

Welcome to E-XFL.COM

Understanding <u>Embedded - CPLDs (Complex</u> <u>Programmable Logic Devices)</u>

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixedfunction ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details

Product Status	Active
Programmable Type	In System Programmable
Delay Time tpd(1) Max	5.4 ns
Voltage Supply - Internal	1.71V ~ 1.89V
Number of Logic Elements/Blocks	570
Number of Macrocells	440
Number of Gates	-
Number of I/O	160
Operating Temperature	0°C ~ 85°C (TJ)
Mounting Type	Surface Mount
Package / Case	256-BGA
Supplier Device Package	256-FBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epm570gf256c3

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

MAX II devices are available in space-saving FineLine BGA, Micro FineLine BGA, and thin quad flat pack (TQFP) packages (refer to Table 1–3 and Table 1–4). MAX II devices support vertical migration within the same package (for example, you can migrate between the EPM570, EPM1270, and EPM2210 devices in the 256-pin FineLine BGA package). Vertical migration means that you can migrate to devices whose dedicated pins and JTAG pins are the same and power pins are subsets or supersets for a given package across device densities. The largest density in any package has the highest number of power pins; you must lay out for the largest planned density in a package to provide the necessary power pins for migration. For I/O pin migration across densities, cross reference the available I/O pins using the device pin-outs for all planned densities of a given package type to identify which I/O pins can be migrated. The Quartus® II software can automatically cross-reference and place all pins for you when given a device migration list.

 Table 1–3.
 MAX II Packages and User I/O Pins

Device	68-Pin Micro FineLine BGA <i>(1)</i>	100-Pin Micro FineLine BGA <i>(1)</i>	100-Pin FineLine BGA	100-Pin TQFP	144-Pin TQFP	144-Pin Micro FineLine BGA <i>(1)</i>	256-Pin Micro FineLine BGA <i>(1)</i>	256-Pin FineLine BGA	324-Pin FineLine BGA
EPM240	_	80	80	80	_	—	—	_	_
EPM240G									
EPM570	_	76	76	76	116	_	160	160	_
EPM570G									
EPM1270	_	_	_	_	116	_	212	212	_
EPM1270G									
EPM2210	_	_	_	_	_	_	_	204	272
EPM2210G									
EPM240Z	54	80	—	—	—	—	—	—	—
EPM570Z	_	76	—	—	—	116	160	—	—

Note to Table 1-3:

(1) Packages available in lead-free versions only.

Table 1-4. MAX II TQFP, FineLine BGA, and Micro FineLine BGA Package Sizes

Package	68-Pin Micro FineLine BGA	100-Pin Micro FineLine BGA	100-Pin FineLine BGA	100-Pin TQFP	144-Pin TQFP	144-Pin Micro FineLine BGA	256-Pin Micro FineLine BGA	256-Pin FineLine BGA	324-Pin FineLine BGA
Pitch (mm)	0.5	0.5	1	0.5	0.5	0.5	0.5	1	1
Area (mm2)	25	36	121	256	484	49	121	289	361
Length × width (mm × mm)	5 × 5	6 × 6	11 × 11	16 × 16	22 × 22	7×7	11 × 11	17 × 17	19 × 19

2. MAX II Architecture

Introduction

This chapter describes the architecture of the MAX II device and contains the following sections:

- "Functional Description" on page 2–1
- "Logic Array Blocks" on page 2–4
- "Logic Elements" on page 2–6
- "MultiTrack Interconnect" on page 2–12
- "Global Signals" on page 2–16
- "User Flash Memory Block" on page 2–18
- "MultiVolt Core" on page 2–22
- "I/O Structure" on page 2–23

Functional Description

MAX[®] II devices contain a two-dimensional row- and column-based architecture to implement custom logic. Row and column interconnects provide signal interconnects between the logic array blocks (LABs).

The logic array consists of LABs, with 10 logic elements (LEs) in each LAB. An LE is a small unit of logic providing efficient implementation of user logic functions. LABs are grouped into rows and columns across the device. The MultiTrack interconnect provides fast granular timing delays between LABs. The fast routing between LEs provides minimum timing delay for added levels of logic versus globally routed interconnect structures.

The MAX II device I/O pins are fed by I/O elements (IOE) located at the ends of LAB rows and columns around the periphery of the device. Each IOE contains a bidirectional I/O buffer with several advanced features. I/O pins support Schmitt trigger inputs and various single-ended standards, such as 66-MHz, 32-bit PCI, and LVTTL.

