



#### Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                    |
|----------------------------|-----------------------------------------------------------|
| Core Processor             | ZNEO                                                      |
| Core Size                  | 16-Bit                                                    |
| Speed                      | 20MHz                                                     |
| Connectivity               | EBI/EMI, I <sup>2</sup> C, IrDA, LINbus, SPI, UART/USART  |
| Peripherals                | Brown-out Detect/Reset, DMA, POR, PWM, WDT                |
| Number of I/O              | 60                                                        |
| Program Memory Size        | 128KB (128K × 8)                                          |
| Program Memory Type        | FLASH                                                     |
| EEPROM Size                | -                                                         |
| RAM Size                   | 4K x 8                                                    |
| Voltage - Supply (Vcc/Vdd) | 2.7V ~ 3.6V                                               |
| Data Converters            | A/D 12x10b                                                |
| Oscillator Type            | Internal                                                  |
| Operating Temperature      | 0°C ~ 70°C (TA)                                           |
| Mounting Type              | Surface Mount                                             |
| Package / Case             | 80-BQFP                                                   |
| Supplier Device Package    | -                                                         |
| Purchase URL               | https://www.e-xfl.com/product-detail/zilog/z16f2811fi20sg |
|                            |                                                           |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

# List of Tables

| Table 1.  | ZNEO Z16F Series Package Options                                                               | . 7 |
|-----------|------------------------------------------------------------------------------------------------|-----|
| Table 2.  | Signal Descriptions                                                                            | 12  |
| Table 3.  | Pin Characteristics of the ZNEO CPU                                                            | 16  |
| Table 4.  | Reserved Memory Map Example                                                                    | 19  |
| Table 5.  | ZNEO CPU Control Registers                                                                     | 20  |
| Table 6.  | Register File Address Map                                                                      | 23  |
| Table 7.  | External Interface Signals Description                                                         | 37  |
| Table 8.  | Example Usage of Chip Selects                                                                  | 39  |
| Table 9.  | External Interface Control Register (EXTCT)                                                    | 42  |
| Table 10. | External Chip Select Control Registers High (EXTCSxH)                                          | 43  |
| Table 11. | External Chip Select Control Registers Low for $\overline{\text{CS0}}$ (EXTCS0L)               | 44  |
| Table 12. | External Chip Select Control Registers Low for $\overline{CS1}$ (EXTCS1L)                      | 45  |
| Table 13. | External Chip Select Control Registers Low for $\overline{CS2}$ to $\overline{CS5}$ (EXTCSxL). | 46  |
| Table 14. | External Interface Timing for a Write Operation, Normal Mode                                   | 47  |
| Table 15. | External Interface Timing for a Write Operation, ISA Mode                                      | 49  |
| Table 16. | External Interface Timing for a Read Operation, Normal Mode                                    | 51  |
| Table 17. | External Interface Timing for a Read Operation, ISA Mode                                       | 54  |
| Table 18. | Reset and Stop Mode Recovery Characteristics and Latency                                       | 56  |
| Table 19. | System Reset Sources and Resulting Reset Action                                                | 57  |
| Table 20. | Stop Mode Recovery Sources and Resulting Action                                                | 61  |
| Table 21. | Reset Status and Control Register (RSTSCR)                                                     | 62  |
| Table 22. | Reset Status Register Values Following Reset                                                   | 63  |
| Table 23. | GPIO Port Availability by Device                                                               | 66  |
| Table 24. | Port Alternate Function Mapping                                                                | 68  |
| Table 25. | Port A-K Input Data Registers (PxIN)                                                           | 71  |
| Table 26. | Port A-K Output Data Registers (PxOUT)                                                         | 72  |
| Table 27. | Port A-K Data Direction Registers (PxDD)                                                       | 73  |
| Table 28. | Port A-K High Drive Enable Registers (PxHDE)                                                   | 74  |
| Table 29. | Port A-K Alternate Function Low Registers (PxAFL)                                              | 75  |
| Table 30. | Alternate Function Enabling                                                                    | 75  |
| Table 31. | Port A-K Alternate Function High Registers (PxAFH)                                             | 75  |
| Table 32. | Port A-K Output Control Registers (PxOC)                                                       | 76  |
| Table 33. | Port A-K Pull-Up Enable Registers (PxPUE)                                                      | 76  |

# ZNEO<sup>®</sup> Z16F Series MCUs Product Specification

| Table 136. | Flash Memory Configurations    255                      |
|------------|---------------------------------------------------------|
| Table 137. | Flash Memory Sector Addresses    255                    |
| Table 138. | ZNEO Z16F Series Information Area Map 257               |
| Table 139. | Flash Command Register (FCMD) 261                       |
| Table 140. | Flash Status Register (FSTAT)    262                    |
| Table 141. | Flash Control Register (FCTL)    263                    |
| Table 142. | Flash Sector Protect Register (FSECT)    264            |
| Table 143. | Flash Page Select Register (FPAGE)    265               |
| Table 144. | Flash Frequency Register (FFREQ)    266                 |
| Table 145. | Linked List Descriptor                                  |
| Table 146. | DMA Priority                                            |
| Table 147. | DMA Bandwidth Selection                                 |
| Table 148. | DMA Select Register (DAMxREQSEL)                        |
| Table 149. | DMA Control Register A (DMAxCTL)                        |
| Table 150. | DMA X Transfer Length High Register (DMAxTXLNH)         |
| Table 151. | DMA X Transfer Length Low Register (DMAxTXLNL)          |
| Table 152. | DMA X Destination Address Register Upper (DMAxDARU) 287 |
| Table 153. | DMA X Destination Address Register High (DMAxDARH) 287  |
| Table 154. | DMA X Destination Address Register Low (DMAxDARL)       |
| Table 155. | DMA X Source Address Register Upper DMAxSARU            |
| Table 156. | DMA X Source Address Register High (DMAxSARH) 288       |
| Table 157. | DMA X Source Address Register Low (DMAxSARL)            |
| Table 158. | DMA X List Address Register Upper DMAxLARU              |
| Table 159. | DMA X List Address Register High (DMAxLARH) 289         |
| Table 160. | DMA X List Address Register Low (DMAxLARL)              |
| Table 161. | Option Bits At Program Memory Address 0000h 293         |
| Table 162. | Options Bits at Program Memory Address 0001h 294        |
| Table 163. | Options Bits at Program Memory Address 0002h 295        |
| Table 164. | Options Bits at Program Memory Address 0003h 295        |
| Table 165. | IPO Trim 1 (IPOTRIM1)                                   |
| Table 166. | IPO Trim 2 (IPOTRIM2)                                   |
| Table 167. | ADC Reference Voltage Trim (ADCTRIM)                    |
| Table 168. | OCD Baud Rate Limits                                    |
| Table 169. | On-Chip Debugger Commands                               |
| Table 170. | Receive Data Register (DBGRXD)                          |
| Table 171. | Transmit Data Register (DBGTXD)                         |

