Intel - EPM570F100I5N Datasheet

E·XFL

Welcome to E-XFL.COM

Understanding <u>Embedded - CPLDs (Complex</u> <u>Programmable Logic Devices)</u>

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixedfunction ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details

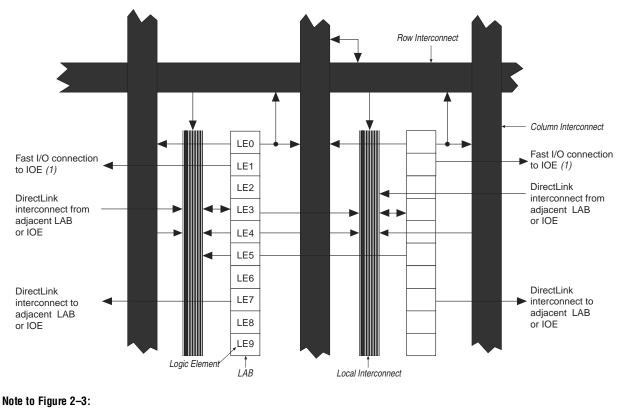
Product Status	Active
Programmable Type	In System Programmable
Delay Time tpd(1) Max	5.4 ns
Voltage Supply - Internal	2.5V, 3.3V
Number of Logic Elements/Blocks	570
Number of Macrocells	440
Number of Gates	-
Number of I/O	76
Operating Temperature	-40°C ~ 100°C (TJ)
Mounting Type	Surface Mount
Package / Case	100-LBGA
Supplier Device Package	100-FBGA (11x11)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epm570f100i5n

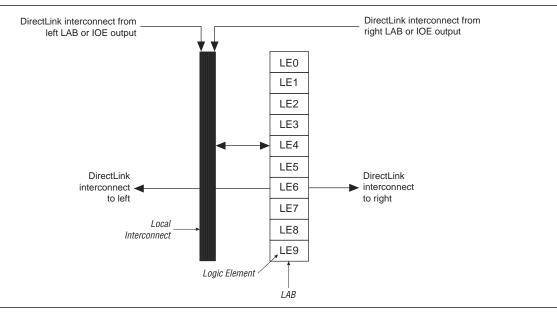
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Logic Array Blocks

Each LAB consists of 10 LEs, LE carry chains, LAB control signals, a local interconnect, a look-up table (LUT) chain, and register chain connection lines. There are 26 possible unique inputs into an LAB, with an additional 10 local feedback input lines fed by LE outputs in the same LAB. The local interconnect transfers signals between LEs in the same LAB. LUT chain connections transfer the output of one LE's LUT to the adjacent LE for fast sequential LUT connections within the same LAB. Register chain connections transfer the output of one LE's register chain connections transfer the output of one LE's register chain an LAB. The Quartus® II software places associated logic within an LAB or adjacent LABs, allowing the use of local, LUT chain, and register chain connections for performance and area efficiency. Figure 2–3 shows the MAX II LAB.




Figure 2–3. MAX II LAB Structure

(1) Only from LABs adjacent to IOEs.

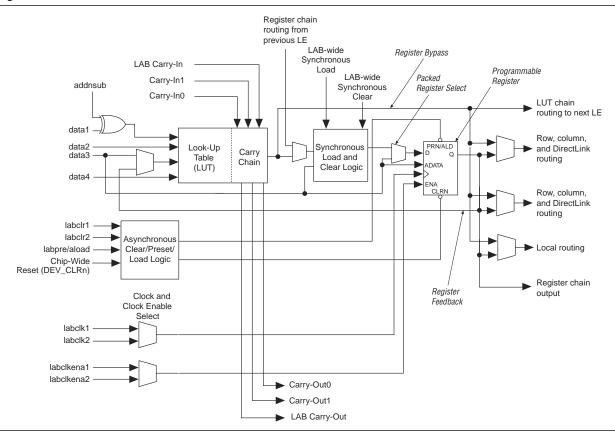
LAB Interconnects

The LAB local interconnect can drive LEs within the same LAB. The LAB local interconnect is driven by column and row interconnects and LE outputs within the same LAB. Neighboring LABs, from the left and right, can also drive an LAB's local interconnect through the DirectLink connection. The DirectLink connection feature minimizes the use of row and column interconnects, providing higher performance and flexibility. Each LE can drive 30 other LEs through fast local and DirectLink interconnects. Figure 2–4 shows the DirectLink connection.

Figure 2-4. DirectLink Connection

LAB Control Signals

Each LAB contains dedicated logic for driving control signals to its LEs. The control signals include two clocks, two clock enables, two asynchronous clears, a synchronous clear, an asynchronous preset/load, a synchronous load, and add/subtract control signals, providing a maximum of 10 control signals at a time. Although synchronous load and clear signals are generally used when implementing counters, they can also be used with other functions.


Each LAB can use two clocks and two clock enable signals. Each LAB's clock and clock enable signals are linked. For example, any LE in a particular LAB using the labclk1 signal also uses labclkena1. If the LAB uses both the rising and falling edges of a clock, it also uses both LAB-wide clock signals. Deasserting the clock enable signal turns off the LAB-wide clock.

