffected by a Reset; their status is unknown on POR and unchanged by all other Resets.

Refer to the specific peripheral or CPU Note: section of this manual for register Reset states.

All types of device Reset will set a corresponding status bit in the RCON register to indicate the type of Reset (see Register 6-1). A Power-on Reset will clear all bits except for the BOR and POR bits (RCON<1:0>) which are set. The user may set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software will not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in other sections of this data sheet.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset will be meaningful.

6.2.1 POR AND LONG OSCILLATOR START-UP TIMES

The oscillator start-up circuitry and its associated delay timers are not linked to the device Reset delays that occur at power-up. Some crystal circuits (especially low-frequency crystals) will have a relatively long start-up time. Therefore, one or more of the following conditions is possible after SYSRST is released:

- The oscillator circuit has not begun to oscillate.
- The Oscillator Start-up Timer has not expired (if a crystal oscillator is used).
- The PLL has not achieved a lock (if PLL is used).

The device will not begin to execute code until a valid clock source has been released to the system. Therefore, the oscillator and PLL start-up delays must be considered when the Reset delay time must be known.

6.2.2 FAIL-SAFE CLOCK MONITOR (FSCM) AND DEVICE RESETS

If the FSCM is enabled, it will begin to monitor the system clock source when SYSRST is released. If a valid clock source is not available at this time, the device will automatically switch to the FRC Oscillator and the user can switch to the desired crystal oscillator in the Trap Service Routine (TSR).

6.3 Special Function Register Reset States

Most of the Special Function Registers (SFRs) associated with the PIC24F CPU and peripherals are reset to a particular value at a device Reset. The SFRs are grouped by their peripheral or CPU function and their Reset values are specified in each section of this manual.

The Reset value for each SFR does not depend on the type of Reset with the exception of four registers. The Reset value for the Reset Control register, RCON, will depend on the type of device Reset. The Reset value for the Oscillator Control register, OSCCON, will depend on the type of Reset and the programmed values of the FNOSC bits in Flash Configuration Word 2 (CW2); see Table 6-2. The RCFGCAL and NVMCON registers are only affected by a POR.

U-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0			
_	RTCIE				_		_			
bit 15							bit 8			
U-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	U-0			
	INT4IE ⁽¹⁾	INT3IE ⁽¹⁾	_	—	MI2C2IE	SI2C2IE	_			
bit 7							bit 0			
Legend:										
R = Readat	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'				
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own			
bit 15	Unimplemen	Unimplemented: Read as '0'								
bit 14	RTCIE: Real-	RTCIE: Real-Time Clock/Calendar Interrupt Enable bit								
	1 = Interrupt r	equest enable								
1.1.40 7	0 = Interrupt r	request not ena	ibled							
DIT 13-7	Unimplemen	ted: Read as 10) [.] —							
bit 6	INT4IE: Exter	nal Interrupt 4	Enable bit("							
	0 = Interrupt r	request not ena	bled							
bit 5	INT3IE: Exter	nal Interrupt 3	Enable bit ⁽¹⁾							
	1 = Interrupt r	equest enabled	b							
	0 = Interrupt r	request not ena	bled							
bit 4-3	Unimplemen	ted: Read as '	כ'							
bit 2	MI2C2IE: Mas	ster I2C2 Even	t Interrupt Ena	ble bit						
	1 = Interrupt r	equest enabled	d 							
	0 = Interrupt r	request not ena	bled							
bit 1	SI2C2IE: Slav	ve I2C2 Event I	nterrupt Enabl	e bit						
	1 = Interrupt r	request enabled) Ibled							
bit 0	Unimplemen	ted. Read as '	וסוכם ז'							
	oninpienien									
Note 1: 1	f an external inte	rrupt is enabled	d, the interrupt	input must also	o be configured	to an available	RPn or RPIn			

REGISTER 7-14: IEC3: INTERRUPT ENABLE CONTROL REGISTER 3

Note 1: If an external interrupt is enabled, the interrupt input must also be configured to an available RPn or RPIn pin. See Section 10.4 "Peripheral Pin Select" for more information.

