

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	LVD, PWM, WDT
Number of I/O	28
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 16x12b; D/A 2x6b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mke02z64vlc2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Ordering parts

1.1 Determining valid orderable parts

Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to **nxp.com** and perform a part number search for the following device numbers: KE02Z.

2 Part identification

2.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

2.2 Format

Part numbers for this device have the following format:

Q KE## A FFF R T PP CC N

2.3 Fields

This table lists the possible values for each field in the part number (not all combinations are valid):

Field	Description	Values
Q	Qualification status	 M = Fully qualified, general market flow P = Prequalification
KE##	Kinetis family	• KE02
А	Key attribute	• Z = M0+ core
FFF	Program flash memory size	 16 = 16 KB 32 = 32 KB 64 = 64 KB
R	Silicon revision	(Blank) = MainA = Revision after main

Table continues on the next page...

4 Ratings

4.1 Thermal handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
T _{STG}	Storage temperature	- 55	150	°C	1
T _{SDR}	Solder temperature, lead-free	_	260	°C	2

- 1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.
- Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

4.2 Moisture handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
MSL	Moisture sensitivity level		3	_	1

Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

4.3 ESD handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
V _{HBM}	Electrostatic discharge voltage, human body model	-6000	+6000	V	1
V _{CDM}	Electrostatic discharge voltage, charged-device model	-500	+500	V	2
I _{LAT}	Latch-up current at ambient temperature of 125°C	-100	+100	mA	3

- Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM).
- 2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.
- 3. Determined according to JEDEC Standard JESD78D, IC Latch-up Test.
 - Test was performed at 125 °C case temperature (Class II).
 - I/O pins pass ±100 mA I-test with I_{DD} current limit at 800 mA.
 - I/O pins pass +60/-100 mA I-test with I_{DD} current limit at 1000 mA.
 - Supply groups pass 1.5 V_{ccmax}.
 - RESET pin was only tested with negative I-test due to product conditioning requirement.

4.4 Voltage and current operating ratings

Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in the following table may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this document.

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, either V_{SS} or V_{DD}) or the programmable pullup resistor associated with the pin is enabled.

Symbol Description Min. Unit Max. ٧ V_{DD} Digital supply voltage 6.0 -0.3120 I_{DD} Maximum current into V_{DD} mΑ $V_{DD} + 0.3^{1}$ ٧ V_{IN} Input voltage except true open drain pins -0.3-0.3Input voltage of true open drain pins -25 25 I_D Instantaneous maximum current single pin limit (applies to all mΑ port pins) V_{DDA} Analog supply voltage $V_{DD} - 0.3$ $V_{DD} + 0.3$ V

Table 2. Voltage and current operating ratings

5 General

5.1 Nonswitching electrical specifications

5.1.1 DC characteristics

This section includes information about power supply requirements and I/O pin characteristics.

Table 3. DC characteristics

	Symbol	С	Descriptions		Min	Typical ¹	Max	Unit
Γ	_	_	Operating voltage	_	2.7	_	5.5	V

Table continues on the next page...

^{1.} Maximum rating of V_{DD} also applies to V_{IN}.

Nonswitching electrical specifications

Table 3. DC characteristics (continued)

Symbol	С		Descriptions		Min	Typical ¹	Max	Unit
V _{OH}	Р	Output	All I/O pins, except PTA2	5 V, I _{load} = -5 mA	V _{DD} – 0.8	_	_	V
	С	high voltage	and PTA3, standard- drive strength	3 V, $I_{load} = -2.5 \text{ mA}$	V _{DD} – 0.8	_	_	V
	Р		High current drive pins,	5 V, $I_{load} = -20 \text{ mA}$	$V_{DD} - 0.8$	_	_	V
	С		high-drive strength ²	$3 \text{ V}, \text{ I}_{\text{load}} = -10 \text{ mA}$	$V_{DD} - 0.8$	_	_	V
I _{OHT}	D	Output	Max total I _{OH} for all ports	5 V	_	_	-100	mA
		high current		3 V	_	_	-60	
V _{OL}	Р	Output	All I/O pins, standard-	5 V, I _{load} = 5 mA	_	_	8.0	V
	С	low voltage	drive strength	3 V, $I_{load} = 2.5 \text{ mA}$	_	_	8.0	V
	Р		High current drive pins,	5 V, I _{load} =20 mA	<u> </u>	_	8.0	V
	С		high-drive strength ²	$3 \text{ V}, I_{load} = 10 \text{ mA}$	_	_	8.0	V
I _{OLT}	D	Output	Max total I _{OL} for all ports	5 V	<u> </u>	_	100	mA
		low current		3 V	_	_	60	
V _{IH}	Р	Input	All digital inputs	4.5≤V _{DD} <5.5 V	$0.65 \times V_{DD}$	_	_	٧
		high voltage		2.7≤V _{DD} <4.5 V	$0.70 \times V_{DD}$	_	_	
V _{IL}	Р	Input low voltage	All digital inputs	4.5≤V _{DD} <5.5 V	_	_	0.35 × V _{DD}	V
				2.7≤V _{DD} <4.5 V	_	_	0.30 × V _{DD}	
V _{hys}	С	Input hysteresi s	All digital inputs	_	0.06 × V _{DD}	_	_	mV
II _{In} I	Р	Input leakage current	Per pin (pins in high impedance input mode)	$V_{IN} = V_{DD}$ or V_{SS}	_	0.1	1	μΑ
II _{INTOT} I	С	Total leakage combine d for all port pins	Pins in high impedance input mode	$V_{IN} = V_{DD}$ or V_{SS}	_	_	2	μА
R _{PU}	Р	Pullup resistors	All digital inputs, when enabled (all I/O pins other than PTA2 and PTA3)	_	30.0	_	50.0	kΩ
R _{PU} ³	Р	Pullup resistors	PTA2 and PTA3 pins	_	30.0	_	60.0	kΩ
I _{IC}	D	DC	Single pin limit	$V_{IN} < V_{SS}, V_{IN} >$	-2	_	2	mA
		injection current ^{4,} 5, 6	Total MCU limit, includes sum of all stressed pins	V _{DD}	-5	_	25	
C _{In}	С	Input	capacitance, all pins	_	_	_	7	pF
V _{RAM}	С	· -	M retention voltage	_	2.0	_	_	V
	1		<u> </u>					