# 10-Bit Analog-to-Digital Converter with Programmable Gain Amplifier

The ADC converts an analog input signal to a 10-bit binary number. The ADC accepts inputs from 12 different analog input sources.

#### Analog Comparator

It features an on-chip analog comparator with external input pins.

#### **Operational Amplifier**

It features a two-input, one-output operational amplifier.

#### **General-Purpose Input/Output**

The Motor Control MCUs features 76 GPIO pins. Each pin is individually programmable.

#### **Universal Asynchronous Receiver/Transmitter**

It contains two fully-featured UARTs with LIN protocol support. The UART communication is full-duplex and capable of handling asynchronous data transfers. The UARTs support 8-bit and 9-bit data modes, selectable parity and an efficient bus transceiver driver enable signal for controlling a multi-transceiver bus, such as RS-485.

#### Infrared Encoder/Decoders

The ZNEO Z16F Series products contain two fully-functional, high-performance UART to Infrared Encoder/Decoders (Endecs). Each infrared endec is integrated with an on-chip UART to allow easy communication between the ZNEO Z16F Series device and IrDA physical layer specification Version 1.3-compliant infrared transceivers. Infrared communication provides secure, reliable, low-cost and point-to-point communication between PCs, PDAs, cell phones, printers and other infrared enabled devices.

#### Inter-Integrated Circuit Master/Slave Controller

The I<sup>2</sup>C controller makes Z16F2811 compatible with the I<sup>2</sup>C protocol. It consists of two bidirectional bus lines, a serial data (SDA) line and a serial clock (SCL) line. The I<sup>2</sup>C operates as a Master and/or Slave and supports multi-master bus arbitration.

#### **Enhanced Serial Peripheral Interface**

The ESPI allows the data exchange between ZNEO Z16F Series and other peripheral devices such as electrically erasable programmable read-only memory (EEPROMs),

| Address (Hex)         | Register Description                   | Mnemonic          | Reset (Hex) | Page No    |  |
|-----------------------|----------------------------------------|-------------------|-------------|------------|--|
| FF_E399               | PWM 2 High Side Duty Cycle<br>Low Byte | PWMH2DL           | 00          | <u>125</u> |  |
| FF_E39A               | PWM 2 Low Side Duty Cycle<br>High Byte | PWML2DH           | 00          | <u>124</u> |  |
| FF_E39B               | PWM 2 Low Side Duty Cycle<br>Low Byte  | PWML2DL           | 00          | <u>125</u> |  |
| FF_E39C-FF_E3BF       | Reserved for PWM                       | —                 | —           |            |  |
| DMA Block Base Add    | ress = FF_E400                         |                   |             |            |  |
| DMA Request Selection | on Control                             |                   |             |            |  |
| FF_E400               | DMA0 Request Select                    | <b>DMA0REQSEL</b> | 00          | <u>282</u> |  |
| FF_E401               | DMA1 Request Select                    | DMA1REQSEL        | 00          | <u>282</u> |  |
| FF_E402               | DMA2 Request Select                    | DMA2REQSEL        | 00          | <u>282</u> |  |
| FF_E403               | DMA3 Request Select                    | <b>DMA3REQSEL</b> | 00          | <u>282</u> |  |
| FF_E404-F             | Reserved                               | _                 | _           | _          |  |
| DMA Channel 0 Base    | Address = FF_E410                      |                   |             |            |  |
| FF_E410               | DMA0 Control 0                         | DMA0CTL0          | 00          | <u>285</u> |  |
| FF_E411               | DMA0 Control 1                         | DMA0CTL1          | 00          | <u>285</u> |  |
| FF_E412               | DMA0 Transfer Length High              | DMA0TXLNH         | 00          | <u>286</u> |  |
| FF_E413               | DMA0 Transfer Length Low               | DMA0TXLNL         | 00          | <u>287</u> |  |
| FF_E414               | Reserved                               | —                 | —           | _          |  |
| FF_E415               | DMA0 Destination Address<br>Upper      |                   |             | <u>287</u> |  |
| FF_E416               | DMA0 Destination Address<br>High       | DMA0DARH          | 00          | <u>287</u> |  |
| FF_E417               | DMA0 Destination Address<br>Low        | DMA0DARL          | 00          | <u>287</u> |  |
| FF_E418               | Reserved                               | _                 | —           | _          |  |
| FF_E419               | DMA0 Source Address Upper              | DMA0SARU          | 00          | <u>288</u> |  |
| FF_E41A               | DMA0 Source Address High               | DMA0SARH          | 00          | <u>288</u> |  |
| FF_E41B               | DMA0 Source Address Low                | DMA0SARL          | 00          | <u>288</u> |  |
| FF_E41C               | Reserved                               | _                 | _           |            |  |
| FF_E41D               | DMA0 List Address Upper                | DMA0LARU          | 00          | <u>289</u> |  |
| FF_E41E               | DMA0 List Address High                 | DMA0LARH          | 00          | <u>289</u> |  |
| FF_E41F               | DMA0 List Address Low                  | DMA0LARL          | 00          | <u>289</u> |  |

XX = Undefined.