R-0	U-0	R/W-0	U-0	R-0	R-0	R-0	R-0		
CPUIRQ	—	VHOLD	—	ILR3	ILR2	ILR1	ILR0		
bit 15							bit 8		
U-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
_	VECNUM6 VECNUM5 VECNUM4 VECNUM3 VECNUM2 VECNUM1								
bit 7							bit 0		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown		
bit 15	CPUIRQ: Inte	errupt Request f	from Interrupt (Controller CPU	bit				
	1 = An interru	upt request has	occurred but	has not yet bee	en Acknowledg	ed by the CPU	I; this happens		
	when the CPU priority is higher than the interrupt priority								
hit 14	Unimplemented: Read as '0'								
bit 13									
bit 10	1 = VECNUM	bits contain th	e value of the	highest priority	pending interri	upt			
	0 = VECNUM	I bits contain th	e value of the	last Acknowled	lged interrupt (i	i.e., the last int	errupt that has		
	occurred	with higher price	ority than the C	PU, even if oth	er interrupts ar	e pending)			
bit 12	Unimplemen	ted: Read as 'o)'						
bit 11-8	ILR<3:0>: Ne	w CPU Interrup	ot Priority Leve	l bits					
	1111 = CPU i	interrupt priority	/ level is 15						
	•								
	•								
	0001 = CPU i	interrupt priority	/ level is 1						
	0000 = CPU i	interrupt priority	/ level is 0						
bit 7	Unimplemente	ed: Read as '0'							
bit 6-0	VECNUM<6:0)>: Pending Int	errupt Vector II	D bits (pending	vector number	r is VECNUM +	⊦8)		
	0111111 = In	iterrupt vector p	bending is num	ber 135					
	•								
	•								
	0000001 = In	iterrupt vector p	pending is num	ber 9 ber 9					
	0000000 = In								

REGISTER 7-39: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

Input Name	Function Name	Register	Function Mapping Bits
External Interrupt 1	INT1	RPINR0	INT1R<5:0>
External Interrupt 2	INT2	RPINR1	INT2R<5:0>
External Interrupt 3	INT3	RPINR1	INT3R<5:0>
External Interrupt 4	INT4	RPINR2	INT4R<5:0>
Input Capture 1	IC1	RPINR7	IC1R<5:0>
Input Capture 2	IC2	RPINR7	IC2R<5:0>
Input Capture 3	IC3	RPINR8	IC3R<5:0>
Input Capture 4	IC4	RPINR8	IC4R<5:0>
Input Capture 5	IC5	RPINR9	IC5R<5:0>
Input Capture 6	IC6	RPINR9	IC6R<5:0>
Input Capture 7	IC7	RPINR10	IC7R<5:0>
Input Capture 8	IC8	RPINR10	IC8R<5:0>
Input Capture 9	IC9	RPINR15	IC9R<5:0>
Output Compare Fault A	OCFA	RPINR11	OCFAR<5:0>
Output Compare Fault B	OCFB	RPINR11	OCFBR<5:0>
SPI1 Clock Input	SCK1IN	RPINR20	SCK1R<5:0>
SPI1 Data Input	SDI1	RPINR20	SDI1R<5:0>
SPI1 Slave Select Input	SS1IN	RPINR21	SS1R<5:0>
SPI2 Clock Input	SCK2IN	RPINR22	SCK2R<5:0>
SPI2 Data Input	SDI2	RPINR22	SDI2R<5:0>
SPI2 Slave Select Input	SS2IN	RPINR23	SS2R<5:0>
SPI3 Clock Input	SCK3IN	RPINR23	SCK3R<5:0>
SPI3 Data Input	SDI3	RPINR28	SDI3R<5:0>
SPI3 Slave Select Input	SS3IN	RPINR29	SS3R<5:0>
Timer2 External Clock	T2CK	RPINR3	T2CKR<5:0>
Timer3 External Clock	T3CK	RPINR3	T3CKR<5:0>
Timer4 External Clock	T4CK	RPINR4	T4CKR<5:0>
Timer5 External Clock	T5CK	RPINR4	T5CKR<5:0>
UART1 Clear To Send	U1CTS	RPINR18	U1CTSR<5:0>
UART1 Receive	U1RX	RPINR18	U1RXR<5:0>
UART2 Clear To Send	U2CTS	RPINR19	U2CTSR<5:0>
UART2 Receive	U2RX	RPINR19	U2RXR<5:0>
UART3 Clear To Send	U3CTS	RPINR21	U3CTSR<5:0>
UART3 Receive	U3RX	RPINR17	U3RXR<5:0>
UART4 Clear To Send	U4CTS	RPINR27	U4CTSR<5:0>
UART4 Receive	U4RX	RPINR27	U4RXR<5:0>