^{1.} Typical values are measured at 25 $^{\circ}\text{C}.$ Characterized, not tested.

^{2.} Only PTB4, PTB5, PTD0, PTD1, PTE0, PTE1, PTH0, and PTH1 support high current output.

Nonswitching electrical specifications

- 3. The specified resistor value is the actual value internal to the device. The pullup value may appear higher when measured externally on the pin.
- 4. All functional non-supply pins, except for PTA2 and PTA3, are internally clamped to V_{SS} and V_{DD}. PTA2 and PTA3 are true open drain I/O pins that are internally clamped to V_{SS}.
- 5. Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger value.
- 6. Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If the positive injection current (V_{In} > V_{DD}) is higher than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure that external V_{DD} load will shunt current higher than maximum injection current when the MCU is not consuming power, such as when no system clock is present, or clock rate is very low (which would reduce overall power consumption).

Table 4. LVD and POR specification

Symbol	С	Desc	ription	Min	Тур	Max	Unit
V _{POR}	D	POR re-ar	m voltage ¹	1.5	1.75	2.0	V
V _{LVDH}	С	threshold—hig	roltage detect ph range (LVDV 1) ²	4.2	4.3	4.4	V
V _{LVW1H}	С	Falling low- voltage	Level 1 falling (LVWV = 00)	4.3	4.4	4.5	V
V _{LVW2H}	С	warning threshold— high range	Level 2 falling (LVWV = 01)	4.5	4.5	4.6	V
V _{LVW3H}	С	Iligii railige	Level 3 falling (LVWV = 10)	4.6	4.6	4.7	V
V _{LVW4H}	С		Level 4 falling (LVWV = 11)	4.7	4.7	4.8	V
V _{HYSH}	С		low-voltage ng hysteresis	_	100	_	mV
V _{LVDL}	С	threshold—lov	voltage detect w range (LVDV 0)	2.56	2.61	2.66	V
V _{LVW1L}	С	Falling low- voltage	Level 1 falling (LVWV = 00)	2.62	2.7	2.78	V
V _{LVW2L}	С	warning threshold— low range	Level 2 falling (LVWV = 01)	2.72	2.8	2.88	V
V _{LVW3L}	С	low range	Level 3 falling (LVWV = 10)	2.82	2.9	2.98	V
V _{LVW4L}	С		Level 4 falling (LVWV = 11)	2.92	3.0	3.08	V
V _{HYSDL}	С		Low range low-voltage detect hysteresis		40	_	mV
V _{HYSWL}	С		low-voltage hysteresis	_	80	_	mV
V _{BG}	Р	Buffered ban	dgap output 3	1.14	1.16	1.18	V

- 1. Maximum is highest voltage that POR is guaranteed.
- 2. Rising thresholds are falling threshold + hysteresis.
- 3. voltage Factory trimmed at $V_{DD} = 5.0 \text{ V}$, Temp = 25 °C

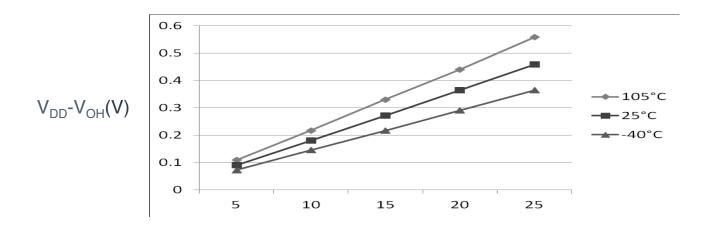


Figure 3. Typical V_{DD} - V_{OH} Vs. I_{OH} (high drive strength) (V_{DD} = 5 V)