|  | Table 6. Register | File Address | Map (Continued) |
|--|-------------------|--------------|-----------------|
|--|-------------------|--------------|-----------------|

|                    | -                                 |                 |             |            |
|--------------------|-----------------------------------|-----------------|-------------|------------|
| Address (Hex)      | dress (Hex) Register Description  |                 | Reset (Hex) | Page No    |
| FF_E43A            | DMA2 Source Address High          | DMA2SARH        | 00          | <u>288</u> |
| FF_E43B            | DMA2 Source Address Low           | DMA2SARL        | 00          | <u>288</u> |
| FF_E43C            | Reserved                          |                 |             |            |
| FF_E43D            | DMA2 List Address Upper           | DMA2LARU        | 00          | <u>289</u> |
| FF_E43E            | DMA2 List Address High            | DMA2LARH        | 00          | <u>289</u> |
| FF_E43F            | DMA2 List Address Low             | DMA2LARL        | 00          | <u>289</u> |
| DMA Channel 3 Base | e Address = FF_E440               |                 |             |            |
| FF_E440            | DMA3 Control 0                    | DMA3CTL0        | 00          | <u>285</u> |
| FF_E441            | DMA3 Control 1                    | DMA3CTL1        | 00          | <u>285</u> |
| FF_E442            | DMA3 Transfer Length High         | DMA3TXLNH       | 00          | <u>286</u> |
| FF_E443            | DMA3 Transfer Length Low          | DMA3TXLNL       | 00          | <u>287</u> |
| FF_E444            | Reserved                          |                 |             | _          |
| FF_E445            | DMA3 Destination Address<br>Upper | DMA3DARU        | 00          | <u>287</u> |
| FF_E446            | DMA3 Destination Address<br>High  | DMA3DARH        | 00          | <u>287</u> |
| FF_E447            | DMA3 Destination Address<br>Low   | DMA3DARL        | 00          | <u>287</u> |
| FF_E448            | Reserved                          |                 |             | _          |
| FF_E449            | DMA3 Source Address Upper         | <b>DMA3SARU</b> | 00          | <u>288</u> |
| FF_E44A            | DMA3 Source Address High          | <b>DMA3SARH</b> | 00          | <u>288</u> |
| FF_E44B            | DMA3 Source Address Low           | DMA3SARL        | 00          | <u>288</u> |
| FF_E44C            | Reserved                          | —               | —           | _          |
| FF_E44D            | DMA3 List Address Upper           | DMA3LARU        | 00          | <u>289</u> |
| FF_E44E            | DMA3 List Address High            | DMA3LARH        | 00          | <u>289</u> |
| FF_E44F            | DMA3 List Address Low             | DMA3LARL        | 00          | <u>289</u> |
| Analog Block Base  | Address = FF_E500                 |                 |             |            |
| ADC Base Address = | = FF_E500                         |                 |             |            |
| FF_E500            | ADC0 Control Register             | ADC0CTL         | 00          | <u>246</u> |
| FF_E501            | Reserved                          |                 |             | _          |
| FF_E502            | ADC0 Data High Byte Register      | ADC0D_H         | XX          | <u>247</u> |
| FF_E503            | ADC0 Data Low Bits Register       | ADC0D_L         | XX          | <u>248</u> |
| XX = Undefined.    |                                   |                 |             |            |
|                    |                                   |                 |             |            |

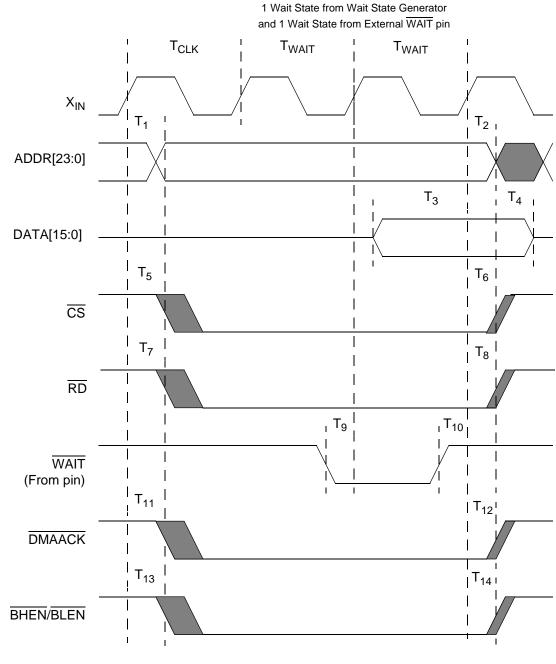



Figure 13. External Interface Timing for a Read Operation, Normal Mode

| Bits      | 7             | 6           | 5               | 4           | 3              | 2               | 1     | 0     |
|-----------|---------------|-------------|-----------------|-------------|----------------|-----------------|-------|-------|
| Field     | PAD7I         | PAD6I       | PAD5I           | PAD4I       | PAD3I          | PAD2I           | PAD1I | PAD0I |
| RESET     | 0             | 0           | 0               | 0           | 0              | 0               | 0     | 0     |
| R/W       | R/W1C         | R/W1C       | R/W1C           | R/W1C       | R/W1C          | R/W1C           | R/W1C | R/W1C |
| Addr      | FF_E034h      |             |                 |             |                |                 |       |       |
| Field     | PAD7I         | PAD6I       | PAD5I           | PAD4I       | PAD3I          | PAD2I           | PAD1I | PAD0I |
| RESET     | 0             | 0           | 0               | 0           | 0              | 0               | 0     | 0     |
| R/W       | W             | W           | W               | W           | W              | W               | W     | W     |
| Addr      | FF_E035h      |             |                 |             |                |                 |       |       |
| Note: IRQ | ISET at addre | ess FF_E035 | h is write only | and used to | set the interr | upts identified | ł.    |       |

#### Table 45. Interrupt Request1 Register (IRQ1) and Interrupt Request1 Set Register (IRQ1SET)

BitDescription[7:0]Port A/D Pin x Interrupt RequestPADxI0 = No interrupt request is pending for GPIO Port A/D pin x.<br/>1 = An interrupt request from GPIO Port A/D pin x is awaiting service. Writing 1 to these bits<br/>resets it to 0.Here, x indicates the specific GPIO port pin number (0 through 7). PAD7I and PAD0I have<br/>interrupt sources other than Port A and Port D as selected by the Port A IRQ MUX registers.<br/>PAD7I is configured to provide the comparator interrupt. PAD0I is configured to provide the<br/>OCD interrupt.

