
Zilog - Z16F6411AL20AG Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor ZNEO

Core Size 16-Bit

Speed 20MHz

Connectivity EBI/EMI, I²C, IrDA, LINbus, SPI, UART/USART

Peripherals Brown-out Detect/Reset, DMA, POR, PWM, WDT

Number of I/O 76

Program Memory Size 64KB (64K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 4K x 8

Voltage - Supply (Vcc/Vdd) 2.7V ~ 3.6V

Data Converters A/D 12x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 125°C (TA)

Mounting Type Surface Mount

Package / Case 100-LQFP

Supplier Device Package -

Purchase URL https://www.e-xfl.com/product-detail/zilog/z16f6411al20ag

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/z16f6411al20ag-4430522
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

ZNEO® Z16F Series MCUs
Product Specification

vii
Reset Status and Control Register . 62
Low-Power Modes . 64

Stop Mode . 64
Halt Mode . 65
Peripheral-Level Power Control . 65
Power Control Option Bits . 65

General-Purpose Input/Output . 66
GPIO Port Availability by Device . 66
Architecture . 66
GPIO Alternate Functions . 67
GPIO Interrupts . 70
GPIO Control Register Definitions . 71

Port A-K Input Data Registers . 71
Port A-K Output Data Registers . 72
Port A-K Data Direction Registers . 73
Port A-K High Drive Enable Registers . 74
Port A-K Alternate Function High and Low Registers 74
Port A-K Output Control Registers . 75
Port A-K Pull-Up Enable Registers . 76
Port A-K Stop Mode Recovery Source Enable Registers 77
Port A IRQ MUX1 Register . 77
Port A IRQ MUX Register . 78
Port A IRQ Edge Register . 78
Port C IRQ MUX Register . 79

Interrupt Controller . 80
Interrupt Vector Listing . 80
Architecture . 82
Operation . 82

Master Interrupt Enable . 82
Interrupt Vectors and Priority . 83
System Exceptions . 83
Interrupt Assertion . 84
System Exception Status Registers . 84
Last IRQ Register . 85
Interrupt Request 0 Register . 86
Interrupt Request 1 Register . 87
Interrupt Request 2 Register . 88
IRQ0 Enable High and Low Bit Registers . 90
IRQ1 Enable High and Low Bit Registers . 91
IRQ2 Enable High and Low Bit Registers . 92
PS022012-1113 P R E L I M I N A R Y Table of Contents

ZNEO® Z16F Series MCUs
Product Specification

xvii
Figure 32. Infrared Data Communication System Block Diagram 172
Figure 33. Infrared Data Transmission . 173
Figure 34. Infrared Data Reception . 174
Figure 35. ESPI Block Diagram . 177
Figure 36. ESPI Timing when PHASE = 0 . 182
Figure 37. ESPI Timing when PHASE = 1 . 183
Figure 38. SPI Mode (SSMD = 000) . 185
Figure 39. I2S Mode (SSMD = 010) . 186
Figure 40. ESPI Configured as an SPI Master in a Single Master, Single Slave 

System . 187
Figure 41. ESPI Configured as an SPI Master in a Single Master, Multiple Slave 

System . 187
Figure 42. ESPI Configured as an SPI Slave . 189
Figure 43. I2C Controller Block Diagram . 204
Figure 44. Data Transfer Format, Master Write Transaction with 7-Bit Addressing . 211
Figure 45. Data Transfer Format, Master Write Transaction with 10-Bit Addressing 212
Figure 46. Data Transfer Format, Master Read Transaction with 7-Bit Addressing . 214
Figure 47. Data Transfer Format, Master Read Transaction with 10-Bit Addressing 215
Figure 48. Data Transfer Format, Slave Receive Transaction with 7-Bit Addressing 218
Figure 49. Data Transfer Format, Slave Receive Transaction with 10-Bit 

Addressing . 220
Figure 50. Data Transfer Format, Slave Transmit Transaction with 7-Bit Addressing 221
Figure 51. Data Transfer Format, Slave Transmit Transaction with 10-Bit 