TABLE 10-2: SELECTABLE INPUT SOURCES (MAPS INPUT TO FUNCTION)⁽¹⁾

Note 1: Unless otherwise noted, all inputs use the Schmitt Trigger input buffers.

FIGURE 15-3: SPI MASTER/SLAVE CONNECTION (STANDARD MODE)

FIGURE 15-4: SPI MASTER/SLAVE CONNECTION (ENHANCED BUFFER MODES)

REGISTER 1	EGISTER 16-1: I2CxCON: I2Cx CONTROL REGISTER									
R/W-0	U-0	R/W-0	R/W-1, HC	R/W-0	R/W-0	R/W-0	R/W-0			
I2CEN		I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC			
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN			
bit 7							bit 0			
Legend:		HC = Hardwa	are Clearable bi	t						
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit. read	l as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
bit 15	12CEN: I2Cx I 1 = Enables t 0 = Disables I	Enable bit he I2Cx modul I2Cx module. <i>A</i>	e and configure	es the SDAx an controlled by p	d SCLx pins as	s serial port pin	s			
bit 14	Unimplemen	ted: Read as '	0'							
bit 13	I2CSIDL: Sto	p in Idle Mode	bit							
	1 = Discontinues module operation when device enters an Idle mode									
bit 12	SCLREL: SC	Lx Release Co	ontrol bit (when	operating as I ²	C Slave)					
	1 = Releases 0 = Holds SC If STREN = 1	SCLx clock Lx clock low (c	lock stretch)		0 0.0.0)					
	Bit is R/W (i.e at beginning o <u>If STREN = 0</u>	e., software ma of slave transm <u>:</u>	y write '0' to ini iission. Hardwa	tiate stretch an re clear at end	nd write '1' to re of slave recept	elease clock). H tion.	lardware clear			
	Bit is R/S (i.e transmission.	e., software ma	ay only write '1	' to release cl	ock). Hardware	e clear at begi	nning of slave			
bit 11	IPMIEN: Intel	ligent Peripher	al Managemen	t Interface (IPM	II) Enable bit					
	1 = IPMI Sup 0 = IPMI mod	port mode is er e disabled	nabled; all addr	esses Acknowl	ledged					
bit 10	A10M: 10-Bit	Slave Address	sing bit							
	1 = I2CxADD 0 = I2CxADD	is a 10-bit slav is a 7-bit slave	/e address e address							
bit 9	DISSLW: Disa	able Slew Rate	e Control bit							
	1 = Slew rate 0 = Slew rate	control disable	ed :d							
bit 8	SMEN: SMBL	us Input Levels	bit							
	1 = Enables I 0 = Disables \$	/O pin threshol SMBus input th	ds compliant w rresholds	ith SMBus spe	cification					
bit 7	GCEN: Gene	ral Call Enable	bit (when oper	ating as I ² C sla	ave)					
	1 = Enables in (module is 0 = General o	nterrupt when a s enabled for re all address dis	a general call a eception) abled	ddress is recei	ved in the I2Cx	RSR				
bit 6	STREN: SCL	x Clock Stretch	n Enable bit (wh	nen operating a	is I ² C slave)					
	Used in conju	nction with the	SCLREL bit.							
	1 = Enables s 0 = Disables s	oftware or rece software or rec	eive clock strete eive clock stret	ching ching						