MAX II devices provide a global clock network. The global clock network consists of four global clock lines that drive throughout the entire device, providing clocks for all resources within the device. The global clock lines can also be used for control signals such as clear, preset, or output enable.

Logic Array Blocks

Each LAB consists of 10 LEs, LE carry chains, LAB control signals, a local interconnect, a look-up table (LUT) chain, and register chain connection lines. There are 26 possible unique inputs into an LAB, with an additional 10 local feedback input lines fed by LE outputs in the same LAB. The local interconnect transfers signals between LEs in the same LAB. LUT chain connections transfer the output of one LE's LUT to the adjacent LE for fast sequential LUT connections within the same LAB. Register chain connections transfer the output of one LE's register chain connections transfer the output of one LE's register chain an LAB. The Quartus® II software places associated logic within an LAB or adjacent LABs, allowing the use of local, LUT chain, and register chain connections for performance and area efficiency. Figure 2–3 shows the MAX II LAB.

Figure 2–3. MAX II LAB Structure

(1) Only from LABs adjacent to IOEs.

LAB Interconnects

The LAB local interconnect can drive LEs within the same LAB. The LAB local interconnect is driven by column and row interconnects and LE outputs within the same LAB. Neighboring LABs, from the left and right, can also drive an LAB's local interconnect through the DirectLink connection. The DirectLink connection feature minimizes the use of row and column interconnects, providing higher performance and flexibility. Each LE can drive 30 other LEs through fast local and DirectLink interconnects. Figure 2–4 shows the DirectLink connection.

The Quartus II software automatically creates carry chain logic during design processing, or you can create it manually during design entry. Parameterized functions such as LPM functions automatically take advantage of carry chains for the appropriate functions. The Quartus II software creates carry chains longer than 10 LEs by linking adjacent LABs within the same row together automatically. A carry chain can extend horizontally up to one full LAB row, but does not extend between LAB rows.

Clear and Preset Logic Control

LAB-wide signals control the logic for the register's clear and preset signals. The LE directly supports an asynchronous clear and preset function. The register preset is achieved through the asynchronous load of a logic high. MAX II devices support simultaneous preset/asynchronous load and clear signals. An asynchronous clear signal takes precedence if both signals are asserted simultaneously. Each LAB supports up to two clears and one preset signal.

In addition to the clear and preset ports, MAX II devices provide a chip-wide reset pin (DEV_CLRn) that resets all registers in the device. An option set before compilation in the Quartus II software controls this pin. This chip-wide reset overrides all other control signals and uses its own dedicated routing resources (that is, it does not use any of the four global resources). Driving this signal low before or during power-up prevents user mode from releasing clears within the design. This allows you to control when clear is released on a device that has just been powered-up. If not set for its chip-wide reset function, the DEV_CLRn pin is a regular I/O pin.

By default, all registers in MAX II devices are set to power-up low. However, this power-up state can be set to high on individual registers during design entry using the Quartus II software.

MultiTrack Interconnect

In the MAX II architecture, connections between LEs, the UFM, and device I/O pins are provided by the MultiTrack interconnect structure. The MultiTrack interconnect consists of continuous, performance-optimized routing lines used for inter- and intradesign block connectivity. The Quartus II Compiler automatically places critical design paths on faster interconnects to improve design performance.

The MultiTrack interconnect consists of row and column interconnects that span fixed distances. A routing structure with fixed length resources for all devices allows predictable and short delays between logic levels instead of large delays associated with global or long routing lines. Dedicated row interconnects route signals to and from LABs within the same row. These row resources include:

- DirectLink interconnects between LABs
- R4 interconnects traversing four LABs to the right or left

The DirectLink interconnect allows an LAB to drive into the local interconnect of its left and right neighbors. The DirectLink interconnect provides fast communication between adjacent LABs and/or blocks without using row interconnect resources.

- Auto-increment addressing
- Serial interface to logic array with programmable interface

UFM Storage

Each device stores up to 8,192 bits of data in the UFM block. Table 2–3 shows the data size, sector, and address sizes for the UFM block.

 Table 2–3.
 UFM Array Size

Device	Total Bits	Sectors	Address Bits	Data Width
EPM240	8,192	2	9	16
EPM570		(4,096 bits/sector)		
EPM1270				
EPM2210				

There are 512 locations with 9-bit addressing ranging from 000h to 1FFh. Sector 0 address space is 000h to 0FFh and Sector 1 address space is from 100h to 1FFh. The data width is up to 16 bits of data. The Quartus II software automatically creates logic to accommodate smaller read or program data widths. Erasure of the UFM involves individual sector erasing (that is, one erase of sector 0 and one erase of sector 1 is required to erase the entire UFM block). Since sector erase is required before a program or write, having two sectors enables a sector size of data to be left untouched while the other sector is erased and programmed with new data.