**Note:** The above IRQ1 bits are set any time the selected port is toggled. The setting of these bits are not affected by the associated interrupt enable bits.

#### Interrupt Request 2 Register

The Interrupt Request 2 (IRQ2) Register, shown in Table 46, stores interrupt requests for both vectored and polled interrupts. When a request is presented to the interrupt controller, the corresponding bit in the IRQ2 Register becomes 1. If interrupts are globally enabled (vectored interrupts), the interrupt controller passes an interrupt request to the ZNEO CPU. If interrupts are globally disabled (polled interrupts), the ZNEO CPU reads the Interrupt Request 1 Register to determine, if any interrupt requests are pending. Writing 1 to the bits in this register clears the interrupt. The bits of this register are set bywriting 1 to the Interrupt Request 2 Set Register (IRQ2SET) at address FF\_E039h.

#### **PWM Output Polarity and Off-State**

The default off-state and polarity of the PWM outputs are controlled by the option bits PWMHI and PWMLO. The PWMHI option controls the off-state and polarity for PWM high-side outputs PWMH0, PWMH1 and PWMH2. The PWMLO option controls the off-state and polarity for low-side outputs PWML0, PWML1 and PWML2.

The off-state is the value programmed in the option bit. For example, programming PWMHI to 1 makes the off-state of PWMH0, PWMH1 and PWMH2 a High logic value and the active state a Low logic value. Conversely, programming PWMHI to 0 causes the off-state to be a Low logic value. PWMLO is programmed in a similar manner.

#### **PWM Enable**

The MCEN option bit enables output pairs PWM0, PWM1 and PWM2. If the Motor Control option is not enabled, the PWM outputs remain in a high-impedance state after reset and is used as alternate functions like general purpose input. If the Motor Control option is enabled, following a Power-On Reset (POR) the PWM pins enter a high impedance state. As the internal reset proceeds, the PWM outputs are forced to the off-state as determined by the PWMHI and PWMLO off-state option bits.

#### **PWM Reload Event**

To prevent erroneous PWM pulse-widths and periods, registers that control the timing of the output are buffered. Buffering causes all of the PWM compare values to update. In other words, the registers controlling the duty cycle and clock source prescaler only take effect on a PWM reload event. A PWM reload event is configured to occur at the end of each PWM period or only every 2, 4, or 8 PWM periods by setting the RELFREQ bits in the PWM Control 1 Register (PWMCTL1). Software indicates that all new values are ready by setting the READY bit in the PWM Control 0 Register (PWMCTL0) to 1. When the READY bit is set to 1, the buffered values take effect at the next reload event.

#### **PWM Prescaler**

The prescaler decreases the PWM clock signal by factors of 1, 2, 4, or 8 with respect to the system clock. The PRES[1:0] bit field in the PWM Control 1 Register (PWMCTL1) controls prescaler operation. This 2-bit PRES field is buffered so that the prescale value only changes on a PWM Reload event.

## **PWM Period and Count Resolution**

The PWM counter operates in two modes to allow edge-aligned and center-aligned outputs. Figures 22 and 23 illustrate edge and center-aligned PWM outputs. The mode in which the PWM operates determine the period of the PWM outputs (PERIOD). The programmed duty-cycle (PWMDC) and the programmed deadband time (PWMDB) deterroundup(PWMMPF) = T<sub>minPulseOut</sub>/(T<sub>systemClock</sub> · PWMprescaler)

where *minPulseOut* is the shortest allowed pulse width on the PWM outputs (in seconds).

#### Synchronization of PWM and ADC

The ADC on the ZNeo is synchronized with the PWM period. Enabling the PWM ADC trigger causes the PWM to generate an ADC conversion signal at the end of each PWM period. Additionally, in CENTER-ALIGNED Mode, the PWM generates a trigger at the center of the period. Setting the ADCTRIG bit in the PWM Control 0 Register (PWMCTL0) enables the ADC synchronization.

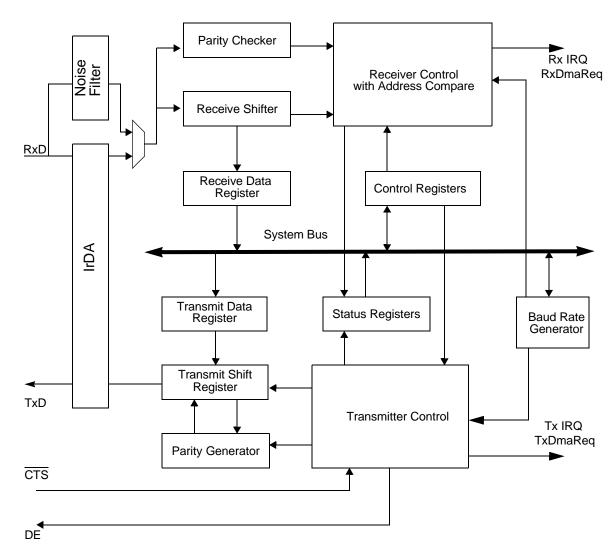
#### Synchronized Current-Sense Sample and Hold

The PWM controls the current-sense input sample and hold amplifier. The signal controlling the sample/hold is configured to always sample or automatically hold when any or all of the PWM High or Low outputs are in the onstate. The current-sense sample and hold is controlled by the Current-Sense Sample and Hold Control Register (CSSHR0 and CSSHR1).

#### **PWM Timer and Fault Interrupts**

The PWM generates interrupts to the ZNEO CPU during any of the following events:

- PWM Reload, in which the interrupt is generated at the end of a PWM period when a PWM register reload occurs
- PWM Fault, in which a fault condition is indicated by asserting any FAULT pins or by the assertion of the comparator


#### **Fault Detection and Protection**

The ZNEO contains hardware and software fault controls, which allow rapid deassertion of all enabled PWM output signals. A logic Low on an external fault pin (FAULT0 or FAULT1) or the assertion of the over current comparator forces the PWM outputs to the predefined off-state.