Addressing . 222
Figure 52. Analog Functions Block Diagram . 242
Figure 53. ADC Timing Diagram . 244
Figure 54. ADC Convert Timing . 245
Figure 55. Flash Memory Arrangement . 256
Figure 56. DMA Block Diagram . 268
Figure 57. DMA Channel Registers . 269
Figure 58. Direct DMA Diagram . 275
Figure 59. Linked List Diagram . 278
Figure 60. External DMA Transfer . 290
Figure 61. External ISA DMA transfer . 291
Figure 62. On-Chip Debugger Block Diagram . 299
Figure 63. Interfacing a Serial Pin with an RS-232 Interface, #1 of 2 300
Figure 64. Interfacing a Serial Pin with an RS-232 Interface, #2 of 2 300
PS022012-1113 P R E L I M I N A R Y List of Figures

ZNEO® Z16F Series MCUs
Product Specification

54
Table 17. External Interface Timing for a Read Operation, ISA Mode

Parameter Abbreviation

Delay (ns)

Minimum Maximum

T1 XIN Rise to Address Valid Delay 10

T2 XIN Rise to Address Output Hold Time 3

T3 Data Input Valid to XIN Rise Setup Time 3

T4 XIN Rise to Data Input Hold Time 3

T5 XIN Rise to CS Assertion Delay 10

T6 XIN Rise to CS Deassertion Hold Time 3

T7 XIN Fall to RD Assertion Delay 10

T8 XIN Fall to RD Deassertion Hold Time 3

T9 WAIT Input Pin Assertion to XIN Rise Setup Time 1

T10 WAIT Input Pin Deassertion to XIN Rise Setup Time 1

T11 XIN Rise to DMAACK Assertion Delay 10

T12 XIN Rise to DMAACK Deassertion Hold Time 3

T13 XIN Rise to BHEN or BLEN Assertion Delay 10

T14 XIN Rise to BHEN or BLEN Deassertion Hold Time 3
PS022012-1113 P R E L I M I N A R Y External Interface Read Timing, ISA Mode

ZNEO® Z16F Series MCUs
Product Specification

96
Operation

The general-purpose timer is a 16-bit up-counter. In normal operation, the timer is initial-
ized to 0001h. When the timer is enabled, it counts up to the value contained in the
Reload High and Low Byte registers, then resets to 0001h. The counter either halts or
continues depending on the mode.
Minimum time-out delay (1 system clock) is set by loading the value 0001h into the
Timer Reload High and Low byte registers and setting the prescale value to 1.
Maximum time-out delay (216 * 27 system clocks) is set by loading the value 0000h into
the Timer Reload High and Low byte registers and setting the prescale value to 128. When
the timer reaches FFFFh, the timer rolls over to 0000h.
If the reload register is set to a value less than the current counter value, the counter con-
tinues counting until it reaches FFFFh and then resets to 0000h. Then the timer continues
to count until it reaches the reload value and it resets to 0001h.

When T0IN0, T0IN1 and T0IN2 functions are enabled on the PB0, PB1 and PB2 pins,
each Timer 0 input will have the same effect as the single Timer 0 Input pin T0IN. For
example, if the Timer 0 is in Capture Mode, any transitions on any of the PB0, PB1 and
PB2 pins will cause a Capture.

Figure 20. Timer Block Diagram

16-Bit
PWM/Compare

16-Bit Counter
with Prescaler

16-Bit
Reload Register

Timer
Control

C
o

m
p

a
re

C
o

m
p

a
re

Interrupt,
PWM,
and

Timer Output
Control

Timer

TOUT

Timer Block

System

Timer

Data

Block
Control

Bus

Clock

Input

Gate
Input

Capture
Input

TOUT

Interrupt

Note:
PS022012-1113 P R E L I M I N A R Y Operation

ZNEO® Z16F Series MCUs
Product Specification

123
PWM Reload High and Low Byte Registers

The PWM Reload High and Low Byte (PWMRH and PWMRL) registers, shown in
Tables 66 and 67, store a 12-bit reload value, {PWMRH[3:0], PWMRL[7:0]}. The PWM
reload value is held in buffer registers. The PWM reload value written to the buffer regis-
ters are not used by the PWM generator until the next PWM reload event occurs. Reads
from these registers always return the values from the buffer registers.

Table 66. PWM Reload High Byte Register (PWMRH)

Bits 7 6 5 4 3 2 1 0

Field Reserved PWMRH

RESET 0h Fh

R/W R/W R/W

Addr FF_E38EH

Bit Description

[7:4] Reserved
These bits are reserved and must be programmed to 0000.

[3:0]
PWMRH

PWM Reload Register High and Low
These two bytes form the 12-bit reload value, {PWMRH[3:0], PWMRL[7:0]}. This value sets the
PWM period.