I/O Bank 4

Notes to Figure 2-23:

(1) Figure 2–23 is a top view of the silicon die.

(2) Figure 2–23 is a graphical representation only. Refer to the pin list and the Quartus II software for exact pin locations.

Each I/O bank has dedicated V_{CCIO} pins that determine the voltage standard support in that bank. A single device can support 1.5-V, 1.8-V, 2.5-V, and 3.3-V interfaces; each individual bank can support a different standard. Each I/O bank can support multiple standards with the same V_{CCIO} for input and output pins. For example, when V_{CCIO} is 3.3 V, Bank 3 can support LVTTL, LVCMOS, and 3.3-V PCI. V_{CCIO} powers both the input and output buffers in MAX II devices.

The JTAG pins for MAX II devices are dedicated pins that cannot be used as regular I/O pins. The pins TMS, TDI, TDO, and TCK support all the I/O standards shown in Table 2–4 on page 2–27 except for PCI. These pins reside in Bank 1 for all MAX II devices and their I/O standard support is controlled by the V_{CCIO} setting for Bank 1.

PCI Compliance

The MAX II EPM1270 and EPM2210 devices are compliant with PCI applications as well as all 3.3-V electrical specifications in the *PCI Local Bus Specification Revision* 2.2. These devices are also large enough to support PCI intellectual property (IP) cores. Table 2–5 shows the MAX II device speed grades that meet the PCI timing specifications.

Device	33-MHz PCI	66-MHz PCI
EPM1270	All Speed Grades	–3 Speed Grade
EPM2210	All Speed Grades	–3 Speed Grade

Table 2–5. MAX II Devices and Speed Grades that Support 3.3-V PCI Electrical Specifications and	
Meet PCI Timing	

Schmitt Trigger

The input buffer for each MAX II device I/O pin has an optional Schmitt trigger setting for the 3.3-V and 2.5-V standards. The Schmitt trigger allows input buffers to respond to slow input edge rates with a fast output edge rate. Most importantly, Schmitt triggers provide hysteresis on the input buffer, preventing slow-rising noisy input signals from ringing or oscillating on the input signal driven into the logic array. This provides system noise tolerance on MAX II inputs, but adds a small, nominal input delay.

The JTAG input pins (TMS, TCK, and TDI) have Schmitt trigger buffers that are always enabled.

P

The TCK input is susceptible to high pulse glitches when the input signal fall time is greater than 200 ns for all I/O standards.

Output Enable Signals

Each MAX II IOE output buffer supports output enable signals for tri-state control. The output enable signal can originate from the GCLK[3..0] global signals or from the MultiTrack interconnect. The MultiTrack interconnect routes output enable signals and allows for a unique output enable for each output or bidirectional pin.

MAX II devices also provide a chip-wide output enable pin (DEV_OE) to control the output enable for every output pin in the design. An option set before compilation in the Quartus II software controls this pin. This chip-wide output enable uses its own routing resources and does not use any of the four global resources. If this option is turned on, all outputs on the chip operate normally when DEV_OE is asserted. When the pin is deasserted, all outputs are tri-stated. If this option is turned off, the DEV_OE pin is disabled when the device operates in user mode and is available as a user I/O pin.

Programmable Drive Strength

The output buffer for each MAX II device I/O pin has two levels of programmable drive strength control for each of the LVTTL and LVCMOS I/O standards. Programmable drive strength provides system noise reduction control for high performance I/O designs. Although a separate slew-rate control feature exists, using the lower drive strength setting provides signal slew-rate control to reduce system noise and signal overshoot without the large delay adder associated with the slew-rate control feature. Table 2–6 shows the possible settings for the I/O standards with drive strength control. The Quartus II software uses the maximum current strength as the default setting. The PCI I/O standard is always set at 20 mA with no alternate setting.

Bus Hold

Each MAX II device I/O pin provides an optional bus-hold feature. The bus-hold circuitry can hold the signal on an I/O pin at its last-driven state. Since the bus-hold feature holds the last-driven state of the pin until the next input signal is present, an external pull-up or pull-down resistor is not necessary to hold a signal level when the bus is tri-stated.