 $I_{OH}(mA)$

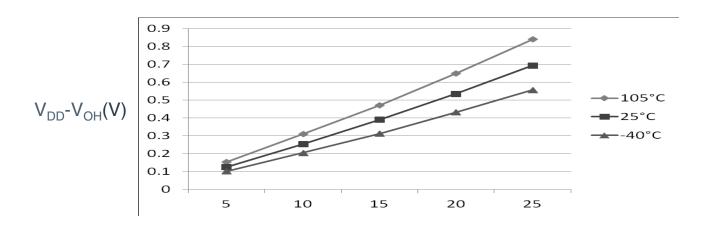
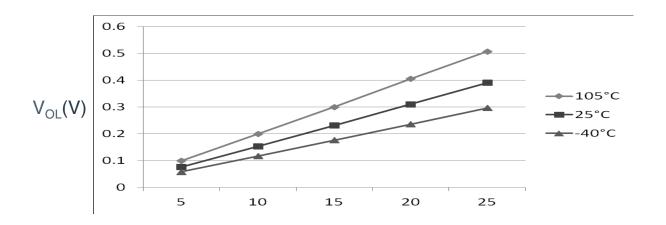
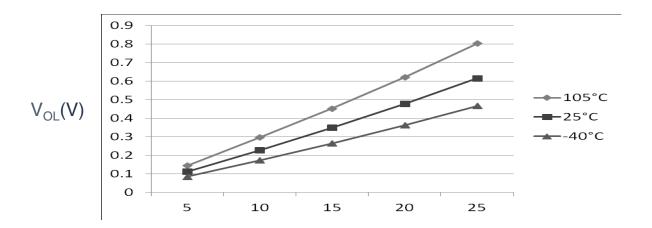



Figure 4. Typical V_{DD} - V_{OH} Vs. I_{OH} (high drive strength) (V_{DD} = 3 V)


 $I_{OH}(mA)$

13

 $I_{OL}(mA)$

Figure 7. Typical V_{OL} Vs. I_{OL} (high drive strength) ($V_{DD} = 5 \text{ V}$)

 $I_{OL}(mA)$

Figure 8. Typical V_{OL} Vs. I_{OL} (high drive strength) ($V_{DD} = 3 \text{ V}$)

5.1.2 Supply current characteristics

This section includes information about power supply current in various operating modes.

Table 5. Supply current characteristics

С	Parameter	Symbol	Core/Bus Freq	V _{DD} (V)	Typical ¹	Max ²	Unit	Temp
С	Run supply current FEI	RI _{DD}	20/20 MHz	5	6.7	_	mA	–40 to 105 °C
С	mode, all modules clocks enabled; run from flash		10/10 MHz		4.5	_		
	enabled, full from flash		1/1 MHz		1.5	_		
С			20/20 MHz	3	6.6	_		
С			10/10 MHz		4.4	_		
			1/1 MHz		1.45	_		
С	Run supply current FEI	RI _{DD}	20/20 MHz	5	5.3	_	mA	–40 to 105 °C
С	mode, all modules clocks disabled; run from flash		10/10 MHz		3.7	_		
	disabled, full from flash		1/1 MHz		1.5	_		
С			20/20 MHz	3	5.3	_		
С			10/10 MHz		3.7	_		
			1/1 MHz		1.4	_		
Р	Run supply current FBE	RI _{DD}	20/20 MHz	5	9	14.8	mA	–40 to 105 °C
С	mode, all modules clocks enabled; run from RAM		10/10 MHz		5.2	_		
	enabled, full from Fizivi		1/1 MHz		1.45	_		
Р			20/20 MHz	3	8.8	11.8		
С			10/10 MHz		5.1	_		
			1/1 MHz		1.4	_		
Р	Run supply current FBE	RI _{DD}	20/20 MHz	5	8	12.3	mA	–40 to 105 °C
С	mode, all modules clocks disabled; run from RAM		10/10 MHz		4.4	_		
	disabled, full from Fiziki		1/1 MHz		1.35	_		
Р			20/20 MHz	3	7.8	9.2		
С			10/10 MHz		4.2	_		
			1/1 MHz		1.3	_		
Р	Wait mode current FEI	WI _{DD}	20/20 MHz	5	5.5	_	mA	–40 to 105 °C
С	mode, all modules clocks enabled		20/10 MHz		3.5	_		
	Chabled		1/1 MHz		1.4	_		
С			20/20 MHz	3	5.4	_		
			10/10 MHz		3.4	_		
			1/1 MHz		1.4	_		
Р	Stop mode supply current	SI _{DD}	_	5	2	85	μA	–40 to 105 °C
Р	no clocks active (except 1 kHz LPO clock) ³		_	3	1.9	80		–40 to 105 °C

Table continues on the next page...