Table 67. PWM Reload Low Byte Register (PWMRL)

Bits 7 6 5 4 3 2 1 0

Field PWMRL

RESET FF

R/W R/W

Addr FF_E38Fh

Bit Description

[7:0]
PWMRL

PWM Reload Register High and Low
These two bytes form the 12-bit reload value, {PWMRH[3:0], PWMRL[7:0]}. This value sets the
PWM period.

Edge-Aligned PWM Mode Period Prescaler Reload Value
fPWMclk

---=

Center-Aligned PWM Mode Period 2 Prescaler Reload Value
fPWMclk

--=
PS022012-1113 P R E L I M I N A R Y PWM Reload High and Low Byte Registers

ZNEO® Z16F Series MCUs
Product Specification

145
• Parity error (PE bit in Status 0 Register) is redefined as the Physical Layer Error (PLE)
bit. The PLE bit indicates that receive data does not match transmit data when the LIN-
UART is transmitting. This applies to both Master and Slave operating modes.

• The break detect interrupt (BRKD bit in Status 0 Register) indicates when a Break is
detected by the slave (break condition for at least 11 bit times). Software uses this in-
terrupt to start a timer checking for message frame time-out. The duration of the break
is read in the RxBreakLength[3:0] field of the Mode Status Register.

• The break detect interrupt (BRKD bit in Status 0 Register) indicates when a wake-up
message has been received if the LIN-UART is in a LINSLEEP state.

• In LIN Slave Mode, if the BRG counter overflows while measuring the autobaud peri-
od (Start bit to beginning of bit 7 of autobaud character) an overrun error is indicated
(OE bit in the Status 0 Register). In this case, software sets the LinState field back to
10b, where the slave ignores the current message and waits for the next Break signal.
The baud reload high and low registers are not updated by hardware if this autobaud
error occurs. The OE bit is also set if a data overrun error occurs.

LIN System Clock Requirements

The LIN master provides the timing reference for the LIN network and is required to have
a clock source with a tolerance of ±0.5%. A slave with autobaud capability is required to
have a baud clock matching the master oscillator within ±14%. The slave nodes autobaud
to lock onto the master timing reference with an accuracy of ±2%. If a slave does not con-
tain autobaud capability, it must include a baud clock which deviates from the masters by
no more than ±1.5%. These accuracy requirements must include effects such as voltage
and temperature drift during operation.

Before sending or receiving messages, the baud reload High/Low registers must be initial-
ized. Unlike standard UART modes, the baud reload High/Low registers must be loaded
with the baud interval rather than 1/16 of the baud interval.

In order to autobaud with the required accuracy, the LIN slave system clock must be at
least 100 times the baud rate.

LIN Mode Initialization and Operation

A LIN protocol mode is selected by setting either the LIN master (LMST) or LIN slave
(LSLV) and optionally (for LIN slave) the autobaud enable (ABEN) bits in the LIN Con-
trol Register. To access the LIN Control Register, the mode select (MSEL) field of the
LIN-UART Mode Select/Status Register must be 010b. The LIN-UART Control 0 Regis-
ter must be initialized with TEN = 1, REN = 1, all other bits = 0.

In addition to the LMST, LSLV and ABEN bits in the LIN Control Register, a Lin-
State[1:0] field exists that defines the current state of the LIN logic. This field is initially
PS022012-1113 P R E L I M I N A R Y LIN Protocol Mode

ZNEO® Z16F Series MCUs
Product Specification

148
Transmitter Interrupts

The transmitter generates a single interrupt when the Transmit Data Register empty bit
(TDRE) is set to 1. This indicates that the transmitter is ready to accept new data for trans-
mission. The TDRE interrupt occurs when the transmitter is initially enabled and after the
transmit shift register has shifted the first bit of a character out. At this point, the Transmit
Data Register is written with the next character to send. This provides 7 bit periods of
latency to load the Transmit Data Register before the transmit shift register completes
shifting the current character. Writing to the LIN-UART Transmit Data Register clears the
TDRE bit to 0.

Receiver Interrupts

The receiver generates an interrupt when any of the following occurs:

• A data byte is received and is available in the LIN-UART Receive Data Register. This
interrupt is disabled independent of the other receiver interrupt sources using the
RDAIRQ bit (this feature is useful in devices, which support DMA). The received data
interrupt occurs after the receive character is placed in the Receive Data Register. To
avoid an overrun error, the software responds to this received data available condition
before the next character is completely received.