REGISTER 18-3: PMADDR: PARALLEL MASTER PORT ADDRESS REGISTER	REGISTER 18-3:	PMADDR: PARALLEL MASTER PORT ADDRESS REGISTER
--	----------------	---

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CS2	CS1	ADDR13	ADDR12	ADDR11	ADDR10	ADDR9	ADDR8
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| ADDR7 | ADDR6 | ADDR5 | ADDR4 | ADDR3 | ADDR2 | ADDR1 | ADDR0 |
| bit 7 | | | | | | | bit 0 |

Legend:								
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown					

bit 15	CS2: Chip Select 2 bit
	1 = Chip Select 2 is active
	0 = Chip Select 2 is inactive
bit 14	CS1: Chip Select 1 bit
	1 = Chip Select 1 is active
	0 = Chip Select 1 is inactive
bit 13-0	ADDR<13:0>: Parallel Port Destination Address bits

REGISTER 18-4: PMAEN: PARALLEL MASTER PORT ENABLE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PTEN15	PTEN14	PTEN13	PTEN12	PTEN11	PTEN10	PTEN9	PTEN8
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| PTEN7 | PTEN6 | PTEN5 | PTEN4 | PTEN3 | PTEN2 | PTEN1 | PTEN0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	PTEN<15:14>: PMCSx Strobe Enable bits						
	 1 = PMA15 and PMA14 function as either PMA<15:14> or PMCS2 and PMCS1 0 = PMA15 and PMA14 function as port I/O 						
bit 13-2	PTEN<13:2>: PMP Address Port Enable bits						
	1 = PMA<13:2> function as PMP address lines0 = PMA<13:2> function as port I/O						
bit 1-0	PTEN<1:0>: PMALH/PMALL Strobe Enable bits						
	 1 = PMA1 and PMA0 function as either PMA<1:0> or PMALH and PMALL 0 = PMA1 and PMA0 pads functions as port I/O 						

REGISTER 24-1: CTMUCON: CTMU CONTROL REGISTER (CONTINUED)

- bit 3-2
 EDG1SEL<1:0>: Edge 1 Source Select bits

 11 = CTED1 pin
 10 = CTED2 pin

 01 = OC1 module
 00 = Timer1 module

 bit 1
 EDG2STAT: Edge 2 Status bit

 1 = Edge 2 event has occurred
 0 = Edge 2 event has not occurred

 bit 0
 EDG1STAT: Edge 1 Status bit

 1 = Edge 1 event has occurred
 0 = Edge 1 event has not occurred
- **Note 1:** If TGEN = 1, the CTEDGx inputs and CTPLS outputs must be assigned to available RPn pins before use. See **Section 10.4 "Peripheral Pin Select"** for more information.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
ITRIM5	ITRIM4	ITRIM3	ITRIM2	ITRIM1	ITRIM0	IRNG1	IRNG0		
bit 15	·	•		·			bit 8		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
	_	—	—	_	—	—	—		
bit 7							bit 0		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown			
bit 15-10	bit 15-10 ITRIM<5:0>: Current Source Trim bits 011111 = Maximum positive change from nominal current 011110 000001 = Minimum positive change from nominal current 000000 = Nominal current output specified by IRNG<1:0> 111111 = Minimum negative change from nominal current 100010 100010								
bit 9-8 bit 7-0	IRNG<1:0>: Current Source Range Select bits $11 = 100 \times Base Current$ $10 = 10 \times Base Current$ $01 = Base current level (0.55 \muA nominal)00 = Current source disabled$								