С	Parameter	Symbol	Core/Bus Freq	V _{DD} (V)	Typical ¹	Max ²	Unit	Temp
С	ADC adder to Stop	_	_	5	86 (64-, 44-	_	μA	–40 to 105 °C
	ADLPC = 1				pin packages)			
	ADLSMP = 1				42 (32-pin			
	ADCO = 1				package)			
С	MODE = 10B			3	82 (64-, 44-	_	1	
	ADICLK = 11B				pin packages)			
					41 (32-pin package)			
С	ACMP adder to Stop	_	_	5	12	_	μA	–40 to 105 °C
С				3	12	_		
С	LVD adder to stop ⁴	_	_	5	128	_	μA	–40 to 105 °C
С				3	124	_		

- 1. Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.
- 2. The Max current is observed at high temperature of 105 °C.
- 3. RTC adder causes I_{DD} to increase typically by less than 1 μA; RTC clock source is 1 kHz LPO clock.
- 4. LVD is periodically woken up from Stop by 5% duty cycle. The period is equal to or less than 2 ms.

5.1.3 **EMC** performance

Electromagnetic compatibility (EMC) performance is highly dependent on the environment in which the MCU resides. Board design and layout, circuit topology choices, location and characteristics of external components as well as MCU software operation play a significant role in EMC performance. The system designer must consult the following applications notes, available on **nxp.com** for advice and guidance specifically targeted at optimizing EMC performance.

- AN2321: Designing for Board Level Electromagnetic Compatibility
- AN1050: Designing for Electromagnetic Compatibility (EMC) with HCMOS Microcontrollers
- AN1263: Designing for Electromagnetic Compatibility with Single-Chip Microcontrollers
- AN2764: Improving the Transient Immunity Performance of Microcontroller-Based **Applications**

KE02 Sub-Family Data Sheet, Rev. 5, 07/2016

 AN1259: System Design and Layout Techniques for Noise Reduction in MCU-**Based Systems**

Switching specifications

5.1.3.1 EMC radiated emissions operating behaviors Table 6. EMC radiated emissions operating behaviors for 64-pin QFP package

Symbol	Description	Frequency band (MHz)	Тур.	Unit	Notes
V_{RE1}	Radiated emissions voltage, band 1	0.15–50	14	dΒμV	1, 2
V _{RE2}	Radiated emissions voltage, band 2	50–150	15	dΒμV	
V _{RE3}	Radiated emissions voltage, band 3	150–500	3	dΒμV	
V _{RE4}	Radiated emissions voltage, band 4	500-1000	4	dΒμV	
V _{RE_IEC}	IEC level	0.15-1000	М	_	2, 3

- Determined according to IEC Standard 61967-1, Integrated Circuits Measurement of Electromagnetic Emissions, 150
 kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits Measurement of
 Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and Wideband
 TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported
 emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the
 measured orientations in each frequency range.
- 2. $V_{DD} = 5.0 \text{ V}$, $T_A = 25 \,^{\circ}\text{C}$, $f_{OSC} = 10 \text{ MHz}$ (crystal), $f_{BUS} = 20 \text{ MHz}$
- 3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions—TEM Cell and Wideband TEM Cell Method

5.2 Switching specifications

5.2.1 Control timing

Table 7. Control timing

Num	С	Rating	ļ	Symbol	Min	Typical ¹	Max	Unit
1	D	System and core clock		f _{Sys}	DC	_	20	MHz
2	Р	Bus frequency (t _{cyc} = 1/f _{Bus}))	f _{Bus}	DC	_	20	MHz
3	Р	Internal low power oscillator	r frequency	f _{LPO}	0.67	1.0	1.25	KHz
4	D	External reset pulse width ²		t _{extrst}	1.5 ×	_	_	ns
					t _{cyc}			
5	D	Reset low drive	t _{rstdrv}	$34 \times t_{cyc}$	_	_	ns	
6	D	IRQ pulse width	Asynchronous path ²	t _{ILIH}	100	_	_	ns
	D		Synchronous path ³	t _{IHIL}	$1.5 \times t_{cyc}$	_	_	ns
7	D	Keyboard interrupt pulse width	Asynchronous path ²	t _{ILIH}	100	_	_	ns
	D		Synchronous path	t _{IHIL}	$1.5 \times t_{cyc}$	_	_	ns
8	С	Port rise and fall time -	_	t _{Rise}	_	10.2	_	ns
	С	Normal drive strength (load = 50 pF) ⁴		t _{Fall}	_	9.5	_	ns
	С	Port rise and fall time -	_	t _{Rise}	_	5.4	_	ns
	С	high drive strength (load = 50 pF) ⁴		t _{Fall}	_	4.6	_	ns

- Typical values are based on characterization data at V_{DD} = 5.0 V, 25 °C unless otherwise stated.
- 2. This is the shortest pulse that is guaranteed to be recognized as a RESET pin request.
- 3. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized.
- 4. Timing is shown with respect to 20% V_{DD} and 80% V_{DD} levels. Temperature range -40 °C to 105 °C.