In Multiprocessor Mode (MPEN = 1), the receive data interrupts are dependent on the
multiprocessor configuration and the most recent address byte.

• A break is received.

• A receive data overrun or LIN slave autobaud overrun error is detected.

• A data framing error is detected.

• A parity error is detected (physical layer error in LIN Mode).

LIN-UART Overrun Errors

When an overrun error condition occurs, the LIN-UART prevents overwriting of the valid
data currently in the Receive Data Register. The break detect and overrun status bits are
not displayed until the valid data is read.

When the valid data is read, the OE bit of the Status 0 Register is updated to indicate the
overrun condition (and Break Detect, if applicable). The RDA bit is set to 1 to indicate that
the Receive Data Register contains a data byte. However, because the overrun error
occurred, this byte may not contain valid data and must be ignored. The BRKD bit indi-
cates if the overrun is caused due to a break condition on the line. After reading the status

Note:
PS022012-1113 P R E L I M I N A R Y LIN-UART Interrupts

ZNEO® Z16F Series MCUs
Product Specification

170
5.5296 MHz System Clock 3.579545 MHz System Clock

Desired
Rate
(kHz)

BRG
Divisor

(Decimal)

Actual
Rate
(kHz)

Error
(%)

Desired
Rate
(kHz)

BRG
Divisor

(Decimal)

Actual
Rate
(kHz)

Error
(%)

1250.0 N/A N/A N/A 1250.0 N/A N/A N/A

625.0 N/A N/A N/A 625.0 N/A N/A N/A

250.0 1 345.6 38.24 250.0 1 223.72 –10.51

115.2 3 115.2 0.00 115.2 2 111.9 –2.90

57.6 6 57.6 0.00 57.6 4 55.9 –2.90

38.4 9 38.4 0.00 38.4 6 37.3 –2.90

19.2 18 19.2 0.00 19.2 12 18.6 –2.90

9.60 36 9.60 0.00 9.60 23 9.73 1.32

4.80 72 4.80 0.00 4.80 47 4.76 –0.83

2.40 144 2.40 0.00 2.40 93 2.41 0.23

1.20 288 1.20 0.00 1.20 186 1.20 0.23

0.60 576 0.60 0.00 0.60 373 0.60 –0.04

0.30 1152 0.30 0.00 0.30 746 0.30 –0.04

Table 96. LIN-UART Baud Rates (Continued)
PS022012-1113 P R E L I M I N A R Y LIN-UART Baud Rate High and Low Byte

ZNEO® Z16F Series MCUs
Product Specification

182
Transfer Format with Phase Equals Zero

Figure 36 displays the timing diagram for an SPI type transfer in which PHASE = 0. For
SPI transfers the clock only toggles during the character transfer. The two SCK wave-
forms show polarity with CLKPOL = 0 and with CLKPOL = 1. The diagram is interpreted
as either a Master or Slave timing diagram as the SCK MISO and MOSI pins are directly
connected between the master and the slave.

Transfer Format with Phase Equals One

Figure 37 displays the timing diagram for an SPI type transfer in which PHASE = 1. For
SPI transfers the clock only toggles during the character transfer. Two waveforms are
depicted for SCK, one for CLKPOL = 0 and another for CLKPOL = 1.

Figure 36. ESPI Timing when PHASE = 0

SCK
(CLKPOL = 0)

SCK
(CLKPOL = 1)

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0MOSI

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0MISO

Input Sample Time

SS
PS022012-1113 P R E L I M I N A R Y ESPI Clock Phase and Polarity Control

ZNEO® Z16F Series MCUs
Product Specification

204
Figure 43. I2C Controller Block Diagram

SDA

SCL

I2CCTL

SHIFT

I2CDATA

I2CBRH

I2CBRL

Shift

Load

Tx/Rx State Machine

Baud Rate Generator

I2CSTATE

Register BusI2C Interrupt

I2CISTAT

I2CMODE
I2CSLVAD

Tx and Rx DMA Requests
PS022012-1113 P R E L I M I N A R Y Architecture

ZNEO® Z16F Series MCUs
Product Specification

216
6. When the first bit is shifted out, a Transmit interrupt asserts.