The bus-hold circuitry also pulls undriven pins away from the input threshold voltage where noise can cause unintended high-frequency switching. The designer can select this feature individually for each I/O pin. The bus-hold output will drive no higher than $V_{\rm CCIO}$ to prevent overdriving signals. If the bus-hold feature is enabled, the device cannot use the programmable pull-up option.

The bus-hold circuitry uses a resistor to pull the signal level to the last driven state. The *DC and Switching Characteristics* chapter in the *MAX II Device Handbook* gives the specific sustaining current for each V_{CCIO} voltage level driven through this resistor and overdrive current used to identify the next-driven input level.

The bus-hold circuitry is only active after the device has fully initialized. The bus-hold circuit captures the value on the pin present at the moment user mode is entered.

Programmable Pull-Up Resistor

Each MAX II device I/O pin provides an optional programmable pull-up resistor during user mode. If the designer enables this feature for an I/O pin, the pull-up resistor holds the output to the V_{CCIO} level of the output pin's bank.

P

The programmable pull-up resistor feature should not be used at the same time as the bus-hold feature on a given I/O pin.

Programmable Input Delay

The MAX II IOE includes a programmable input delay that is activated to ensure zero hold times. A path where a pin directly drives a register, with minimal routing between the two, may require the delay to ensure zero hold time. However, a path where a pin drives a register through long routing or through combinational logic may not require the delay to achieve a zero hold time. The Quartus II software uses this delay to ensure zero hold times when needed.

MultiVolt I/O Interface

The MAX II architecture supports the MultiVolt I/O interface feature, which allows MAX II devices in all packages to interface with systems of different supply voltages. The devices have one set of VCC pins for internal operation (V_{CCINT}), and up to four sets for input buffers and I/O output driver buffers (V_{CCIO}), depending on the number of I/O banks available in the devices where each set of VCC pins powers one I/O bank. The EPM240 and EPM570 devices have two I/O banks respectively while the EPM1270 and EPM2210 devices have four I/O banks respectively.

Table 3–4 shows the programming times for MAX II devices using in-circuit testers to execute the algorithm vectors in hardware. Software-based programming tools used with download cables are slightly slower because of data processing and transfer limitations.

Description	EPM240 EPM240G EPM240Z	EPM570 EPM570G EPM570Z	EPM1270 EPM1270G	EPM2210 EPM2210G	Unit
Erase + Program (1 MHz)	1.72	2.16	2.90	3.92	Sec
Erase + Program (10 MHz)	1.65	1.99	2.58	3.40	Sec
Verify (1 MHz)	0.09	0.17	0.30	0.49	Sec
Verify (10 MHz)	0.01	0.02	0.03	0.05	sec
Complete Program Cycle (1 MHz)	1.81	2.33	3.20	4.41	sec
Complete Program Cycle (10 MHz)	1.66	2.01	2.61	3.45	sec

Table 3-4. MAX II Device Family Programming Times

UFM Programming

The Quartus II software, with the use of POF, Jam, or JBC files, supports programming of the user flash memory (UFM) block independent of the logic array design pattern stored in the CFM block. This allows updating or reading UFM contents through ISP without altering the current logic array design, or vice versa. By default, these programming files and methods will program the entire flash memory contents, which includes the CFM block and UFM contents. The stand-alone embedded Jam STAPL player and Jam Byte-Code Player provides action commands for programming or reading the entire flash memory (UFM and CFM together) or each independently.

• For more information, refer to the Using Jam STAPL for ISP via an Embedded Processor chapter in the MAX II Device Handbook.

In-System Programming Clamp

By default, the IEEE 1532 instruction used for entering ISP automatically tri-states all I/O pins with weak pull-up resistors for the duration of the ISP sequence. However, some systems may require certain pins on MAX II devices to maintain a specific DC logic level during an in-field update. For these systems, an optional in-system programming clamp instruction exists in MAX II circuitry to control I/O behavior during the ISP sequence. The in-system programming clamp instruction enables the device to sample and sustain the value on an output pin (an input pin would remain tri-stated if sampled) or to explicitly set a logic high, logic low, or tri-state value on any pin. Setting these options is controlled on an individual pin basis using the Quartus II software.

For more information, refer to the *Real-Time ISP and ISP Clamp for MAX II Devices* chapter in the *MAX II Device Handbook*.

I/O Pins Remain Tri-Stated during Power-Up

A device that does not support hot-socketing may interrupt system operation or cause contention by driving out before or during power-up. In a hot socketing situation, the MAX II device's output buffers are turned off during system power-up. MAX II devices do not drive out until the device attains proper operating conditions and is fully configured. Refer to "Power-On Reset Circuitry" on page 4–5 for information about turn-on voltages.