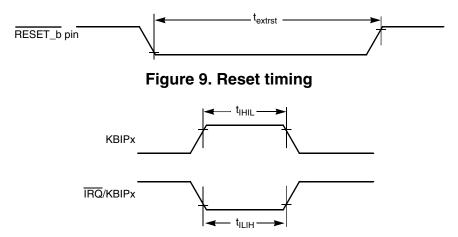


Figure 10. KBIPx timing

5.2.2 FTM module timing

Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock.

С	Function	Symbol	Min	Max	Unit
D	External clock frequency	f _{TCLK}	0	f _{Bus} /4	Hz
D	External clock period	t _{TCLK}	4	_	t _{cyc}
D	External clock high time	t _{clkh}	1.5	_	t _{cyc}
D	External clock low time	t _{clkl}	1.5	_	t _{cyc}
D	Input capture pulse width	t _{ICPW}	1.5	_	t _{cyc}

Table 8. FTM input timing

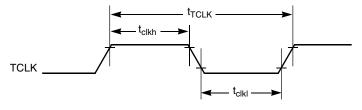


Figure 11. Timer external clock

KE02 Sub-Family Data Sheet, Rev. 5, 07/2016

Table 10.	Thermal	attributes ((continued)	ĺ

Board type	Symbol	Description	64 LQFP	64 QFP	44 LQFP	32 LQFP	Unit	Notes
Single-layer (1S)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./min. air speed)	59	50	62	72	°C/W	1, 3
Four-layer (2s2p)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./min. air speed)	46	41	47	51	°C/W	1, 3
_	R _{eJB}	Thermal resistance, junction to board	35	32	34	33	°C/W	4
_	R _{eJC}	Thermal resistance, junction to case	20	23	20	24	°C/W	5
_	$\Psi_{ m JT}$	Thermal characterization parameter, junction to package top outside center (natural convection)	5	8	5	6	°C/W	6

- Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- 2. Per JEDEC JESD51-2 with the single layer board (JESD51-3) horizontal.
- 3. Per JEDEC JESD51-6 with the board (JESD51-7) horizontal.
- 4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the die and the solder pad on the bottom of the package. Interface resistance is ignored.
- 6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization.

The average chip-junction temperature (T_J) in ${}^{\circ}C$ can be obtained from:

$$T_J = T_A + (P_D \times \theta_{JA})$$

Where:

 T_A = Ambient temperature, °C

 θ_{JA} = Package thermal resistance, junction-to-ambient, °C/W

$$P_D = P_{int} + P_{I/O}$$

 $P_{int} = I_{DD} \times V_{DD}$, Watts - chip internal power

 $P_{I/O}$ = Power dissipation on input and output pins - user determined

For most applications, $P_{I/O} \ll P_{int}$ and can be neglected. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

$$P_D = K \div (T_J + 273 \, ^{\circ}C)$$

Solving the equations above for K gives:

$$K = P_D \times (T_A + 273 \text{ }^{\circ}C) + \theta_{JA} \times (P_D)^2$$

KE02 Sub-Family Data Sheet, Rev. 5, 07/2016

Peripheral operating requirements and behaviors

where K is a constant pertaining to the particular part. K can be determined by measuring P_D (at equilibrium) for an known T_A . Using this value of K, the values of P_D and P_D and P_D are obtained by solving the above equations iteratively for any value of P_D .

6 Peripheral operating requirements and behaviors

6.1 Core modules

6.1.1 SWD electricals

Table 11. SWD full voltage range electricals

Symbol	Description	Min.	Max.	Unit
	Operating voltage	2.7	5.5	V
J1	SWD_CLK frequency of operation			
	Serial wire debug	0	20	MHz
J2	SWD_CLK cycle period	1/J1	_	ns
J3	SWD_CLK clock pulse width			
	Serial wire debug	20	_	ns
J4	SWD_CLK rise and fall times	_	3	ns
J9	SWD_DIO input data setup time to SWD_CLK rise	10	_	ns
J10	SWD_DIO input data hold time after SWD_CLK rise	3	_	ns
J11	SWD_CLK high to SWD_DIO data valid	_	35	ns
J12	SWD_CLK high to SWD_DIO high-Z	5	_	ns