7. Software responds by writing the least significant eight bits of address to the I2C Data
Register.

8. The I2C Controller completes shifting of the first address byte.

9. The I2C Slave sends an acknowledge by pulling the SDA signal Low during the next
High period of SCL.

If the slave does not acknowledge the address byte, the I2C Controller sets the NCKI
bit in the I2C Status Register, sets the ACKV bit and clears the ACK bit in the I2C
State Register. Software responds to the Not Acknowledge interrupt by setting the
Stop bit and clearing the TXI bit. The I2C Controller flushes the Transmit Data Regis-
ter, sends the Stop condition on the bus and clears the Stop and NCKI bits. The trans-
action is complete (ignore the following steps).

10. The I2C Controller loads the I2C Shift Register with the contents of the I2C Data Reg-
ister (lower byte of 10 bit address).

11. The I2C Controller shifts out the next eight bits of address. After the first bit shifts, the
I2C Controller generates a Transmit interrupt.

12. Software responds by setting the Start bit of the I2C Control Register to generate a
repeated Start.

13. Software responds by writing 11110b followed by the 2-bit Slave address and a 1
(read) to the I2C Data Register.

14. If you want to read only one byte, software responds by setting the NAK bit of the
I2C Control Register.

15. After the I2C Controller shifts out the address bits mentioned in step 9 (second address
transfer), the I2C Slave sends an acknowledge by pulling the SDA signal Low during
the next High period of SCL. 

If the slave does not acknowledge the address byte, the I2C Controller sets the NCKI
bit in the I2C Status Register, sets the ACKV bit and clears the ACK bit in the I2C
State Register. Software responds to the Not Acknowledge interrupt by setting the
Stop bit and clearing the TXI bit. The I2C Controller flushes the Transmit Data Regis-
ter, sends the Stop condition on the bus and clears the Stop and NCKI bits. The trans-
action is complete (ignore the following steps).

16. The I2C Controller sends the repeated Start condition.

17. The I2C Controller loads the I2C Shift Register with the contents of the I2C Data Reg-
ister (third address transfer).

18. The I2C Controller sends 11110b followed by the two most significant bits of the
Slave read address and a 1 (read).
PS022012-1113 P R E L I M I N A R Y Master Transactions

ZNEO® Z16F Series MCUs
Product Specification

230
I2C Baud Rate High and Low Byte Registers

The I2C Baud Rate High and Low Byte registers, shown in Tables 115 and 116, combine
to form a 16-bit reload value, BRG[15:0], for the I2C Baud Rate Generator. The baud rate
High and Low Byte Registers must be programmed for the I2C baud rate in Slave Mode as
well as in Master Mode. In Slave Mode, the baud rate value programmed must match the
master's baud rate within ± 25% for proper operation.

The I2C baud rate is calculated using the following equation.

[5]
STOP

Send Stop Condition
When set, this bit causes the I2C Controller (when configured as the Master) to send the Stop
condition after the byte in the I2C Shift Register has completed transmission or after a byte has
been received in a receive operation. When set, this bit is reset by the I2C Controller after a
Stop condition has been sent or by deasserting the IEN bit. If this bit is 1, it cannot be cleared
to 0 by writing to the register.
If Stop is set while a Slave Mode transaction is underway, the Stop bit will be cleared by hard-
ware.

[4]
BIRQ

Baud Rate Generator Interrupt Request
This bit is ignored when the I2C Controller is enabled. If this bit is set = 1 when the I2C Control-
ler is disabled (IEN = 0) the baud rate generator is used as an additional timer causing an inter-
rupt to occur every time the baud rate generator counts down to 1. The baud rate generator
runs continuously in this Mode, generating periodic interrupts.

[3]
TXI

Enable TDRE Interrupts
This bit enables interrupts when the I2C Data Register is empty.

[2]
NAK

Send NAK
Setting this bit sends a Not Acknowledge condition after the next byte of data has been
received. It is automatically deasserted after the Not Acknowledge is sent or the IEN bit is
cleared. If this bit is 1, it cannot be cleared to 0 by writing to the register.

[1]
FLUSH

Flush Data
Setting this bit clears the I2C Data Register and sets the TDRE bit to 1. This bit allows flushing
of the I2C Data Register when an NAK condition is received after the next data byte has been
written to the I2C Data Register. Reading this bit always returns 0.

[0]
FILTEN

I2C Signal Filter Enable
Setting this bit enables low-pass digital filters on the SDA and SCL input signals. This function
provides the spike suppression filter required in I2C Fast Mode. These filters reject any input
pulse with periods less than a full system clock cycle. The filters introduce a 3-system clock
cycle latency on the inputs.