Each LAB can use two asynchronous clear signals and an asynchronous load/preset signal. By default, the Quartus II software uses a NOT gate push-back technique to achieve preset. If you disable the NOT gate push-back option or assign a given register to power-up high using the Quartus II software, the preset is then achieved using the asynchronous load signal with asynchronous load data input tied high.

With the LAB-wide addnsub control signal, a single LE can implement a one-bit adder and subtractor. This saves LE resources and improves performance for logic functions such as correlators and signed multipliers that alternate between addition and subtraction depending on data.

The LAB column clocks [3..0], driven by the global clock network, and LAB local interconnect generate the LAB-wide control signals. The MultiTrack interconnect structure drives the LAB local interconnect for non-global control signal generation. The MultiTrack interconnect's inherent low skew allows clock and control signal distribution in addition to data. Figure 2–5 shows the LAB control signal generation circuit.

Figure 2-6. MAX II LE

Each LE's programmable register can be configured for D, T, JK, or SR operation. Each register has data, true asynchronous load data, clock, clock enable, clear, and asynchronous load/preset inputs. Global signals, general-purpose I/O pins, or any LE can drive the register's clock and clear control signals. Either general-purpose I/O pins or LEs can drive the clock enable, preset, asynchronous load, and asynchronous data. The asynchronous load data input comes from the data3 input of the LE. For combinational functions, the LUT output bypasses the register and drives directly to the LE outputs.

Each LE has three outputs that drive the local, row, and column routing resources. The LUT or register output can drive these three outputs independently. Two LE outputs drive column or row and DirectLink routing connections and one drives local interconnect resources. This allows the LUT to drive one output while the register drives another output. This register packing feature improves device utilization because the device can use the register and the LUT for unrelated functions. Another special packing mode allows the register output to feed back into the LUT of the same LE so that the register is packed with its own fan-out LUT. This provides another mechanism for improved fitting. The LE can also drive out registered and unregistered versions of the LUT output.

I/O Structure

IOEs support many features, including:

- LVTTL and LVCMOS I/O standards
- 3.3-V, 32-bit, 66-MHz PCI compliance
- Joint Test Action Group (JTAG) boundary-scan test (BST) support
- Programmable drive strength control
- Weak pull-up resistors during power-up and in system programming
- Slew-rate control
- Tri-state buffers with individual output enable control
- Bus-hold circuitry
- Programmable pull-up resistors in user mode
- Unique output enable per pin
- Open-drain outputs
- Schmitt trigger inputs
- Fast I/O connection
- Programmable input delay

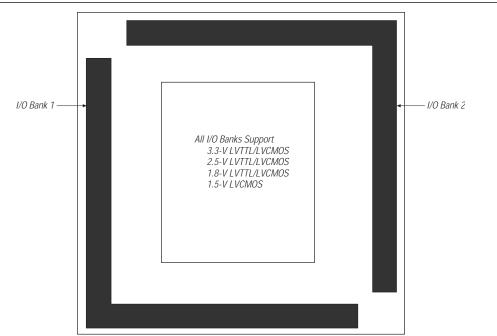
MAX II device IOEs contain a bidirectional I/O buffer. Figure 2–19 shows the MAX II IOE structure. Registers from adjacent LABs can drive to or be driven from the IOE's bidirectional I/O buffers. The Quartus II software automatically attempts to place registers in the adjacent LAB with fast I/O connection to achieve the fastest possible clock-to-output and registered output enable timing. For input registers, the Quartus II software automatically routes the register to guarantee zero hold time. You can set timing assignments in the Quartus II software to achieve desired I/O timing.

Fast I/O Connection

A dedicated fast I/O connection from the adjacent LAB to the IOEs within an I/O block provides faster output delays for clock-to-output and t_{PD} propagation delays. This connection exists for data output signals, not output enable signals or input signals. Figure 2–20, Figure 2–21, and Figure 2–22 illustrate the fast I/O connection.

Table 2–4 describes the I/O standards supported by MAX II devices.

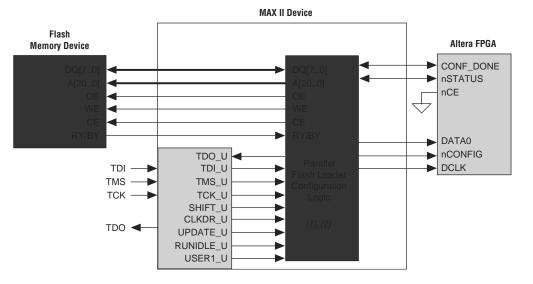
Table 2-4.	MAX II I/O	Standards
------------	------------	-----------


I/O Standard	Туре	Output Supply Voltage (VCCIO) (V)
3.3-V LVTTL/LVCMOS	Single-ended	3.3
2.5-V LVTTL/LVCMOS	Single-ended	2.5
1.8-V LVTTL/LVCMOS	Single-ended	1.8
1.5-V LVCMOS	Single-ended	1.5
3.3-V PCI (1)	Single-ended	3.3

Note to Table 2-4:

(1) The 3.3-V PCI compliant I/O is supported in Bank 3 of the EPM1270 and EPM2210 devices.

The EPM240 and EPM570 devices support two I/O banks, as shown in Figure 2–22. Each of these banks support all the LVTTL and LVCMOS standards shown in Table 2–4. PCI compliant I/O is not supported in these devices and banks.