Similar deassertion of the PWM outputs is accomplished in software by writing to the PWMOFF bit in the PWM Control 0 Register. The PWM counter continues to operate while the outputs are deasserted (inactive) due to one of these fault conditions.

The fault inputs are individually enabled through the PWM Fault Control Register. If a fault condition is detected and the source is enabled, the fault interrupt is generated. The







## Operation

#### **Data Format for Standard UART Modes**

The LIN-UART always transmits and receives data in an 8-bit data format, with the first bit being the least-significant bit. An even- or odd-parity bit or multiprocessor address/ data bit is optionally added to the data stream. Each character begins with an active Low start bit and ends with either 1 or 2 active High stop bits. Figures 25 and 26 display the

## LIN-UART Control 0 Register

The LIN-UART Control 0 Register, shown in Table 89, configures the basic properties of the LIN-UART's transmit and receive operations.

| Bits        | 7                                                                                                                                                                                                                                                                                                                             | 6   | 5    | 4         | 3        | 2    | 1    | 0    |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|-----------|----------|------|------|------|
| Field       | TEN                                                                                                                                                                                                                                                                                                                           | REN | CTSE | PEN       | PSEL     | SBRK | STOP | LBEN |
|             |                                                                                                                                                                                                                                                                                                                               |     |      |           |          | •=   |      |      |
| RESET       | 0                                                                                                                                                                                                                                                                                                                             | 0   | 0    | 0         | 0        | 0    | 0    | 0    |
| R/W         | R/W                                                                                                                                                                                                                                                                                                                           | R/W | R/W  | R/W       | R/W      | R/W  | R/W  | R/W  |
| Addr        |                                                                                                                                                                                                                                                                                                                               |     |      | FF-E202h, | FF-E212h |      |      |      |
| Bit         | Descriptio                                                                                                                                                                                                                                                                                                                    | n   |      |           |          |      |      |      |
| [7]<br>TEN  | <b>Transmit Enable</b><br>This bit enables or disables the transmitter. The enable is also controlled by the $\overline{\text{CTS}}$ signal and the CTSE bit. If the $\overline{\text{CTS}}$ signal is Low and the CTSE bit is 1, the transmitter is enabled.<br>0 = Transmitter disabled.<br>1 = Transmitter enabled.        |     |      |           |          |      |      |      |
| [6]<br>REN  | <b>Receive Enable</b><br>This bit enables or disables the receiver.<br>0 = Receiver disabled.<br>1 = Receiver enabled.                                                                                                                                                                                                        |     |      |           |          |      |      |      |
| [5]<br>CTSE | <b>CTS Enable</b><br>0 = The CTS signal has no effect on the transmitter.<br>1 = The LIN-UART recognizes the CTS signal as an enable control for the transmitter.                                                                                                                                                             |     |      |           |          |      | ter. |      |
| [4]<br>PEN  | <ul> <li>Parity Enable</li> <li>This bit enables or disables parity. Even or odd is determined by the PSEL bit.</li> <li>0 = Parity is disabled. This bit is overridden by the MPEN bit.</li> <li>1 = The transmitter sends data with an additional parity bit and the receiver receives an additional parity bit.</li> </ul> |     |      |           |          |      |      |      |
| [3]<br>PSEL | Parity Select         0 = Even parity is transmitted and expected on all received data.         1 = Odd parity is transmitted and expected on all received data.                                                                                                                                                              |     |      |           |          |      |      |      |

Table 89. LIN-UART Control 0 Register (UxCTL0)

| Bit  | Description (Continued)                                                                 |
|------|-----------------------------------------------------------------------------------------|
| [2]  | Wire-OR (Open-Drain) Mode Enabled                                                       |
| WOR  | 0 = ESPI signal pins not configured for open-drain.                                     |
|      | 1 = All four ESPI signal pins (SCK, SS, MISO, MOSI) configured for open-drain function. |
|      | This setting is used for Multi-Master and/or Multi-Slave configurations.                |
| [1]  | ESPI Master Mode Enable                                                                 |
| MMEN | This bit controls the data I/O pin selection and SCK direction.                         |
|      | 0 = Data-out on MISO, data-in on MOSI (used in SPI Slave Mode), SCK is an input.        |
|      | 1 = Data-out on MOSI, data-in on MISO (used in SPI Master Mode), SCK is an output.      |

# **Caution:** If reading the counter one byte at a time while the BRG is counting keep in mind that the values will not be in sync. It is recommended to read the counter using word (2-byte) reads.

#### 205

# I<sup>2</sup>C Master/Slave Controller Registers

Table 111 summarizes the I<sup>2</sup>C Master/Slave Controller software-accessible registers.

| Name                              | Abbreviation | Description                                                                                                                 |
|-----------------------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------|
| I <sup>2</sup> C Data             | I2CDATA      | Transmit/Receive Data Register.                                                                                             |
| I <sup>2</sup> C Interrupt Status | I2CISTAT     | Interrupt Status Register.                                                                                                  |
| I <sup>2</sup> C Control          | I2CCTL       | Control Register-basic control functions.                                                                                   |
| I <sup>2</sup> C Baud Rate High   | I2CBRH       | High byte of baud rate generator initialization value.                                                                      |
| I <sup>2</sup> C Baud Rate Low    | I2CBRL       | Low byte of baud rate generator initialization value.                                                                       |
| I <sup>2</sup> C State            | I2CSTATE     | State Register.                                                                                                             |
| I <sup>2</sup> C Mode             | I2CMODE      | Selects MASTER or SLAVE modes, 7-bit or 10-Bit Address.<br>Configure address recognition, Defines Slave Address bits [9:8]. |
| I <sup>2</sup> C Slave Address    | I2CSLVAD     | Defines Slave Address bits [7:0]                                                                                            |

#### Table 111. I<sup>2</sup>C Master/Slave Controller Registers

# Comparison with Master Mode only I<sup>2</sup>C Controller

Porting code written for the Master-only I<sup>2</sup>C Controller found on other Z8 Encore!<sup>®</sup> parts to the I<sup>2</sup>C Master/Slave Controller is straightforward. The I2CDATA, I2CCTL, I2CBRH and I2CBRL Register definitions are not changed.