Bit Description (Continued)

I2C Baud Rate (bps) System Clock Frequency (Hz)
4 BRG[15:0]

--=
PS022012-1113 P R E L I M I N A R Y I2C Baud Rate High and Low Byte

ZNEO® Z16F Series MCUs
Product Specification

233
[1]
SCLOUT

Serial Clock Output
Current value of Serial Clock being output onto the bus. The actual values of the SCL and SDA
signals on the I2C bus is observed via the GPIO Input Register.

[0]
BUSY

I2C Bus Busy
0 = No activity on the I2C Bus.
1 = A transaction is underway on the I2C bus.

Table 118. I2C State Register (I2CSTATE), Description when DIAG = 1

Bits 7 6 5 4 3 2 1 0

Field I2CSTATE_H I2CSTATE_L

RESET 0 0 0 0 0 0 0 0

R/W R R R R R R R R

Addr FF‒E245h

Bit Description

[7:4]
I2CSTATE_H

I2C State High
This field defines the current state of the I2C Controller. It is the most significant nibble of
the internal state machine. Table 119 defines the states for this field.

[3:0]
I2CSTATE_L

I2C State Low
Least significant nibble of the I2C state machine. This field defines the substates for the
states defined by I2CSTATE_H. Table 120 defines the values for this field.

Table 119. I2CSTATE_H

State Encoding State Name State Description

0000 Idle I2C bus is idle or I2C Controller is disabled.

0001 Slave Start I2C Controller has received a start condition.

0010 Slave Bystander Address did not match–ignore remainder of transaction.

0011 Slave Wait Waiting for Stop or Restart condition after sending a Not
Acknowledge instruction.

0100 Master Stop2 Master completing Stop condition (SCL = 1, SDA = 1).

0101 Master Start/Restart Master Mode sending Start condition (SCL = 1, SDA =
0).

0110 Master Stop1 Master initiating Stop condition (SCL = 1, SDA = 0).

Bit Description (Continued)
PS022012-1113 P R E L I M I N A R Y I2C State Register

ZNEO® Z16F Series MCUs
Product Specification

234
0111 Master Wait Master received a Not Acknowledge instruction, waiting
for software to assert Stop or Start control bits.

1000 Slave Transmit Data Nine substates, one for each data bit and one for the
acknowledge.

1001 Slave Receive Data Nine substates, one for each data bit and one for the
acknowledge.

1010 Slave Receive Addr1 Slave Receiving first address byte (7 and 10 bit address-
ing)
Nine substates, one for each address bit and one for the
acknowledge.

1011 Slave Receive Addr2 Slave Receiving second address byte (10 bit address-
ing)
Nine substates, one for each address bit and one for the
acknowledge.

1100 Master Transmit Data Nine substates, one for each data bit and one for the
acknowledge.

1101 Master Receive Data Nine substates, one for each data bit and one for the
acknowledge.

1110 Master Transmit Addr1 Master sending first address byte (7- and 10-Bit
Addressing)
Nine substates, one for each address bit and one for the
acknowledge.

1111 Master Transmit Addr2 Master sending second address byte (10-Bit Address-
ing)
Nine substates, one for each address bit and one for the
acknowledge.

Table 120. I2CSTATE_L

State
I2CSTATE_H

Sub-State
I2CSTATE_L Sub-State Name State Description

0000–0100 0000 — There are no substates for these I2CSTATE_H
values.

0110–0111 0000 — There are no substates for these I2CSTATE_H
values.

Table 119. I2CSTATE_H (Continued)

State Encoding State Name State Description
PS022012-1113 P R E L I M I N A R Y I2C State Register

ZNEO® Z16F Series MCUs
Product Specification

241
Watchdog Timer Register Definitions

Watchdog Timer Reload High and Low Byte Registers

The Watchdog Timer Reload High and Low Byte (WDTH, WDTL) registers, shown in
Table 124 through Table 125) form the 16-bit reload value that is loaded into the WDT
when a WDT instruction executes. The 16-bit reload value is {WDTH[7:0], WDTL[7:0]}.
Writing to these registers following the unlock sequence sets the appropriate reload value.
Reading from these registers returns the current WDT count value.

The 16-bit WDT Reload Value must not be set to a value less than 0004h.