Notes to Figure 2–22:

(1) Figure 2-22 is a top view of the silicon die.

(2) Figure 2-22 is a graphical representation only. Refer to the pin list and the Quartus II software for exact pin locations.

The EPM1270 and EPM2210 devices support four I/O banks, as shown in Figure 2–23. Each of these banks support all of the LVTTL and LVCMOS standards shown in Table 2–4. PCI compliant I/O is supported in Bank 3. Bank 3 supports the PCI clamping diode on inputs and PCI drive compliance on outputs. You must use Bank 3 for designs requiring PCI compliant I/O pins. The Quartus II software automatically places I/O pins in this bank if assigned with the PCI I/O standard.

Figure 3-1. MAX II Parallel Flash Loader

Notes to Figure 3-1:

(1) This block is implemented in LEs.

(2) This function is supported in the Quartus II software.

In System Programmability

MAX II devices can be programmed in-system via the industry standard 4-pin IEEE Std. 1149.1 (JTAG) interface. In-system programmability (ISP) offers quick, efficient iterations during design development and debugging cycles. The logic, circuitry, and interconnects in the MAX II architecture are configured with flash-based SRAM configuration elements. These SRAM elements require configuration data to be loaded each time the device is powered. The process of loading the SRAM data is called configuration. The on-chip configuration flash memory (CFM) block stores the SRAM element's configuration data. The CFM block stores the design's configuration pattern in a reprogrammable flash array. During ISP, the MAX II JTAG and ISP circuitry programs the design pattern into the CFM block's non-volatile flash array.

The MAX II JTAG and ISP controller internally generate the high programming voltages required to program the CFM cells, allowing in-system programming with any of the recommended operating external voltage supplies (that is, 3.3 V/2.5 V or 1.8 V for the MAX IIG and MAX IIZ devices). ISP can be performed anytime after V_{CCINT} and all V_{CCIO} banks have been fully powered and the device has completed the configuration power-up time. By default, during in-system programming, the I/O pins are tri-stated and weakly pulled-up to V_{CCIO} to eliminate board conflicts. The insystem programming clamp and real-time ISP feature allow user control of I/O state or behavior during ISP.

For more information, refer to "In-System Programming Clamp" on page 3–6 and "Real-Time ISP" on page 3–7.

These devices also offer an ISP_DONE bit that provides safe operation when insystem programming is interrupted. This ISP_DONE bit, which is the last bit programmed, prevents all I/O pins from driving until the bit is programmed. Table 3–4 shows the programming times for MAX II devices using in-circuit testers to execute the algorithm vectors in hardware. Software-based programming tools used with download cables are slightly slower because of data processing and transfer limitations.

Description	EPM240 EPM240G EPM240Z	EPM570 EPM570G EPM570Z	EPM1270 EPM1270G	EPM2210 EPM2210G	Unit
Erase + Program (1 MHz)	1.72	2.16	2.90	3.92	Sec
Erase + Program (10 MHz)	1.65	1.99	2.58	3.40	Sec
Verify (1 MHz)	0.09	0.17	0.30	0.49	Sec
Verify (10 MHz)	0.01	0.02	0.03	0.05	sec
Complete Program Cycle (1 MHz)	1.81	2.33	3.20	4.41	sec
Complete Program Cycle (10 MHz)	1.66	2.01	2.61	3.45	sec

Table 3-4. MAX II Device Family Programming Times

UFM Programming

The Quartus II software, with the use of POF, Jam, or JBC files, supports programming of the user flash memory (UFM) block independent of the logic array design pattern stored in the CFM block. This allows updating or reading UFM contents through ISP without altering the current logic array design, or vice versa. By default, these programming files and methods will program the entire flash memory contents, which includes the CFM block and UFM contents. The stand-alone embedded Jam STAPL player and Jam Byte-Code Player provides action commands for programming or reading the entire flash memory (UFM and CFM together) or each independently.

• For more information, refer to the Using Jam STAPL for ISP via an Embedded Processor chapter in the MAX II Device Handbook.

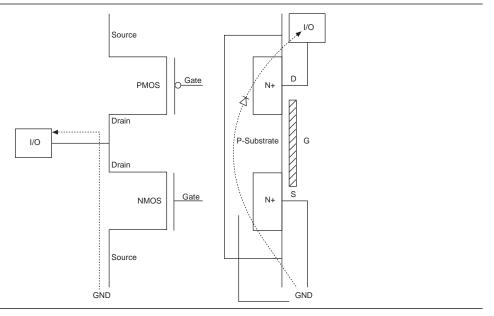
In-System Programming Clamp

By default, the IEEE 1532 instruction used for entering ISP automatically tri-states all I/O pins with weak pull-up resistors for the duration of the ISP sequence. However, some systems may require certain pins on MAX II devices to maintain a specific DC logic level during an in-field update. For these systems, an optional in-system programming clamp instruction exists in MAX II circuitry to control I/O behavior during the ISP sequence. The in-system programming clamp instruction enables the device to sample and sustain the value on an output pin (an input pin would remain tri-stated if sampled) or to explicitly set a logic high, logic low, or tri-state value on any pin. Setting these options is controlled on an individual pin basis using the Quartus II software.