The differences between the Master-only I<sup>2</sup>C Controller and I<sup>2</sup>C Master/Slave Controller designs are:

- The Status Register (I2CSTATE) from the Master-only I<sup>2</sup>C Controller is split into the Interrupt Status (I2CISTAT) Register and the State (I2CSTATE) Register because there are more interrupt sources. The ACK, 10b, TAS (now called AS) and DSS (now called DS) bits formerly in the status register are moved to the state register.
- The I2CSTATE Register is called as I2CDST (Diagnostic State) Register in the Master Only Mode version. The I2CDST Register provided diagnostic information. The I2CSTATE Register contains status and state information that are useful to software in operational mode.
- The I2CMODE Register is called as I2CDIAG (Diagnostic Control) Register in the Master Only Mode version. The I2CMODE Register provides control for Slave modes of operation as well as the most significant two bits of the 10-bit Slave address.
- The I2CSLVAD Register is added for programming the Slave address.
- The ACKV bit in the I2CSTATE Register enables the Master to verify the acknowledge from the Slave before sending the next byte.

- 14. The Slave I<sup>2</sup>C Controller asserts the Stop/Restart interrupt (set the SPRS bit in the I2CISTAT Register).
- 15. Software responds to the Stop interrupt by reading the I2CISTAT Register, clearing the SPRS bit.

# DMA Control of I<sup>2</sup>C Transactions

The DMA engine is configured to support transmit and receive DMA requests from the  $I^2C$  Controller. The  $I^2C$  data interrupt requests must be disabled by setting the DMAIF bit in the  $I^2C$  Mode Register and clearing the TXI bit in the  $I^2C$  Control Register. This allows error condition interrupts to be handled by software while data movement is handled by the DMA engine.

The DMA interface on the I<sup>2</sup>C Controller is intended to support data transfer but not Master Mode address byte transfer. The Start, Stop and NAK bits must be controlled by software.

A summary of the sequence of I<sup>2</sup>C data transfer using the DMA follows.

#### Master Write Transaction with Data DMA

- 1. Configure the selected DMA Channel for I<sup>2</sup>C transmit. The IEOB bit must be set in the DMACTL Register for the last buffer to be transferred.
- 2. The I<sup>2</sup>C interrupt must be enabled in the interrupt controller to alert software of any I<sup>2</sup>C error conditions. A Not Acknowledge interrupt occurs on the last byte transferred.
- 3. The I<sup>2</sup>C Master/Slave must be configured as defined in the sections above describing Master Mode transactions. The TXI bit in the I2CCTL Register must be cleared.
- Initiate the I<sup>2</sup>C transaction as described in the <u>Master Address Only Transactions</u> section on page 210, using the ACKV and ACK bits in the I2CSTATE Register to determine if the slave acknowledges.
- 5. Set the DMAIF bit in the I2CMODE Register.
- 6. The DMA transfers the data, which is to be transmitted to the slave.
- When the DMA interrupt occurs, poll the I2CSTAT Register until the TDRE bit = 1 to ensure that the I<sup>2</sup>C Master/Slave hardware has commenced transmitting the most recent byte written by the DMA.
- 8. Set the Stop bit in the I2CCTL Register. The Stop bit is polled by software to determine when the transaction is actually completed.
- 9. Clear the DMAIF bit in the I2CMODE Register.

The following section describes the I<sup>2</sup>C Master/Slave Controller operating as a Slave in 10-Bit Addressing Mode, transmitting data to the bus master.

```
Note: If BRG = 0000h, use 10000h in the equation.
```

>

#### Table 115. I<sup>2</sup>C Baud Rate High Byte Register (I2CBRH)

| Bits  | 7        | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|-------|----------|---|---|---|---|---|---|---|
| Field | BRH      |   |   |   |   |   |   |   |
| RESET | FFh      |   |   |   |   |   |   |   |
| R/W   | R/W      |   |   |   |   |   |   |   |
| Addr  | FF–E243h |   |   |   |   |   |   |   |
|       |          |   |   |   |   |   |   |   |

| Bit   | Description                                                                                   |
|-------|-----------------------------------------------------------------------------------------------|
| [7:0] | I <sup>2</sup> C Baud Rate High Byte                                                          |
| BRH   | Most significant byte, BRG[15:8], of the I <sup>2</sup> C Baud Rate Generator's reload value. |

**Note:** If the DIAG bit in the I<sup>2</sup>C Mode Register is set to 1, a read of the I2CBRH Register returns the current value of the I<sup>2</sup>C Baud Rate Counter[15:8].

#### Table 116. I<sup>2</sup>C Baud Rate Low Byte Register (I2CBRL)

| Bits  | 7        | 6   | 5 | 4 | 3 | 2 | 1 | 0 |  |
|-------|----------|-----|---|---|---|---|---|---|--|
| Field |          | BRL |   |   |   |   |   |   |  |
| RESET | FFh      |     |   |   |   |   |   |   |  |
| R/W   | R/W      |     |   |   |   |   |   |   |  |
| Addr  | FF–E244h |     |   |   |   |   |   |   |  |

| Bit   | Description                                                                                                                          |
|-------|--------------------------------------------------------------------------------------------------------------------------------------|
| [7:0] | I <sup>2</sup> C Baud Rate Low Byte<br>Least significant byte, BRG[7:0], of the I <sup>2</sup> C Baud Rate Generator's reload value. |
| BRL   | Least significant byte, BRG[7.0], of the FC Baud Rate Generator's reload value.                                                      |

**Note:** If the DIAG bit in the I<sup>2</sup>C Mode Register is set to 1, aread of the I2CBRL Register returns the current value of the I<sup>2</sup>C Baud Rate Counter[7:0].

## **Reference Buffer, RBUF**

The reference buffer, RBUF, supplies the reference voltage for the ADC. When enabled, the internal voltage reference generator supplies the ADC and the voltage is available on the VREF pin. When RBUF is disabled, the reference voltage must be supplied externally through the VREF pin. RBUF is controlled by the REFEN bit in the ADC0 Control Register.