Table 124. Watchdog Timer Reload High Byte Register (WDTH)

Bits 7 6 5 4 3 2 1 0

Field WDTH

RESET 0 0 0 0 0 1 0 0

R/W R/W* R/W* R/W* R/W* R/W* R/W* R/W* R/W*

Addr FF_E042h

Note: R/W* = Read returns the current WDT count value. Write sets the appropriate Reload Value.

Bit Description

[7:0]
WDTH

WDT Reload High Byte
Most significant byte (MSB), Bits[15:8], of the 16-bit WDT reload value.

Table 125. Watchdog Timer Reload Low Byte Register (WDTL)

Bits 7 6 5 4 3 2 1 0

Field WDTL

RESET 0 0 0 0 0 0 0 0

R/W R/W* R/W* R/W* R/W* R/W* R/W* R/W* R/W*

Addr FF_E043h

Note: R/W* = Read returns the current WDT count value. Write sets the appropriate Reload Value.

Bit Description

[7:0]
WDTL

WDT Reload Low Byte
Least significant byte (LSB), Bits[7:0], of the 16-bit WDT reload value.

Caution:
PS022012-1113 P R E L I M I N A R Y Watchdog Timer Register Definitions

ZNEO® Z16F Series MCUs
Product Specification

261
Flash Control Register Definitions

Flash Command Register

The Flash Command Register, shown in Table 139, unlocks the Flash Controller for pro-
gramming and erase operations. The Write-only Flash Command Register shares its
address with the Read-only Flash Status Register.

Table 139. Flash Command Register (FCMD)

Bits 7 6 5 4 3 2 1 0

Field FCMD

RESET XXH

R/W W

Addr FF_E060h

Bit Description

[7:0]
FCMD

Flash Command
73h = First unlock command.
8Ch = Second unlock command.
95h = Page erase command.
63h = Mass erase command.

Note: *All other commands, or any commands out of sequence, lock the Flash Controller.
PS022012-1113 P R E L I M I N A R Y Flash Control Register Definitions

ZNEO® Z16F Series MCUs
Product Specification

274
Buffer Closure

A DMA buffer closure is requested in two ways. The first is when the transfer length
reaches zero. The second is when the DMA receives a request end of frame from the
peripheral. When either of these cases occur, the DMA begins closure of the buffer.

Loop Mode Closure

If the LOOP bit is set then the current buffer descriptor is not modified. The DMAxLAR
increments or a new LAR value is fetched from the descriptor.

EOF Closure

The DMAxEN bit is reset to 0. If the EOF bit is set, the CMDSTAT field is set with the
status data from the peripheral. If the channel is in LINKED LIST Mode then the DMAx-
CTL word is written back to the CONTROL word of the descriptor. The DMAxLAR
increments or is loaded with new LAR data from the descriptor if the TXFR bit is set.

Normal Closure

The DMAxEN bit is reset to 0. If the channel is in LINKED LIST Mode then the DMAx-
CTL word is written back to the CONTROL word of the descriptor. The DMAxLAR
increments or is loaded with new LAR data from the descriptor if the TXFR bit is set.

DMA Modes

Each DMA channel operates in two modes, direct and linked list. Both modes use the
DMA Channel registers. The only difference is in how they are loaded. In DIRECT Mode,
the DMA Channel registers are directly loaded by software and when the transfer is com-
plete, the DMA stops. In LINKED LIST Mode, the DMA will load its own registers from
a descriptor list which is pointed to by the DMAxLAR Register. It then loads the next
descriptor in the list and continues executing.

The descriptor Control/Status field and address bytes maintain the same format as the con-
trol and address registers in the DMA.

Direct Mode

DIRECT Mode only uses the registers in the DMA for operation. The software writes
these registers directly to set up and enable the DMA. DIRECT Mode is entered by
directly setting the DMAxEN bit in the DMAxCTL0 Register.

Figure 58 displays the DMA registers and how they point to the buffers allocated in mem-
ory.
PS022012-1113 P R E L I M I N A R Y Buffer Closure

ZNEO® Z16F Series MCUs
Product Specification

282
• When the upper eight bits of the transfer length equal zero and the lower eight bits of
the transfer length is equal to the DMAxLAR[23:16] and the DMA is in DIRECT Mode

• If a buffer has been terminated by a Request EOF

For additional information about interrupts, see the Interrupt Controller chapter on page
80.