For more information, refer to the *Real-Time ISP and ISP Clamp for MAX II Devices* chapter in the *MAX II Device Handbook*.

Document Revision History

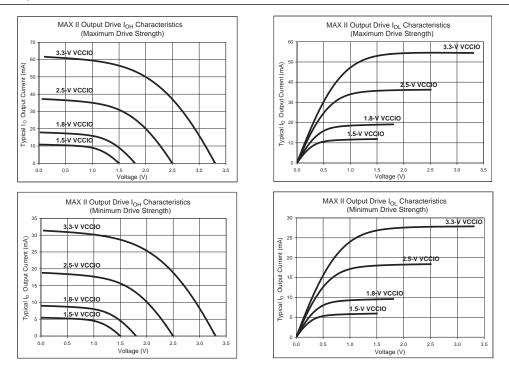
Table 3–5 shows the revision history for this chapter.


Table 3–5	Document Revision History
Table J-J.	Document nevision mistory

Date and Revision	Changes Made	Summary of Changes
October 2008, version 1.6	 Updated New Document Format. 	-
December 2007,	■ Added warning note after Table 3–1.	_
version 1.5	■ Updated Table 3–3 and Table 3–4.	
	 Added "Referenced Documents" section. 	
December 2006, version 1.4	 Added document revision history. 	_
June 2005, version 1.3	Added text and Table 3-4.	_
June 2005, version 1.3	 Updated text on pages 3-5 to 3-8. 	-
June 2004, version 1.1	Corrected Figure 3-1. Added CFM acronym.	-

When the I/O pin receives a negative ESD zap at the pin that is less than -0.7 V (0.7 V is the voltage drop across a diode), the intrinsic

P-Substrate/N+ drain diode is forward biased. Therefore, the discharge ESD current path is from GND to the I/O pin, as shown in Figure 4–4.


Power-On Reset Circuitry

MAX II devices have POR circuits to monitor V_{CCINT} and V_{CCD} voltage levels during power-up. The POR circuit monitors these voltages, triggering download from the non-volatile configuration flash memory (CFM) block to the SRAM logic, maintaining tri-state of the I/O pins (with weak pull-up resistors enabled) before and during this process. When the MAX II device enters user mode, the POR circuit releases the I/O pins to user functionality. The POR circuit of the MAX II (except MAX IIZ) device continues to monitor the V_{CCINT} voltage level to detect a brown-out condition. The POR circuit of the MAX IIZ device does not monitor the V_{CCINT} voltage level after the device enters into user mode. More details are provided in the following sub-sections.

Output Drive Characteristics

Figure 5–1 shows the typical drive strength characteristics of MAX II devices.

Note to Figure 5–1:

(1) The DC output current per pin is subject to the absolute maximum rating of Table 5-1.

I/O Standard Specifications

Table 5–5 through Table 5–10 show the MAX II device family I/O standard specifications.

Symbol	Parameter	Conditions	Minimum	Maximum	Unit
V _{CCIO}	I/O supply voltage	—	3.0	3.6	V
V _{IH}	High-level input voltage	—	1.7	4.0	V
V _{IL}	Low-level input voltage	—	-0.5	0.8	V
V _{OH}	High-level output voltage	IOH = -4 mA (1)	2.4		V
V _{OL}	Low-level output voltage	IOL = 4 mA (1)		0.45	V

Table 5–6. 3.3-V LVCMOS Specifications (Part 1 of 2)

Symbol	Parameter	Conditions	Minimum	Maximum	Unit
V _{CCIO}	I/O supply voltage	—	3.0	3.6	V
V _{IH}	High-level input voltage		1.7	4.0	V
V _{IL}	Low-level input voltage		-0.5	0.8	V

Device	Preliminary	Final
EPM1270	_	\checkmark
EPM2210	_	\checkmark
N	•	•

 Table 5–13.
 MAX II Device Timing Model Status
 (Part 2 of 2)

Note to Table 5-13:

(1) The MAX IIZ device timing models are only available in the Quartus II software version 8.0 and later.

Performance

Table 5–14 shows the MAX II device performance for some common designs. All performance values were obtained with the Quartus II software compilation of megafunctions. Performance values for –3, –4, and –5 speed grades are based on an EPM1270 device target, while –6, –7, and –8 speed grades are based on an EPM570Z device target.

Table 5–14. MAX II Device Performance

							Perfor	mance			
		Reso	Resources Used			MAX II / MAX IIG			MAX IIZ		
Resource Used	Design Size and Function	Mode	LEs	UFM Blocks	–3 Speed Grade	–4 Speed Grade	–5 Speed Grade	–6 Speed Grade	–7 Speed Grade	–8 Speed Grade	Unit
LE	16-bit counter (1)	—	16	0	304.0	247.5	201.1	184.1	123.5	118.3	MHz
	64-bit counter (1)	—	64	0	201.5	154.8	125.8	83.2	83.2	80.5	MHz
	16-to-1 multiplexer	_	11	0	6.0	8.0	9.3	17.4	17.3	20.4	ns
	32-to-1 multiplexer	_	24	0	7.1	9.0	11.4	12.5	22.8	25.3	ns
	16-bit XOR function	_	5	0	5.1	6.6	8.2	9.0	15.0	16.1	ns
	16-bit decoder with single address line		5	0	5.2	6.6	8.2	9.2	15.0	16.1	ns
UFM	512 × 16	None	3	1	10.0	10.0	10.0	10.0	10.0	10.0	MHz
	512 × 16	SPI <i>(2)</i>	37	1	8.0	8.0	8.0	9.7	9.7	9.7	MHz
	512 × 8	Parallel <i>(3)</i>	73	1	(4)	(4)	(4)	(4)	(4)	(4)	MHz
	512 × 16	I²C <i>(3)</i>	142	1	100 <i>(5)</i>	100 <i>(5)</i>	100 <i>(5)</i>	100 <i>(5)</i>	100 <i>(5)</i>	100 <i>(5)</i>	kHz