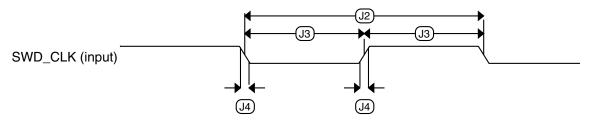


Figure 13. Serial wire clock input timing

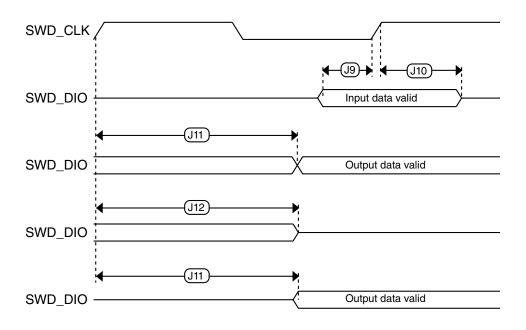


Figure 14. Serial wire data timing

External oscillator (OSC) and ICS characteristics

Table 12. OSC and ICS specifications (temperature range = -40 to 105 °C ambient)

Num	С	C	Characteristic		Min	Typical ¹	Max	Unit
1	С	Crystal or	Low range (RANGE = 0)	f _{lo}	31.25	32.768	39.0625	kHz
	С	resonator frequency	High range (RANGE = 1)	f _{hi}	4	_	20	MHz
2	D	Lo	oad capacitors	C1, C2		See Note ²		
3	D	Feedback resistor	Low Frequency, Low-Power Mode ³	R _F	_	_	_	ΜΩ
			Low Frequency, High-Gain Mode		_	10	_	ΜΩ
			High Frequency, Low- Power Mode		_	1	_	ΜΩ
			High Frequency, High-Gain Mode		_	1	_	ΜΩ
4	D	Series resistor -	Low-Power Mode ³	R _S	_	0	_	kΩ
		Low Frequency High-Gain Mode			_	200	_	kΩ
5	D	Series resistor - High Frequency	Low-Power Mode ³	R _S	_	0	_	kΩ

Table continues on the next page...

KE02 Sub-Family Data Sheet, Rev. 5, 07/2016 21 **NXP Semiconductors**

23

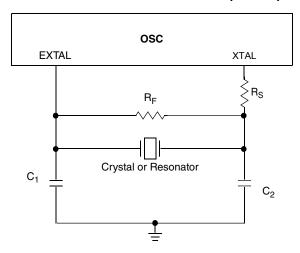


Figure 15. Typical crystal or resonator circuit

6.3 NVM specifications

This section provides details about program/erase times and program/erase endurance for the flash and EEPROM memories.

Table 13. Flash and EEPROM characteristics

С	Characteristic	Symbol	Min ¹	Typical ²	Max ³	Unit ⁴
D	Supply voltage for program/erase –40 °C to 105 °C	V _{prog/erase}	2.7	_	5.5	V
D	Supply voltage for read operation	V _{Read}	2.7	_	5.5	V
D	NVM Bus frequency	f _{NVMBUS}	1	_	25	MHz
D	NVM Operating frequency	f _{NVMOP}	0.8	1	1.05	MHz
D	Erase Verify All Blocks	t _{VFYALL}	_	_	17338	t _{cyc}
D	Erase Verify Flash Block	t _{RD1BLK}	_	_	16913	t _{cyc}
D	Erase Verify EEPROM Block	t _{RD1BLK}	_	_	810	t _{cyc}
D	Erase Verify Flash Section	t _{RD1SEC}	_	_	484	t _{cyc}
D	Erase Verify EEPROM Section	t _{DRD1SEC}	_	_	555	t _{cyc}
D	Read Once	t _{RDONCE}	_	_	450	t _{cyc}
D	Program Flash (2 word)	t _{PGM2}	0.12	0.12	0.29	ms
D	Program Flash (4 word)	t _{PGM4}	0.20	0.21	0.46	ms
D	Program Once	t _{PGMONCE}	0.20	0.21	0.21	ms
D	Program EEPROM (1 Byte)	t _{DPGM1}	0.10	0.10	0.27	ms
D	Program EEPROM (2 Byte)	t _{DPGM2}	0.17	0.18	0.43	ms
D	Program EEPROM (3 Byte)	t _{DPGM3}	0.25	0.26	0.60	ms
D	Program EEPROM (4 Byte)	t _{DPGM4}	0.32	0.33	0.77	ms
D	Erase All Blocks	t _{ERSALL}	96.01	100.78	101.49	ms
D	Erase Flash Block	t _{ERSBLK}	95.98	100.75	101.44	ms

Table continues on the next page...