DMA Request Select Register

The DMA Request Select Register, shown in Table 148, governs the state of the DMA
Channel.

Table 148. DMA Select Register (DAMxREQSEL)

Bits 7 6 5 4 3 2 1 0

Field CHANSTATE REQSEL

RESET 0 0 0 0 0 0 0 0

R/W R R R R R/W R/W R/W R/W

Addr FFE400h, FFE401h, FFE402h, FFE403h

Bit Description

[7:4]
CHANSTATE

Channel State
0000 = DMA Off
0001 = DIRECT Mode, Waiting for End of Frame signal
0010 = LINKED LIST Mode, Waiting for End of Frame signal
0011 = Reserved
0100 = DIRECT Mode, First byte transfer, send command
0101 = LINKED LIST Mode, First byte transfer, send command
0110 = DIRECT Mode, Transfer of buffer in progress
0111 = LINKED LIST Mode, Transfer of buffer in progress
1000 = DIRECT Mode, Close Descriptor
1001 = LINKED LIST Mode, New List
1010 = LINKED LIST Mode, Close Descriptor
1011-1111 = Reserved
PS022012-1113 P R E L I M I N A R Y DMA Request Select Register

ZNEO® Z16F Series MCUs
Product Specification

318
Status Register

The Status Register (DBGSTAT), shown in Table 174, contains status information about
the state of the UART.

Table 174. Status Register (DBGSTAT)

Bits 7 6 5 4 3 2 1 0

Field RDRF RXOV RXFE RXBRK TDRE TXCOL RXBUSY TXBUSY

RESET 0 0 0 0 1 0 0 0

R/W R/W1C R/W1C R/W1C R/W1C R/W1S R/W1C R R

Addr FF_E085

Bit Description

[7]
RDRF

Receive Data Register Full
This bit reflects the status of the Receive Data register. When data is written to the Receive
Data register, or data is transferred from the shift register to the Receive Data register, this bit
is set to 1. When the Receive Data register is read, this bit is cleared to 0. This bit is also
cleared to 0 by writing a one to this bit.
0 = Receive Data register is empty.
1 = Receive Data register is full.

[6]
RXOV

Receive Overrun
This bit is set when a Receive Overrun occurs. A Receive Overrun occurs when there is data in
the Receive Data register and another byte is written to this register.
0 = Receive Overrun has not occurred
1 = Receive Overrun has occurred.

[5]
RXFE

Receive Framing Error
This bit is set when a Receive Framing error has been detected. This bit is cleared by 
writing a one to this bit.
0 = No Framing Error detected.
1 = Receive Framing Error detected.

[4]
RXBRK

Receive Break Detect
This bit is set when a Break condition has been detected. This occurs when 10 or more bits
received are Low. This bit is cleared by writing a one to this bit.
0 = No Break detected.
1 = Break detected.

[3]
TDRE

Transmit Data Register Empty
This bit reflects the status of the Transmit Data register. When the Transmit Data register is
written, this bit is cleared to 0. When data from the Transmit Data Register is read or trans-
ferred to the transmit shift register, this bit is set to 1. This bit is written to 1 to abort the trans-
mission of data being held in the Transmit Data Register.
0 = Transmit Data register is full.
1 = Transmit Data register is empty.
PS022012-1113 P R E L I M I N A R Y Status Register

ZNEO® Z16F Series MCUs
Product Specification

351
SPI Master Mode Timing

Figure 77 and Table 197 provides timing information for SPI Master Mode pins. Timing is
shown with SCK rising edge used to source MOSI output data, SCK falling edge used to
sample MISO input data. Timing on the SS output pin(s) is controlled by software.

SPI Slave Mode Timing

Figure 78 and Table 198 provide timing information for the SPI Slave Mode pins. Timing
is shown with SCK rising edge used to source MISO output data, SCK falling edge used to
sample MOSI input data.

Figure 77. SPI Master Mode Timing

Table 197. SPI Master Mode Timing

Parameter Description

Delay (ns)

Min Max

SPI Master

T1 SCK Rise to MOSI output Valid Delay –5 +5

T2 MISO input to SCK (receive edge) Setup Time 20

T3 MISO input to SCK (receive edge) Hold Time 0

SCK

MOSI

T1

(Output)

MISO

T2 T3

(Input)

Output Data

Input Data
PS022012-1113 P R E L I M I N A R Y SPI Master Mode Timing