Notes to Table 5-14:

(1) This design is a binary loadable up counter.

(2) This design is configured for read-only operation in Extended mode. Read and write ability increases the number of LEs used.

(3) This design is configured for read-only operation. Read and write ability increases the number of LEs used.

(4) This design is asynchronous.

(5) The I²C megafunction is verified in hardware up to 100-kHz serial clock line (SCL) rate.

		MAX II / MAX IIG						MAX IIZ						
		–3 Speed Grade					i Speed –6 Spee Grade Grade					–8 Speed Grade		
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
t _{fastio}	Data output delay from adjacent LE to I/O block		159		207		254		170		348		428	ps
t _{iN}	I/O input pad and buffer delay	_	708	_	920		1,132	_	907	_	970	_	986	ps
t _{glob} (1)	I/O input pad and buffer delay used as global signal pin	_	1,519		1,974	_	2,430		2,261		2,670	_	3,322	ps
t _{ioe}	Internally generated output enable delay		354	_	374		460		530	_	966	_	1,410	ps
t _{DL}	Input routing delay	_	224	_	291	_	358	_	318	—	410	_	509	ps
t _{od} (2)	Output delay buffer and pad delay	_	1,064		1,383		1,702	—	1,319		1,526	_	1,543	ps
t _{xz} <i>(3)</i>	Output buffer disable delay	_	756	_	982	—	1,209	—	1,045	—	1,264	_	1,276	ps
t _{zx} (4)	Output buffer enable delay	—	1,003		1,303		1,604	_	1,160	_	1,325	—	1,353	ps

Table 5–16. IOE Internal Timing Microparameters

Notes to Table 5-16:

(1) Delay numbers for t_{GLOB} differ for each device density and speed grade. The delay numbers for t_{GLOB}, shown in Table 5–16, are based on an EPM240 device target.

(2) Refer to Table 5–32 and 5–24 for delay adders associated with different I/O standards, drive strengths, and slew rates.

(3) Refer to Table 5–19 and 5–14 for txz delay adders associated with different I/O standards, drive strengths, and slew rates.

(4) Refer to Table 5–17 and 5–13 for t_{zx} delay adders associated with different I/O standards, drive strengths, and slew rates.

Table 5–17 through Table 5–20 show the adder delays for t_{zx} and t_{xz} microparameters when using an I/O standard other than 3.3-V LVTTL with 16 mA drive strength.

 Table 5–17.
 t_{ZX} IOE Microparameter Adders for Fast Slew Rate
 (Part 1 of 2)

			I	MAX II ,	/ MAX III	G				MA	X IIZ			
			peed ade		Speed ade		Speed rade		peed ade		peed ade		peed ade	
Standard	d	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
3.3-V LVTTL	16 mA	—	0	—	0	—	0	—	0	—	0	—	0	ps
	8 mA	—	28		37		45	—	72	_	71		74	ps
3.3-V LVCMOS	8 mA	—	0	_	0	_	0	—	0	—	0	_	0	ps
	4 mA	_	28		37		45	_	72	_	71		74	ps
2.5-V LVTTL /	14 mA	—	14		19		23	—	75	—	87	_	90	ps
LVCMOS	7 mA	—	314	_	409	_	503	—	162	—	174	_	177	ps
1.8-V LVTTL /	6 mA	—	450	—	585	_	720	—	279	_	289	_	291	ps
LVCMOS	3 mA	_	1,443		1,876		2,309		499		508		512	ps

			Γ	MAX II ,	/ MAX II	G				MA	X IIZ			
			peed ade		Speed ade		Speed rade		peed ade		peed ade		speed ade	
Standard	ł	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
1.5-V LVCMOS	4 mA	—	1,118	—	1,454		1,789	—	580		588	—	588	ps
	2 mA	—	2,410	—	3,133	_	3,856	_	915	_	923	—	923	ps
3.3-V PCI	20 mA	_	19	_	25	_	31	_	72		71		74	ps

 Table 5–17.
 t_{ZX} IOE Microparameter Adders for Fast Slew Rate
 (Part 2 of 2)

Table 5–18.	t _{ZX} IOE Microparameter Adders for Slow Slew Rate	
-------------	--	--