KE02 Sub-Family Data Sheet, Rev. 5, 07/2016

Peripheral operating requirements and behaviors

Table 15. 12-bit ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

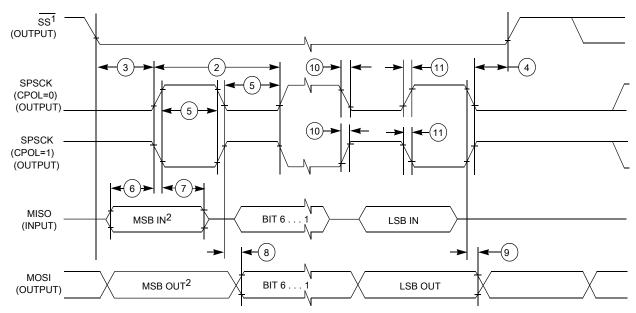

Characteristic	Conditions	С	Symbol	Min	Typ ¹	Max	Unit
ADCO = 1							
Supply current		Т	I _{DDA}	_	218	_	μΑ
ADLPC = 1							
ADLSMP = 0							
ADCO = 1							
Supply current		Т	I _{DDA}	_	327	_	μΑ
ADLPC = 0							
ADLSMP = 1							
ADCO = 1							
Supply current		Т	I _{DDA}	_	582	990	μΑ
ADLPC = 0							
ADLSMP = 0							
ADCO = 1							
Supply current	Stop, reset, module off	Т	I _{DDA}	_	0.011	1	μА
ADC asynchronous clock source	High speed (ADLPC = 0)	Р	f _{ADACK}	2	3.3	5	MHz
	Low power (ADLPC = 1)			1.25	2	3.3	
Conversion time (including sample	Short sample (ADLSMP = 0)	Т	t _{ADC}	_	20	_	ADCK cycles
time)	Long sample (ADLSMP = 1)			_	40	_	
Sample time	Short sample (ADLSMP = 0)	Т	t _{ADS}	_	3.5	_	ADCK cycles
	Long sample (ADLSMP = 1)			_	23.5	_	
Total unadjusted	12-bit mode ³	Т	E _{TUE}	_	±3.6	_	LSB ⁴
Error ²	10-bit mode	Р		_	±1.5	±2.0	
	8-bit mode	Т		_	±0.7	±1.0	
Differential Non-	12-bit mode	Т	DNL	_	±1.0	_	LSB ⁴
Liniarity	10-bit mode ⁵	Р		_	±0.25	±0.5	
	8-bit mode ⁵	Т		_	±0.15	±0.25	
Integral Non-Linearity	12-bit mode ³	Т	INL	_	±1.0	_	LSB ⁴
	10-bit mode	Т		_	±0.3	±0.5	
	8-bit mode	Т		_	±0.15	±0.25	
Zero-scale error ⁶	12-bit mode	С	E _{ZS}	_	±2.0	_	LSB ⁴
	10-bit mode	Р		_	±0.25	±1.0	
	8-bit mode	Т		_	±0.65	±1.0	
Full-scale error ⁷	12-bit mode	Т	E _{FS}	_	±2.5	_	LSB ⁴
	10-bit mode	Т		_	±0.5	±1.0	

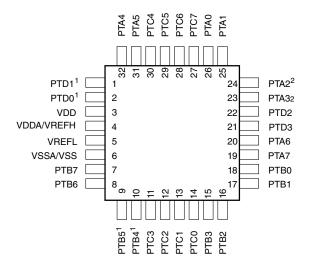
Table continues on the next page...

Peripheral operating requirements and behaviors

communicating with slower peripheral devices. All timing is shown with respect to 20% V_{DD} and 80% V_{DD} , unless noted, and 25 pF load on all SPI pins. All timing assumes high-drive strength is enabled for SPI output pins.

Nu	Symbol	Description	Min.	Max.	Unit	Comment
m.						
1	f _{op}	Frequency of operation	f _{Bus} /2048	f _{Bus} /2	Hz	f _{Bus} is the bus clock
2	t _{SPSCK}	SPSCK period	2 x t _{Bus}	2048 x t _{Bus}	ns	$t_{Bus} = 1/f_{Bus}$
3	t _{Lead}	Enable lead time	1/2	_	t _{SPSCK}	_
4	t _{Lag}	Enable lag time	1/2	_	t _{SPSCK}	_
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{Bus} – 30	1024 x t _{Bus}	ns	_
6	t _{SU}	Data setup time (inputs)	8	_	ns	_
7	t _{HI}	Data hold time (inputs)	8	_	ns	_
8	t _v	Data valid (after SPSCK edge)	_	25	ns	_
9	t _{HO}	Data hold time (outputs)	20	_	ns	_
10	t _{RI}	Rise time input	_	t _{Bus} – 25	ns	_
	t _{Fl}	Fall time input				
11	t _{RO}	Rise time output	_	25	ns	_
	t _{FO}	Fall time output				

^{1.} If configured as an output.