Signal Pins Do Not Drive the V_{cco} or V_{ccont} Power Supplies

MAX II devices do not have a current path from I/O pins or GCLK[3..0] pins to the V_{CCIO} or V_{CCINT} pins before or during power-up. A MAX II device may be inserted into (or removed from) a system board that was powered up without damaging or interfering with system-board operation. When hot socketing, MAX II devices may have a minimal effect on the signal integrity of the backplane.

AC and DC Specifications

You can power up or power down the V_{CCIO} and V_{CCINT} pins in any sequence. During hot socketing, the I/O pin capacitance is less than 8 pF. MAX II devices meet the following hot socketing specifications:

- The hot socketing DC specification is: $|I_{IOPIN}| < 300 \,\mu\text{A}$.
- The hot socketing AC specification is: | I_{IOPIN} | < 8 mA for 10 ns or less.
- MAX II devices are immune to latch-up when hot socketing. If the TCK JTAG input pin is driven high during hot socketing, the current on that pin might exceed the specifications above.

 I_{IOPIN} is the current at any user I/O pin on the device. The AC specification applies when the device is being powered up or powered down. This specification takes into account the pin capacitance but not board trace and external loading capacitance. Additional capacitance for trace, connector, and loading must be taken into consideration separately. The peak current duration due to power-up transients is 10 ns or less.

The DC specification applies when all V_{cc} supplies to the device are stable in the powered-up or powered-down conditions.

Hot Socketing Feature Implementation in MAX II Devices

The hot socketing feature turns off (tri-states) the output buffer during the power-up event (either V_{CCINT} or V_{CCIO} supplies) or power-down event. The hot-socket circuit generates an internal HOTSCKT signal when either V_{CCINT} or V_{CCIO} is below the threshold voltage during power-up or power-down. The HOTSCKT signal cuts off the output buffer to make sure that no DC current (except for weak pull-up leaking) leaks through the pin. When V_{CC} ramps up very slowly during power-up, V_{CC} may still be relatively low even after the power-on reset (POR) signal is released and device configuration is complete.

Make sure that the V_{CCNT} is within the recommended operating range even though SRAM download has completed.

Each I/O and clock pin has the circuitry shown in Figure 4–1.

Figure 4-1. Hot Socketing Circuit Block Diagram for MAX II Devices

The POR circuit monitors V_{CCINT} and V_{CCIO} voltage levels and keeps I/O pins tri-stated until the device has completed its flash memory configuration of the SRAM logic. The weak pull-up resistor (R) from the I/O pin to V_{CCIO} is enabled during download to keep the I/O pins from floating. The 3.3-V tolerance control circuit permits the I/O pins to be driven by 3.3 V before V_{CCIO} and/or V_{CCINT} are powered, and it prevents the I/O pins from driving out when the device is not fully powered or operational. The hot socket circuit prevents I/O pins from internally powering V_{CCIO} and V_{CCINT} when driven by external signals before the device is powered.

٠.,

For information about 5.0-V tolerance, refer to the *Using MAX II Devices in Multi-Voltage Systems* chapter in the *MAX II Device Handbook*.

Figure 4–2 shows a transistor-level cross section of the MAX II device I/O buffers. This design ensures that the output buffers do not drive when V_{CCIO} is powered before V_{CCINT} or if the I/O pad voltage is higher than V_{CCIO} . This also applies for sudden voltage spikes during hot insertion. The V_{PAD} leakage current charges the 3.3-V tolerant circuit capacitance.

Figure 4-2. Transistor-Level Diagram of MAX II Device I/O Buffers

The CMOS output drivers in the I/O pins intrinsically provide electrostatic discharge (ESD) protection. There are two cases to consider for ESD voltage strikes: positive voltage zap and negative voltage zap.

A positive ESD voltage zap occurs when a positive voltage is present on an I/O pin due to an ESD charge event. This can cause the N+ (Drain)/ P-Substrate junction of the N-channel drain to break down and the N+ (Drain)/P-Substrate/N+ (Source) intrinsic bipolar transistor turn on to discharge ESD current from I/O pin to GND. The dashed line (see Figure 4–3) shows the ESD current discharge path during a positive ESD zap.