#### **Internal Voltage Reference Generator**

The internal voltage reference generator provides the voltage to RBUF. The internal reference voltage is 2 V.

# **ADC Control Register Definitions**

The following sections describe the control registers for the ADC.

#### **ADC0 Control Register 0**

The ADC0 Control Register initiates the A/D conversion and provides ADC0 status information.

| Bits  | 7        | 6      | 5     | 4      | 3   | 2     | 1       | 0   |
|-------|----------|--------|-------|--------|-----|-------|---------|-----|
| Field | START0   | CVTRD0 | REFEN | ADC0EN |     | ANAIN | 10[3:0] |     |
| RESET | 0        | 0      | 0     | 0      | 0   | 0     | 0       | 0   |
| R/W   | R/W1     | R/W    | R/W   | R/W    | R/W | R/W   | R/W     | R/W |
| Addr  | FF-E500h |        |       |        |     |       |         |     |

Table 126. ADC0 Control Register 0 (ADC0CTL)

| Bit    | Description                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [7]    | ADC0 Start/Busy                                                                                                                                                                                                                                                                                                                                                                                                                |
| START0 | 0 = Writing to 0 has no effect. Reading a 0 indicates the ADC0 is available to begin a conversion.                                                                                                                                                                                                                                                                                                                             |
|        | 1 = Writing to 1 starts a conversion on ADC0. Reading a 1 indicates a conversion is currently in progress.                                                                                                                                                                                                                                                                                                                     |
| [6]    | Convert On Read                                                                                                                                                                                                                                                                                                                                                                                                                |
| CVTRD0 | 0 = The ADC0 operates normally.                                                                                                                                                                                                                                                                                                                                                                                                |
|        | 1 = If this bit is set to 1, whenever the ADC0D Register is read it increments the ANAIN field by<br>one and start a new conversion. The ANAIN field increments until it reaches the value set<br>in the ADC0MAX Register. After doing the conversion on the channel specified by the<br>ADC0MAX Register, the next read resets the ANAIN field to 0. This function is used with<br>the DMA to perform continuous conversions. |

#### Programming

When the Flash Controller is unlocked, word writes to Program memory from user code programs a word into the Flash if the address is located in the unlocked page. An erased Flash word contains all ones (FFFFh). The programming operation is used to change bits from 1 to 0. To change a Flash bit (or multiple bits) from 0 to 1 requires a Page Erase or Mass Erase operation.

The Flash must be programmed one word (16-bits) at a time. If a byte (8-bit) write to Flash memory occurs, the Flash controller waits until the other byte within the word is written before beginning the programming operation.

While the Flash Controller programs the Flash memory, Flash reads are held in wait. If the CPU is fetching instruction from Flash, the CPU idles until the programming operation is complete. Interrupts that occur when a programming operation is in progress are serviced after the programming operation is complete. To exit Programming Mode and lock the Flash Controller, write 00h to the Flash Command Register.

User code cannot program Flash Memory on a page that lies in a protected sector. When user code writes memory locations, only addresses located in the unlocked page are programmed. Memory writes outside of the unlocked page are ignored.

**Caution:** Each memory location must not be programmed more than twice before an erase occurs.

Observe the following steps to program the Flash from user code:

- 1. Write the page of memory to be programmed to the Flash Page Select Register.
- 2. Write the first unlock command 73h to the Flash Command Register.
- 3. Write the second unlock command 8Ch to the Flash Command Register.
- 4. Write a word to Program memory.
- 5. Repeat step 4 to program additional memory locations on the same page.
- 6. Write 00h to the Flash Command Register to lock the Flash Controller.

#### **Page Erase**

The Flash memory is erased one page (2 KB) at a time. Page Erasing the Flash memory sets all words in that page to the value FFFFh. The Flash Page Select Register identifies the page to be erased. While the Flash Controller executes the Page Erase operation, Flash reads are held in wait. Interrupts that occur when the Page Erase operation is in progress will be serviced after the Page Erase operation is complete. When the Page Erase opera-

# **On-Chip Peripheral AC and DC Electrical Characteristics**

Table 187 lists the POR and VBO electrical characteristics and timing. Table 188 lists the Reset and Stop Mode Recovery pin timing.

|                   |                                                                                  | T <sub>A</sub> = | –40°C to 1       | 25°C |       |                                                                                                       |  |
|-------------------|----------------------------------------------------------------------------------|------------------|------------------|------|-------|-------------------------------------------------------------------------------------------------------|--|
| Symbol            | Parameter                                                                        | Min              | Typ <sup>1</sup> | Max  | Units | Conditions                                                                                            |  |
| V <sub>POR</sub>  | Power-On Reset voltage threshold                                                 | 2.20             | 2.45             | 2.70 | V     | $V_{DD} = V_{POR}$                                                                                    |  |
| V <sub>VBO</sub>  | Voltage Brown-Out reset voltage threshold                                        | 2.15             | 2.40             | 2.65 | V     | $V_{DD} = V_{VBO}$                                                                                    |  |
|                   | V <sub>POR</sub> -V <sub>VBO</sub>                                               |                  | 50               | 100  | mV    |                                                                                                       |  |
|                   | Starting V <sub>DD</sub> voltage to ensure valid POR                             | —                | $V_{SS}$         | _    | V     |                                                                                                       |  |
| T <sub>ANA</sub>  | Power-On Reset analog delay                                                      | —                | 50               |      | ms    | V <sub>DD</sub> > V <sub>POR</sub> ; T <sub>POR</sub> Digital<br>Reset delay follows T <sub>ANA</sub> |  |
| T <sub>POR</sub>  | Power-On Reset digital delay                                                     | —                | 12               | _    | μs    | 66 IPO cycles                                                                                         |  |
| T <sub>VBO</sub>  | Voltage Brown-Out pulse rejection period                                         | —                | 10               | _    | ms    | V <sub>DD</sub> < V <sub>VBO</sub> to generate a<br>Reset                                             |  |
| T <sub>RAMP</sub> | Time for $V_{DD}$ to transition from $V_{SS}$ to $V_{POR}$ to ensure valid Reset | 0.10             | _                | 100  | ms    |                                                                                                       |  |
| I <sub>CC</sub>   | Supply current                                                                   |                  | 500              |      | μA    | V <sub>DD</sub> = 3.3 V.                                                                              |  |