			Γ	II XAN	/ MAX IIG					MA	X IIZ			
		-	Speed rade	-	Speed irade	-	Speed rade	-	Speed ade	-	Speed rade	-	Speed 'ade	
Standar	d	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
3.3-V LVTTL	16 mA	—	6,350	—	6,050	—	5,749	—	5,951	—	5,952	—	6,063	ps
	8 mA		9,383	—	9,083	—	8,782	—	6,534	—	6,533	—	6,662	ps
3.3-V LVCMOS	8 mA		6,350	—	6,050	—	5,749	—	5,951	—	5,952	—	6,063	ps
	4 mA		9,383	—	9,083	—	8,782	—	6,534	—	6,533	—	6,662	ps
2.5-V LVTTL /	14 mA	_	10,412	—	10,112	—	9,811	—	9,110	—	9,105	—	9,237	ps
LVCMOS	7 mA	—	13,613	—	13,313	—	13,012	—	9,830	-	9,835	—	9,977	ps
3.3-V PCI	20 mA		-75	—	-97	—	-120	—	6,534		6,533	—	6,662	ps

Table 5–19. t_{XZ} IOE Microparameter Adders for Fast Slew Rate

			N	/ II XAN	MAX II	G				MA	X IIZ			
			peed ade		Speed ade		Speed ade		peed ade		peed ade	1	peed ade	
Standar	d	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
3.3-V LVTTL	16 mA	—	0	—	0	—	0	_	0	—	0	—	0	ps
	8 mA	_	-56	—	-72	—	-89		-69	—	-69	_	-69	ps
3.3-V LVCMOS	8 mA	_	0	—	0	—	0		0	—	0	_	0	ps
	4 mA		-56	—	-72	—	-89	_	-69	—	-69	_	-69	ps
2.5-V LVTTL /	14 mA		-3	—	-4	_	-5		-7	—	-11	_	-11	ps
LVCMOS	7 mA	_	-47	—	-61	—	-75	_	-66	—	-70	_	-70	ps
1.8-V LVTTL /	6 mA		119	—	155	—	191	_	45	—	34	_	37	ps
LVCMOS	3 mA	_	207	—	269	—	331		34	—	22	_	25	ps
1.5-V LVCMOS	4 mA	—	606	—	788	—	970	_	166	—	154	_	155	ps
	2 mA	—	673	_	875	—	1,077	_	190	—	177	_	179	ps
3.3-V PCI	20 mA		71	—	93	—	114	_	-69	—	-69	_	-69	ps

			N	IAX II /	MAX II	G				MA	X IIZ			
			peed ade		peed ade		peed ade		peed ade		peed ade		Speed ade	
Standard	ł	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
3.3-V LVTTL	16 mA	—	206	—	-20		-247	—	1,433		1,446	—	1,454	ps
	8 mA	_	891	_	665		438	_	1,332		1,345	_	1,348	ps
3.3-V LVCMOS	8 mA	_	206	_	-20		-247	—	1,433		1,446	—	1,454	ps
	4 mA	_	891	_	665	—	438	—	1,332	_	1,345	—	1,348	ps
2.5-V LVTTL /	14 mA		222		-4	_	-231	—	213		208	—	213	ps
LVCMOS	7 mA	_	943		717	—	490	—	166		161	—	166	ps
3.3-V PCI	20 mA	_	161		210		258	—	1,332		1,345	—	1,348	ps

Table 5–20. t_{XZ} IOE Microparameter Adders for Slow Slew Rate

The default slew rate setting for MAX II devices in the Quartus II design software is "fast".

		MAX II / MAX IIG	
Table 5-21	I. UFM Block Internal Ti	ming Microparameters (Part 1 of 3)	

			M	IAX II /	MAX II	G				MA	MAX IIZ –7 Speed –8 Speed Grade Grade				
		–3 Sp Gra		–4 S Gra		–5 S Gra			peed ade						
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit	
t _{aclk}	Address register clock period	100	-	100	-	100	-	100	—	100	-	100	_	ns	
t _{asu}	Address register shift signal setup to address register clock	20	—	20	—	20	—	20	_	20	-	20		ns	
t _{an}	Address register shift signal hold to address register clock	20	_	20	_	20	_	20	_	20	_	20		ns	
t _{ads}	Address register data in setup to address register clock	20	-	20	-	20	-	20	_	20	-	20		ns	
t _{adh}	Address register data in hold from address register clock	20	_	20	_	20	_	20	_	20	_	20		ns	
t_{dclk}	Data register clock period	100	-	100	-	100	-	100	-	100	-	100	_	ns	
t_{DSS}	Data register shift signal setup to data register clock	60	-	60	-	60	-	60	—	60	-	60	_	ns	
t _{dsh}	Data register shift signal hold from data register clock	20	_	20	_	20	_	20	_	20	_	20		ns	

				ſ	MAX II ,	/ MAX II	G				MA	X IIZ			
				Speed rade		Speed ade		Speed ade		Speed ade		Speed 'ade		Speed ade	
Symbol	Parameter	Condition	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
f _{cnt}	Maximum global clock frequency for 16-bit counter		_	304.0 <i>(1)</i>		247.5		201.1		184.1		123.5		118.3	MHz

Table 5–23. EPM240 Global Clock External I/O Timing Parameters (Part 2 of 2)

Note to Table 5-23:

(1) The maximum frequency is limited by the I/O standard on the clock input pin. The 16-bit counter critical delay performs faster than this global clock input pin maximum frequency.

Table 5–24 shows the external I/O timing parameters for EPM570 devices.