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit
I _{pullup}	I/O pin pull-up resistor current when I/O is unprogrammed	_			300	μA
C ₁₀	Input capacitance for user I/O pin		_	_	8	pF
C _{gclk}	Input capacitance for dual-purpose GCLK/user I/O pin	_			8	pF

 Table 5-4.
 MAX II Device DC Electrical Characteristics (Note 1) (Part 2 of 2)

Notes to Table 5-4:

- (1) Typical values are for $T_A = 25^{\circ}$ C, $V_{CCINT} = 3.3$ or 2.5 V, and $V_{CCIO} = 1.5$ V, 1.8 V, 2.5 V, or 3.3 V.
- (2) This value is specified for normal device operation. The value may vary during power-up. This applies for all V_{ccio} settings (3.3, 2.5, 1.8, and 1.5 V).
- (3) V_1 = ground, no load, no toggling inputs.
- (4) Commercial temperature ranges from 0°C to 85°C with maximum current at 85°C.
- (5) Industrial temperature ranges from -40°C to 100°C with maximum current at 100°C.
- (6) This value applies to commercial and industrial range devices. For extended temperature range devices, the V_{SCHMITT} typical value is 300 mV for V_{CCI0} = 3.3 V and 120 mV for V_{CCI0} = 2.5 V.
- (7) The TCK input is susceptible to high pulse glitches when the input signal fall time is greater than 200 ns for all I/O standards.
- (8) This is a peak current value with a maximum duration of t_{CONFIG} time.
- (9) Pin pull-up resistance values will lower if an external source drives the pin higher than V_{CCIO}.

Output Drive Characteristics

Figure 5–1 shows the typical drive strength characteristics of MAX II devices.

Note to Figure 5–1:

(1) The DC output current per pin is subject to the absolute maximum rating of Table 5-1.

I/O Standard Specifications

Table 5–5 through Table 5–10 show the MAX II device family I/O standard specifications.

Symbol	Parameter	Conditions	Minimum	Maximum	Unit
V _{CCIO}	I/O supply voltage	—	3.0	3.6	V
V _{IH}	High-level input voltage	—	1.7	4.0	V
V _{IL}	Low-level input voltage	—	-0.5	0.8	V
V _{OH}	High-level output voltage	IOH = -4 mA (1)	2.4		V
V _{OL}	Low-level output voltage	IOL = 4 mA (1)		0.45	V

Table 5–6. 3.3-V LVCMOS Specifications (Part 1 of 2)

Symbol	Parameter	Conditions	Minimum	Maximum	Unit
V _{CCIO}	I/O supply voltage	—	3.0	3.6	V
V _{IH}	High-level input voltage		1.7	4.0	V
VIL	Low-level input voltage		-0.5	0.8	V

5–6	

Symbol	Parameter	Conditions	Minimum	Maximum	Unit
V _{OH}	High-level output voltage	$V_{ccio} = 3.0,$ IOH = -0.1 mA (1)	$V_{\text{ccio}} - 0.2$	—	V
V _{OL}	Low-level output voltage	$V_{ccio} = 3.0,$ IOL = 0.1 mA (1)	—	0.2	V

Table 5-6. 3.3-V LVCMOS Specifications (Part 2 of 2)

Table 5-7. 2.5-V I/O Specifications

Symbol	Parameter	Conditions	Minimum	Maximum	Unit
V _{CCIO}	I/O supply voltage	_	2.375	2.625	V
VIH	High-level input voltage		1.7	4.0	V
VIL	Low-level input voltage		-0.5	0.7	V
V _{он}	High-level output voltage	IOH = -0.1 mA (1)	2.1		V
		IOH = -1 mA (1)	2.0	—	V
		IOH = -2 mA (1)	1.7		V
V _{ol}	Low-level output voltage	IOL = 0.1 mA (1)	—	0.2	V
		IOL = 1 mA (1)		0.4	V
		IOL = 2 mA (1)	_	0.7	V

Table 5-8. 1.8-V I/O Specifications

Symbol	Parameter	Conditions	Minimum	Maximum	Unit
V _{ccio}	I/O supply voltage	—	1.71	1.89	V
VIH	High-level input voltage	—	$0.65 \times V_{\text{CCIO}}$	2.25 <i>(2)</i>	V
VIL	Low-level input voltage	—	-0.3	$0.35 \times V_{ccio}$	V
V _{OH}	High-level output voltage	IOH = -2 mA (1)	$V_{\text{ccio}} - 0.45$	_	V
V _{ol}	Low-level output voltage	IOL = 2 mA <i>(1)</i>		0.45	V