Figure 17. SPI master mode timing (CPHA=0)

^{2.} LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Table 19. Pin availability by package pin-count (continued)

	Pin Number			Lowest	Priority <> H	ighest	
64-QFP/ LQFP	44-LQFP	32-LQFP	Port Pin	Alt 1	Alt 2	Alt 3	Alt 4
19	13	10	PTB4 ¹	FTM2_CH4	SPI0_MISO	NMI	ACMP1_IN2
20	14	11	PTC3	FTM2_CH3	_	_	ADC0_SE11
21	15	12	PTC2	FTM2_CH2	_	_	ADC0_SE10
22	16	_	PTD7	KBI1_P7	UART2_TX	_	_
23	17	_	PTD6	KBI1_P6	UART2_RX	_	_
24	18	_	PTD5	KBI1_P5	_	_	_
25	19	13	PTC1	_	FTM2_CH1	_	ADC0_SE9
26	20	14	PTC0	_	FTM2_CH0	_	ADC0_SE8
27	_	_	PTF7	_	_	_	ADC0_SE15
28	_	_	PTF6	_	_	_	ADC0_SE14
29	_	_	PTF5	_	_	_	ADC0_SE13
30	_	_	PTF4	_	_	_	ADC0_SE12
31	21	15	PTB3	KBI0_P7	SPI0_MOSI	FTM0_CH1	ADC0_SE7
32	22	16	PTB2	KBI0_P6	SPI0_SCK	FTM0_CH0	ADC0_SE6
33	23	17	PTB1	KBI0_P5	UART0_TX	_	ADC0_SE5
34	24	18	PTB0	KBI0_P4	UART0_RX	_	ADC0_SE4
35	_	_	PTF3	_	_	_	_
36	_	_	PTF2	_	_	_	_
37	25	19	PTA7	_	FTM2_FLT2	ACMP1_IN1	ADC0_SE3
38	26	20	PTA6	_	FTM2_FLT1	ACMP1_IN0	ADC0_SE2
39	_	_	PTE4	_	_	_	_
40	27	_	_	_	_	_	VSS
41	28	_	_	_	_	_	VDD
42	_	_	PTF1	_	_	_	_
43	_	_	PTF0	_	_	_	_
44	29	_	PTD4	KBI1_P4	_	_	_
45	30	21	PTD3	KBI1_P3	SPI1_PCS0	_	_
46	31	22	PTD2	KBI1_P2	SPI1_MISO	_	_
47	32	23	PTA3 ⁴	KBI0_P3	UART0_TX	I2C0_SCL	_
48	33	24	PTA2 ⁴	KBI0_P2	UART0_RX	I2C0_SDA	_
49	34	25	PTA1	KBI0_P1	FTM0_CH1	ACMP0_IN1	ADC0_SE1
50	35	26	PTA0	KBI0_P0	FTM0_CH0	ACMP0_IN0	ADC0_SE0
51	36	27	PTC7	_	UART1_TX	_	_
52	37	28	PTC6	_	UART1_RX	_	_
53	_	_	PTE3	_	SPI0_PCS0	_	_
54	38	_	PTE2	_	SPI0_MISO	_	_
55	_	_	PTG3	_	_	_	_
56	_	_	PTG2	_	_	_	_

Table continues on the next page...

- 1. High source/sink current pins
- 2. True open drain pins

Figure 23. 32-pin LQFP package

9 Revision history

The following table provides a revision history for this document.

Table 20. Revision history

Rev. No.	Date	Substantial Changes
3	07/2013	Initial public release.
4	10/2014	 Updated all the V_{DDAD} to V_{DDA}, V_{SSAD} to V_{SSA} Updated the features of OSC, ICS, UART, KBI and ADC in the front page Updated I_{LAT} and V_{CDM} in the ESD handling ratings Added V_{IN} and removed V_{DIO}, V_{AIO} in the Voltage and current operating ratings Updated DC characteristics Added the item of ACMP adder to Stop and a note to the Max. in Supply current characteristics Added EMC radiated emissions operating behaviors Added f_{Sys} and a note to t_{IHIL} in the Control timing Added a new section of Thermal operating requirements Updated J1, J10 and J11 in the SWD electricals Updated External oscillator (OSC) and ICS characteristics Added reference potential and a note to the E_{TUE} and E_{ZS} in ADC characteristics Updated SPI switching specifications
5	07/2016	 Updated the Typical value of E_{TUE} in 12-bit mode and added a note to the 12-bit mode of E_{TUE} and INL in the ADC characteristics.

KE02 Sub-Family Data Sheet, Rev. 5, 07/2016

How to Reach Us:

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, Freescale, the Freescale logo, and Kinetis are trademarks of NXP B.V. All other product or service names are the property of their respective owners. ARM, the ARM powered logo, and Cortex are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved.

©2013-2016 NXP B.V.

Document Number MKE02P64M20SF0 Revision 5, 07/2016