				Ν	II XAN	/ MAX I	IG				MA	X IIZ			
				Speed rade		Speed ade		Speed ade		peed ade		Speed rade		Speed ade	
Symbol	Parameter	Condition	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
t _{PD1}	Worst case pin- to-pin delay through 1 look- up table (LUT)	10 pF	_	5.4	-	7.0	_	8.7		9.5		15.1	_	17.7	ns
t _{PD2}	Best case pin- to-pin delay through 1 LUT	10 pF	_	3.7	-	4.8	_	5.9	_	5.7	—	7.7	-	8.5	ns
t _{su}	Global clock setup time	_	1.2	_	1.5	_	1.9	_	2.2	_	3.9	_	4.4	_	ns
t _H	Global clock hold time		0	—	0		0	_	0		0		0	_	ns
t _{co}	Global clock to output delay	10 pF	2.0	4.5	2.0	5.8	2.0	7.1	2.0	6.7	2.0	8.2	2.0	8.7	ns
t _{ch}	Global clock high time		166	_	216		266	_	253		335		339	_	ps
tc∟	Global clock low time		166	_	216		266	_	253		335		339	_	ps
t _{ont}	Minimum global clock period for 16-bit counter	_	3.3		4.0		5.0		5.4		8.1		8.4		ns

 Table 5–24.
 EPM570 Global Clock External I/O Timing Parameters
 (Part 1 of 2)

				N	II XAN	/ MAX I	IG				MA	X IIZ			
				Speed rade	1	Speed ade		Speed ade		Speed ade		Speed rade		Speed rade	
Symbol	Parameter	Condition	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
f _{cnt}	Maximum global clock frequency for 16-bit counter			304.0 <i>(1)</i>		247.5		201.1		184.1		123.5		118.3	MHz

Table 5–24. EPM570 Global Clock External I/O Timing Parameters (Part 2 of 2)

Note to Table 5-24:

(1) The maximum frequency is limited by the I/O standard on the clock input pin. The 16-bit counter critical delay performs faster than this global clock input pin maximum frequency.

Table 5–25 shows the external I/O timing parameters for EPM1270 devices.

Table 5-25. EPM1270 Global Clock External I/O Timing Parameters

				Γ	MAX II / N	IAX IIG			
			-3 Sp	eed Grade	–4 Spec	ed Grade	–5 Spee	ed Grade	
Symbol	Parameter	Condition	Min	Max	Min	Max	Min	Max	Unit
t _{PD1}	Worst case pin-to-pin delay through 1 look-up table (LUT)	10 pF	_	6.2	-	8.1	—	10.0	ns
t _{PD2}	Best case pin-to-pin delay through 1 LUT	10 pF		3.7	—	4.8	_	5.9	ns
t _{su}	Global clock setup time	_	1.2	_	1.5	—	1.9	—	ns
t _H	Global clock hold time	_	0	_	0	_	0	—	ns
t _{co}	Global clock to output delay	10 pF	2.0	4.6	2.0	5.9	2.0	7.3	ns
t _{сн}	Global clock high time	_	166		216		266		ps
t _{cL}	Global clock low time	_	166		216	_	266	_	ps
t _{cnt}	Minimum global clock period for 16-bit counter	_	3.3	_	4.0	_	5.0	_	ns
f _{cnt}	Maximum global clock frequency for 16-bit counter	—		304.0 (1)		247.5		201.1	MHz

Note to Table 5-25:

(1) The maximum frequency is limited by the I/O standard on the clock input pin. The 16-bit counter critical delay performs faster than this global clock input pin maximum frequency.

			MAX II / MAX IIG					MAX IIZ						
		–3 Speed Grade		–4 Speed Grade		–5 Speed Grade		–6 Speed Grade		–7 Speed Grade		–8 Speed Grade		
I/0 St	andard	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
3.3-V LVCMOS	Without Schmitt Trigger	—	0	—	0	—	0	—	0	—	0	—	0	ps
	With Schmitt Trigger	_	334	_	434	_	535	_	387	_	434	_	442	ps
2.5-V LVTTL / LVCMOS	Without Schmitt Trigger	—	23	_	30	—	37	—	42	_	43	_	43	ps
	With Schmitt Trigger	—	339	_	441	—	543	—	429	_	476	_	483	ps
1.8-V LVTTL / LVCMOS	Without Schmitt Trigger	_	291	_	378	—	466	—	378	_	373	_	373	ps
1.5-V LVCMOS	Without Schmitt Trigger	_	681	_	885	_	1,090	_	681	_	622	_	658	ps
3.3-V PCI	Without Schmitt Trigger	_	0	_	0	_	0	_	0	_	0	—	0	ps

Table 5–27. External Timing Input Delay Adders (Part 2 of 2)