TABLE 26-1: SYMBOLS USED IN OPCODE DESCRIPTIONS

Field	Description
#text	Means literal defined by "text"
(text)	Means "content of text"
[text]	Means "the location addressed by text"
{ }	Optional field or operation
<n:m></n:m>	Register bit field
.b	Byte mode selection
.d	Double-Word mode selection
.S	Shadow register select
.w	Word mode selection (default)
bit4	4-bit bit selection field (used in word addressed instructions) $\in \{015\}$
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero
Expr	Absolute address, label or expression (resolved by the linker)
f	File register address ∈ {0000h1FFFh}
lit1	1-bit unsigned literal $\in \{0,1\}$
lit4	4-bit unsigned literal $\in \{015\}$
lit5	5-bit unsigned literal $\in \{031\}$
lit8	8-bit unsigned literal $\in \{0255\}$
lit10	10-bit unsigned literal \in {0255} for Byte mode, {0:1023} for Word mode
lit14	14-bit unsigned literal $\in \{016384\}$
lit16	16-bit unsigned literal $\in \{065535\}$
lit23	23-bit unsigned literal \in {08388608}; LSB must be '0'
None	Field does not require an entry, may be blank
PC	Program Counter
Slit10	10-bit signed literal \in {-512511}
Slit16	16-bit signed literal ∈ {-3276832767}
Slit6	6-bit signed literal \in {-1616}
Wb	Base W register ∈ {W0W15}
Wd	Destination W register ∈ { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }
Wdo	Destination W register ∈ { Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] }
Wm,Wn	Dividend, Divisor working register pair (direct addressing)
Wn	One of 16 working registers ∈ {W0W15}
Wnd	One of 16 destination working registers ∈ {W0W15}
Wns	One of 16 source working registers ∈ {W0W15}
WREG	W0 (working register used in file register instructions)
Ws	Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }
Wso	Source W register \in { Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None
	BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None
BTST	BTST	f,#bit4	Bit Test f	1	1	Z
	BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С
	BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z
	BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С
	BTST.Z	Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z
BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z
	BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С
	BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z
CALL	CALL	lit23	Call Subroutine	2	2	None
	CALL	Wn	Call Indirect Subroutine	1	2	None
CLR	CLR	f	f = 0x0000	1	1	None
	CLR	WREG	WREG = 0x0000	1	1	None
	CLR	Ws	Ws = 0x0000	1	1	None
CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO, Sleep
COM	СОМ	f	f = f	1	1	N, Z
	СОМ	f,WREG	WREG = f	1	1	N, Z
	COM	Ws.Wd	$Wd = \overline{Ws}$	1	1	N. Z
CP	CP	f	Compare f with WREG	1	1	C DC N OV Z
01	CP	- Wb.#lit5	Compare Wb with lit5	1	1	C DC N OV Z
	CP	Wb.Ws	Compare Wb with Ws (Wb – Ws)	1	1	C DC N OV Z
CPO	CPO	f	Compare f with 0x0000	1	1	C DC N OV Z
61.0	CPO	WS	Compare Ws with 0x0000	1	1	C DC N OV Z
CPB	CPB	f	Compare f with WREG with Borrow	1	1	C DC N OV Z
01.2	CPB	- Wb.#lit5	Compare Wb with lit5 with Borrow	1	1	C DC N OV Z
	CPB	Wb,Ws	Compare Wb with Ws, with Borrow	1	1	C, DC, N, OV, Z
CPSEQ	CPSEQ	Wb,Wn	Compare Wb with Wn, Skip if =	1	1 (2 or 3)	None
CPSGT	CPSGT	Wb,Wn	Compare Wb with Wn, Skip if >	1	1 (2 or 3)	None
CPSLT	CPSLT	Wb,Wn	Compare Wb with Wn, Skip if <	1	1 (2 or 3)	None
CPSNE	CPSNE	Wb,Wn	Compare Wb with Wn, Skip if ≠	1	1 (2 or 3)	None
DAW	DAW.b	Wn	Wn = Decimal Adjust Wn	1	1	С
DEC	DEC	£	f = f - 1	1	1	C, DC, N, OV, Z
	DEC	f,WREG	WREG = f – 1	1	1	C, DC, N, OV, Z
	DEC	Ws,Wd	Wd = Ws - 1	1	1	C, DC, N, OV, Z
DEC2	DEC2	f	f = f - 2	1	1	C, DC, N, OV, Z
	DEC2	f,WREG	WREG = f – 2	1	1	C, DC, N, OV, Z
	DEC2	Ws,Wd	Wd = Ws - 2	1	1	C, DC, N, OV, Z
DISI	DISI	#lit14	Disable Interrupts for k Instruction Cycles	1	1	None
DIV	DIV.SW	Wm,Wn	Signed 16/16-bit Integer Divide	1	18	N, Z, C, OV
	DIV.SD	Wm,Wn	Signed 32/16-bit Integer Divide	1	18	N, Z, C, OV
	DIV.UW	Wm,Wn	Unsigned 16/16-bit Integer Divide	1	18	N, Z, C, OV
	DIV.UD	Wm,Wn	Unsigned 32/16-bit Integer Divide	1	18	N, Z, C, OV
EXCH	EXCH	Wns,Wnd	Swap Wns with Wnd	1	1	None
FF1L	FF1L	Ws,Wnd	Find First One from Left (MSb) Side	1	1	С
FF1R	FF1R	Ws,Wnd	Find First One from Right (LSb) Side	1	1	С