#### Table 187. POR and VBO Electrical Characteristics and Timing

1. Data in the typical column is from characterization at 3.3 V and 0°C. These values are provided for design guidance only and are not tested in production.

|                    |                                                     | T <sub>A</sub> = | –40°C to | 125°C |                  |                                                              |  |  |
|--------------------|-----------------------------------------------------|------------------|----------|-------|------------------|--------------------------------------------------------------|--|--|
| Symbol             | Parameter                                           | Min              | Тур      | Max   | Units            | Conditions                                                   |  |  |
| T <sub>RESET</sub> | RESET pin assertion to initiate a System Reset      | 4                | —        | —     | T <sub>CLK</sub> | Not in Stop Mode.<br>T <sub>CLK</sub> = System Clock period. |  |  |
| T <sub>SMR</sub>   | Stop Mode Recovery<br>pin Pulse Rejection<br>Period | 10               | 20       | 40    | ns               | RESET, DBG and GPIO pins configured as SMR sources.          |  |  |

#### Table 188. Reset and Stop Mode Recovery Pin Timing

|                  |                                 | T <sub>A</sub> = | –40°C to 1 | 25°C  |            |                                                            |
|------------------|---------------------------------|------------------|------------|-------|------------|------------------------------------------------------------|
| Symbol           | Parameter                       | Min Typ Max      |            | Units | Conditions |                                                            |
| PSRR             | Power Supply Rejection<br>Ratio |                  | 80         |       | dB         | V <sub>DD</sub> = 2.7 V - 3.6 V;<br>T <sub>A</sub> = 25 °C |
| A <sub>VOL</sub> | Voltage Gain                    |                  | 80         |       | dB         |                                                            |
| SR+              | Slew Rate while rising          |                  | 12         |       | V/µs       |                                                            |
| SR-              | Slew Rate while falling         |                  | 16         |       | V/µs       |                                                            |
| GBW              | Gain-Bandwidth Product          | 5                |            |       | MHz        |                                                            |
| FM               | Phase Margin                    |                  | 50         |       | degree     |                                                            |
| I <sub>S</sub>   | Supply Current                  |                  |            | 1     | mA         | $V_{DD} = 3.6 \text{ V};$<br>$V_{OUT} = V_{DD} \div 2$     |
| T <sub>WUP</sub> | Wake up time from off state     |                  |            | 20    | μs         |                                                            |

#### Table 193. Operational Amplifier Electrical Characteristics (Continued)

| Part Number      | Flash (Kbytes) | RAM (Kbytes) | External Interface | NO   | Multi-Channel timers<br>with PWM | Standard Timers<br>with PWM | ADC Inputs        | I <sup>2</sup> C Master/Slave | UART with LIN and IrDA | ESPI    | Package      |
|------------------|----------------|--------------|--------------------|------|----------------------------------|-----------------------------|-------------------|-------------------------------|------------------------|---------|--------------|
| Automotive Tempe | rature         | e: -40°0     | C to +1            | 25°C |                                  |                             |                   |                               |                        |         |              |
| Z16F2811AL20AG   | 128            | 4            | Yes                | 76   | 1                                | 3                           | 12                | 1                             | 2                      | 1       | 100-pin LQFP |
| Z16F2811FI20AG   | 128            | 4            | Yes                | 60   | 1                                | 3                           | 12                | 1                             | 2                      | 1       | 80-pin QFP   |
| Z16F2810FI20AG   | 128            | 4            | No                 | 60   | 1                                | 3                           | 12                | 1                             | 2                      | 1       | 80-pin QFP   |
| Z16F2810AG20AG   | 128            | 4            | No                 | 46   | 1                                | 3                           | 12                | 1                             | 2                      | 1       | 64-pin LQFP  |
| Z16F2810VH20AG   | 128            | 4            | No                 | 46   | 1                                | 3                           | 12                | 1                             | 2                      | 1       | 68-pin PLCC  |
| Z16F6411AL20AG   | 64             | 4            | Yes                | 76   | 1                                | 3                           | 12                | 1                             | 2                      | 1       | 100-pin LQFP |
| Z16F6411FI20AG   | 64             | 4            | Yes                | 60   | 1                                | 3                           | 12                | 1                             | 2                      | 1       | 80-pin QFP   |
| Z16F3211AL20AG   | 32             | 2            | Yes                | 76   | 1                                | 3                           | 12                | 1                             | 2                      | 1       | 100-pin LQFP |
| Z16F3211FI20AG   | 32             | 2            | Yes                | 60   | 1                                | 3                           | 12                | 1                             | 2                      | 1       | 80-pin QFP   |
| ZNEO Z16F Series | Devel          | opmen        | t Tool             | S    |                                  |                             |                   |                               |                        |         |              |
| Z16F2800100ZCOG  |                |              |                    |      |                                  |                             | <sup>®</sup> Z16F | Series                        | Devel                  | opmen   | it Kit       |
| ZUSBSC00100ZACG  |                |              |                    |      |                                  |                             | mart C            | able Ac                       | cesso                  | ry Kit  |              |
| ZUSBOPTSC01ZAC   | G              |              |                    |      |                                  | Opto-I                      | solated           | USB S                         | mart (                 | Cable A | ccessory Kit |
| ZENETSC0100ZAC   | G              |              |                    |      |                                  | Ethern                      | et Sma            | rt Cable                      | e Acce                 | essory  | Kit          |

#### Table 203. ZNEO Z16F Series Part Numbering

| ZNEO Z16F Series Development Tools |                                               |
|------------------------------------|-----------------------------------------------|
| Z16F2800100ZCOG                    | ZNEO <sup>®</sup> Z16F Series Development Kit |
| ZUSBSC00100ZACG                    | USB Smart Cable Accessory Kit                 |
| ZUSBOPTSC01ZACG                    | Opto-Isolated USB Smart Cable Accessory Kit   |
| ZENETSC0100ZACG                    | Ethernet Smart Cable Accessory Kit            |
|                                    |                                               |