			ſ	II XAN	/ MAX II	G				MA	X IIZ			
			peed ade		Speed rade		Speed ade		peed ade		peed ade		peed ade	
I/O St	andard	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
3.3-V LVTTL	Without Schmitt Trigger	—	0	-	0	—	0	-	0	—	0	—	0	ps
	With Schmitt Trigger	—	308	-	400	_	493	_	387	_	434	—	442	ps
3.3-V LVCMOS	Without Schmitt Trigger	—	0	-	0	_	0	—	0	_	0	—	0	ps
	With Schmitt Trigger	—	308	-	400	—	493	—	387	_	434	—	442	ps
2.5-V LVTTL / LVCMOS	Without Schmitt Trigger	—	21	-	27	_	33	_	42	_	43	—	43	ps
	With Schmitt Trigger	—	423	-	550	_	677	_	429	_	476	_	483	ps
1.8-V LVTTL / LVCMOS	Without Schmitt Trigger	—	353	-	459	—	565	—	378	_	373	—	373	ps
1.5-V LVCMOS	Without Schmitt Trigger	—	855	-	1,111	—	1,368	-	681	—	622	—	658	ps
3.3-V PCI	Without Schmitt Trigger	—	6	_	7	_	9	_	0	_	0	_	0	ps

		MAX II / MAX IIG			MAX IIZ					
I/O Stand	lard	–3 Speed Grade	–4 Speed Grade	–5 Speed Grade	–6 Speed Grade	–7 Speed Grade	–8 Speed Grade			
3.3-V LVTTL	304	304	304	304	304	304	MHz			
3.3-V LVCMOS	304	304	304	304	304	304	MHz			
2.5-V LVTTL	220	220	220	220	220	220	MHz			
2.5-V LVCMOS	220	220	220	220	220	220	MHz			
1.8-V LVTTL	200	200	200	200	200	200	MHz			
1.8-V LVCMOS	200	200	200	200	200	200	MHz			
1.5-V LVCMOS	150	150	150	150	150	150	MHz			
3.3-V PCI	304	304	304	304	304	304	MHz			

JTAG Timing Specifications

Figure 5–6 shows the timing waveforms for the JTAG signals.

Figure 5–6. MAX II JTAG Timing Waveforms

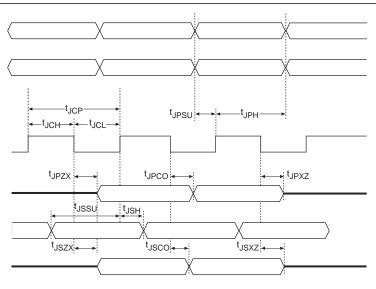


Table 5–34 shows the JTAG Timing parameters and values for MAX II devices.

Table 5-34.	MAX II J	JTAG Timing	Parameters	(Part 1 of 2)
-------------	----------	-------------	------------	---------------

Symbol	Parameter	Min	Max	Unit
t _{JCP} (1)	TCK clock period for $V_{\text{CCIO1}} = 3.3 \text{ V}$	55.5	—	ns
	TCK clock period for $V_{\text{ccio1}} = 2.5 \text{ V}$	62.5		ns
	TCK clock period for $V_{CCIO1} = 1.8 V$	100	—	ns
	TCK clock period for $V_{\text{CCIO1}} = 1.5 \text{ V}$	143	_	ns
t _{JCH}	TCK clock high time	20		ns
t _{JCL}	TCK clock low time	20	_	ns

Document Revision History

Table 5–35 shows the revision history for this chapter.

Table 5-35. Document Revision History (Part 1 of 2)

Date and Revision	Changes Made	Summary of Changes
August 2009,	Added Table 5–28, Table 5–29, and Table 5–30.	Added information for
version 2.5	■ Updated Table 5–2, Table 5–4, Table 5–14, Table 5–15, Table 5–16, Table 5–17, Table 5–18, Table 5–19, Table 5–20, Table 5–21, Table 5–22, Table 5–23, Table 5–24, Table 5–27, Table 5–31, Table 5–32, and Table 5–33.	speed grade –8
November 2008,	■ Updated Table 5–2.	—
version 2.4	 Updated "Internal Timing Parameters" section. 	
October 2008,	 Updated New Document Format. 	_
version 2.3	 Updated Figure 5-1. 	
July 2008, version 2.2	■ Updated Table 5–14 , Table 5–23 , and Table 5–24.	_
March 2008, version 2.1	Added (Note 5) to Table 5–4.	_
December 2007,	■ Updated (Note 3) and (4) to Table 5–1.	Updated document with
version 2.0	■ Updated Table 5–2 and added (Note 5).	MAX IIZ information.
	 Updated ICCSTANDBY and ICCPOWERUP information and added IPULLUP information in Table 5–4. 	
	■ Added (Note 1) to Table 5–10.	
	■ Updated Figure 5–2.	
	Added (Note 1) to Table 5–13.	
	 Updated Table 5–13 through Table 5–24, and Table 5–27 through Table 5–30. 	
	 Added tCOMB information to Table 5–15. 	
	■ Updated Figure 5–6.	
	 Added "Referenced Documents" section. 	
December 2006,	■ Added note to Table 5–1.	
version 1.8	 Added document revision history. 	
July 2006, version 1.7	 Minor content and table updates. 	_
February 2006,	 Updated "External Timing I/O Delay Adders" section. 	—
version 1.6	■ Updated Table 5–29.	
	■ Updated Table 5–30.	
November 2005, version 1.5	■ Updated Tables 5-2, 5-4, and 5-12.	—
August 2005,	■ Updated Figure 5-1.	_
version 1.4	■ Updated Tables 5-13, 5-16, and 5-26.	
	Removed Note 1 from Table 5-12.	