TABLE 26-2: INSTRUCTION SET OVERVIEW (CONTINUED)

DC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 2.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
D130	Eр	Cell Endurance	10000	—	—	E/W	-40°C to +85°C
D131	Vpr	VDD for Read	VMIN	—	3.6	V	VMIN = Minimum operating voltage
	VPEW	Supply Voltage for Self-Timed Writes					
D132A		VDDCORE	2.25	—	VDDCORE	V	
D132B		Vdd	2.35	—	3.6	V	
D133A	Tiw	Self-Timed Write Cycle Time	—	3	—	ms	
D133B	TIE	Self-Timed Page Erase Time	40	—	—	ms	
D134	Tretd	Characteristic Retention	20	_	_	Year	Provided no other specifications are violated
D135	IDDP	Supply Current during Programming	_	7		mA	

TABLE 28-9: DC CHARACTERISTICS: PROGRAM MEMORY

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

TABLE 28-10: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

Operati	Operating Conditions: -40°C < TA < +125°C (unless otherwise stated)								
Param No.	Symbol	Characteristics	Min	Тур	Max	Units	Comments		
	Vrgout	Regulator Output Voltage	—	2.5	—	V			
	Vbg	Internal Band Gap Reference	—	1.2	—	V			
	Cefc	External Filter Capacitor Value	4.7	10	_	μF	Series resistance < 3 Ohm recommended; < 5 Ohm required.		
	TVREG	Regulator Start-up Time							
			—	10		μS	PMSLP = 1, or any POR or BOR		
			—	250		μS	Wake for Sleep when PMSLP = 0		
	ТвG	Band Gap Reference Start-up Time	—	_	1	ms			

DS39905E-page 280

TABLE 28-14: PLL CLOCK TIMING SPECIFICATIONS (VDD = 2.0V TO 3.6V)

AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Sym	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions	
OS50	Fplli	PLL Input Frequency Range ⁽²⁾	4	—	8	MHz	ECPLL, HSPLL, XTPLL modes	
OS51	Fsys	PLL Output Frequency Range	16	—	32	MHz		
OS52	TLOCK	PLL Start-up Time (Lock Time)	—	—	2	ms		
OS53	DCLK	CLKO Stability (Jitter)	-2	1	+2	%		

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

TABLE 28-15: INTERNAL RC OSCILLATOR SPECIFICATIONS

AC CHARACTERISTICS			$\begin{array}{ll} \mbox{Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Sym	Characteristic	Min	Тур	Мах	Units	Conditions	
	TFRC	FRC Start-up Time	—	15	—	μS		
	TLPRC	LPRC Start-up Time	_	40	_	μS		