Table 5-9. 1.5-V I/O Specifications

Symbol	Parameter	Conditions	Minimum	Maximum	Unit
V _{ccio}	I/O supply voltage	—	1.425	1.575	V
VIH	High-level input voltage	—	$0.65 \times V_{ccio}$	V _{ccio} + 0.3 <i>(2)</i>	V
VIL	Low-level input voltage	—	-0.3	$0.35 \times V_{ccio}$	V
V _{OH}	High-level output voltage	IOH = -2 mA (1)	$0.75 \times V_{ccio}$	—	V
Vol	Low-level output voltage	IOL = 2 mA (1)	—	$0.25 \times V_{ccio}$	V

Notes to Table 5–5 through Table 5–9:

(1) This specification is supported across all the programmable drive strength settings available for this I/O standard, as shown in the MAX II Architecture chapter (I/O Structure section) in the MAX II Device Handbook.

(2) This maximum V_{IH} reflects the JEDEC specification. The MAX II input buffer can tolerate a V_{IH} maximum of 4.0, as specified by the V_{I} parameter in Table 5–2.

			MAX II / MAX IIG						MAX IIZ							
			peed -4 Speed -5 Speed ade Grade Grade			–6 Speed –7 Speed Grade Grade				–8 Speed Grade						
Standard	ł	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit		
3.3-V LVTTL	16 mA	—	206	—	-20	_	-247	—	1,433		1,446	—	1,454	ps		
	8 mA	_	891	_	665		438	_	1,332		1,345	_	1,348	ps		
3.3-V LVCMOS	8 mA	_	206	_	-20		-247	—	1,433		1,446	—	1,454	ps		
	4 mA	_	891	_	665	—	438	—	1,332	_	1,345	—	1,348	ps		
2.5-V LVTTL /	14 mA		222		-4	_	-231	—	213		208	—	213	ps		
LVCMOS	7 mA	_	943		717	—	490	—	166		161	—	166	ps		
3.3-V PCI	20 mA	_	161		210		258	—	1,332		1,345	—	1,348	ps		

Table 5–20. t_{XZ} IOE Microparameter Adders for Slow Slew Rate

The default slew rate setting for MAX II devices in the Quartus II design software is "fast".

		MAX II / MAX IIG									
Table 5-21	Table 5–21. UFM Block Internal Timing Microparameters (Part 1 of 3)										

			M	IAX II /	MAX II	G		MAX IIZ						
			–3 Speed Grade		–4 Speed Grade		–5 Speed Grade		peed ade	–7 Speed Grade		–8 Speed Grade		
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
t _{aclk}	Address register clock period	100	-	100	-	100	-	100	—	100	-	100	_	ns
t _{asu}	Address register shift signal setup to address register clock	20	_	20	—	20	—	20	_	20	-	20		ns
t _{an}	Address register shift signal hold to address register clock	20	_	20	_	20	_	20	_	20	_	20		ns
t _{ADS}	Address register data in setup to address register clock	20	-	20	-	20	-	20	_	20	-	20		ns
t _{adh}	Address register data in hold from address register clock	20	_	20	_	20	_	20	_	20	_	20		ns
t_{dclk}	Data register clock period	100	-	100	-	100	-	100	-	100	-	100	_	ns
t_{DSS}	Data register shift signal setup to data register clock	60	-	60	-	60	-	60	-	60	-	60	_	ns
t _{dsh}	Data register shift signal hold from data register clock	20	_	20	_	20	_	20	_	20	_	20		ns

			M	AX II /	MAX II	G				MA	X IIZ			
					4 Speed –5 Speed Grade Grade		–6 Speed Grade		–7 Speed Grade		–8 Speed Grade			
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
t_{DDS}	Data register data in setup to data register clock	20		20	_	20		20		20		20		ns
t _{ddh}	Data register data in hold from data register clock	20		20	-	20	-	20	_	20	-	20	_	ns
t _{DP}	Program signal to data clock hold time	0		0	-	0	-	0	-	0	-	0	-	ns
t _{PB}	Maximum delay between program rising edge to UFM busy signal rising edge		960		960		960		960		960		960	ns
t _{BP}	Minimum delay allowed from UFM busy signal going low to program signal going low	20	_	20	_	20	_	20	_	20	_	20		ns
t _{ppmx}	Maximum length of busy pulse during a program		100		100		100		100	_	100		100	μs
t _{AE}	Minimum erase signal to address clock hold time	0	—	0	—	0	_	0	_	0	—	0	_	ns
t _{eb}	Maximum delay between the erase rising edge to the UFM busy signal rising edge		960		960		960		960		960		960	ns
t _{BE}	Minimum delay allowed from the UFM busy signal going low to erase signal going low	20	_	20		20	_	20		20		20		ns
t _{epmx}	Maximum length of busy pulse during an erase		500		500		500		500		500		500	ms
t_{DCO}	Delay from data register clock to data register output		5		5		5		5		5		5	ns