TABLE 28-16: INTERNAL RC OSCILLATOR ACCURACY

AC CHARACTERISTICS		$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param No.	Characteristic	Min	Тур	Max	Units	Conditions		
F20	FRC Accuracy @ 8 MHz ⁽¹⁾	-2	—	2	%	+25°C, $3.0V \le VDD \le 3.6V$		
		-5	—	5	%	$\begin{array}{l} -40^{\circ}C \leq TA \leq +85^{\circ}C, \\ 3.0V \leq VDD \leq 3.6V \end{array}$		
F21	LPRC Accuracy @ 31 kHz ⁽²⁾	-20	_	20	%	$\begin{array}{l} -40^{\circ}C \leq \text{TA} \leq +85^{\circ}\text{C}, \\ 3.0\text{V} \leq \text{VDD} \leq 3.6\text{V} \end{array}$		

Note 1: Frequency calibrated at 25°C and 3.3V. OSCTUN bits can be used to compensate for temperature drift.

2: Change of LPRC frequency as VDD changes.

FIGURE 28-10: INPUT CAPTURE TIMINGS

TABLE 28-23: INPUT CAPTURE

Param. No.	Symbol	Characteristic		Min	Max	Units	Conditions
IC10	TccL	ICx Input Low Time –	No Prescaler	Tcy + 20	_	ns	Must also meet
		Synchronous Timer	With Prescaler	20	-	ns	parameter IC15
IC11	TccH	ICx Input Low Time – Synchronous Timer	No Prescaler	Tcy + 20	-	ns	Must also meet parameter IC15
			With Prescaler	20	_	ns	
IC15	TccP	ICx Input Period – Synchronous Timer		<u>2 * Tcy + 40</u> N	—	ns	N = prescale value (1, 4, 16)

FIGURE 28-12: SPIX MODULE MASTER MODE TIMING CHARACTERISTICS (CKE = 1)

TABLE 28-25: SPIX MODULE MASTER MODE TIMING REQUIREMENTS (CKE = 1)

АС СНА	RACTERIST	īCS	Standard Operating Conditions: 2.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial				
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
SP10	TscL	SCKx Output Low Time ⁽²⁾	Tcy/2	—	—	ns	
SP11	TscH	SCKx Output High Time ⁽²⁾	TCY/2	_		ns	
SP20	TscF	SCKx Output Fall Time ⁽³⁾	-	10	25	ns	
SP21	TscR	SCKx Output Rise Time ⁽³⁾	-	10	25	ns	
SP30	TdoF	SDOx Data Output Fall Time ⁽³⁾		10	25	ns	
SP31	TdoR	SDOx Data Output Rise Time ⁽³⁾		10	25	ns	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge		_	30	ns	
SP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	—	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	20	—	—	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	20			ns	

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: The minimum clock period for SCKx is 100 ns. Therefore, the clock generated in Master mode must not violate this specification.

3: Assumes 50 pF load on all SPIx pins.

100-Lead TQFP (12x12x1 mm)

100-Lead TQFP (14x14x1 mm)

Example

100-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch	E		0.40 BSC	
Contact Pad Spacing	C1		13.40	
Contact Pad Spacing			13.40	
Contact Pad Width (X100)	X1			0.20
Contact Pad Length (X100)				1.50
Distance Between Pads		0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2100A

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

TO: RE:	Technical Publications Manager Reader Response	Total Pages Sent				
Fron	n: Name					
	Company					
	Address					
	City / State / ZIP / Country					
	Telephone: ()	FAX: ()				
Appl	lication (optional):					
Wou	ld you like a reply?YN					
Devi	ce: PIC24FJ256GA110 family	Literature Number: DS39905E				
Que	stions:					
1. \	What are the best features of this document?					
-						
2.	How does this document meet your hardware an	d software development needs?				
-						
3. I	. Do you find the organization of this document easy to follow? If not, why?					
-						
4.	What additions to the document do you think would enhance the structure and subject?					
-						
5.	What deletions from the document could be made without affecting the overall usefulness?					
-						
6. I	Is there any incorrect or misleading information (what and where)?				
7.	How would you improve this document?					
-						