Table 5–21. UFM Block Internal Timing Microparameters (Part 2 of 3)

				MAX II / MAX IIG					MAX IIZ						
				Speed rade	1	Speed 'ade		Speed ade		Speed ade		Speed rade		Speed rade	
Symbol	Parameter	Condition	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
f _{cnt}	Maximum global clock frequency for 16-bit counter			304.0 <i>(1)</i>		247.5		201.1		184.1		123.5		118.3	MHz

 Table 5–24.
 EPM570 Global Clock External I/O Timing Parameters
 (Part 2 of 2)

Note to Table 5-24:

(1) The maximum frequency is limited by the I/O standard on the clock input pin. The 16-bit counter critical delay performs faster than this global clock input pin maximum frequency.

Table 5–25 shows the external I/O timing parameters for EPM1270 devices.

Table 5-25. EPM1270 Global Clock External I/O Timing Parameters

				Γ	MAX II / N	IAX IIG			
			-3 Sp	eed Grade	–4 Spec	ed Grade	–5 Spee		
Symbol	Parameter	Condition	Min	Max	Min	Max	Min	Max	Unit
t _{PD1}	Worst case pin-to-pin delay through 1 look-up table (LUT)	10 pF	_	6.2	-	8.1	—	10.0	ns
t _{PD2}	Best case pin-to-pin delay through 1 LUT	10 pF		3.7	—	4.8	_	5.9	ns
t _{su}	Global clock setup time	_	1.2	_	1.5	—	1.9	—	ns
t _H	Global clock hold time	_	0	_	0	_	0	—	ns
t _{co}	Global clock to output delay	10 pF	2.0	4.6	2.0	5.9	2.0	7.3	ns
t _{сн}	Global clock high time	_	166		216		266		ps
t _{cL}	Global clock low time	_	166		216	_	266	_	ps
t _{cnt}	Minimum global clock period for 16-bit counter	_	3.3	_	4.0	_	5.0	_	ns
f _{cnt}	Maximum global clock frequency for 16-bit counter	—		304.0 (1)		247.5		201.1	MHz

Note to Table 5-25:

(1) The maximum frequency is limited by the I/O standard on the clock input pin. The 16-bit counter critical delay performs faster than this global clock input pin maximum frequency.

Table 5–26 shows the external I/O timing parameters for EPM2210 devices.

					MAX II /	MAX IIG			
			–3 Spee	ed Grade	–4 Spee	ed Grade	–5 Speed Grade		
Symbol	Parameter	Condition	Min	Max	Min	Max	Min	Max	Unit
t _{PD1}	Worst case pin-to-pin delay through 1 look-up table (LUT)	10 pF		7.0		9.1		11.2	ns
t _{PD2}	Best case pin-to-pin delay through 1 LUT	10 pF	_	3.7	_	4.8	_	5.9	ns
t _{su}	Global clock setup time	_	1.2		1.5		1.9		ns
t _H	Global clock hold time	—	0	—	0	_	0	_	ns
t _{co}	Global clock to output delay	10 pF	2.0	4.6	2.0	6.0	2.0	7.4	ns
t _{сн}	Global clock high time	—	166	—	216	_	266	—	ps
t _{cl}	Global clock low time	—	166	—	216	_	266	—	ps
t_{cnt}	Minimum global clock period for 16-bit counter	_	3.3	-	4.0	_	5.0	_	ns
f _{cnt}	Maximum global clock frequency for 16-bit counter		-	304.0 <i>(1)</i>	-	247.5	-	201.1	MHz

Table 5–26. El	PM2210	Global Clock	External I/O	Timing Parameters
----------------	--------	--------------	--------------	-------------------

Note to Table 5-26:

(1) The maximum frequency is limited by the I/O standard on the clock input pin. The 16-bit counter critical delay performs faster than this global clock input pin maximum frequency.

External Timing I/O Delay Adders

The I/O delay timing parameters for I/O standard input and output adders, and input delays are specified by speed grade independent of device density.

Table 5–27 through Table 5–31 show the adder delays associated with I/O pins for all packages. The delay numbers for –3, –4, and –5 speed grades shown in Table 5–27 through Table 5–33 are based on an EPM1270 device target, while –6, –7, and –8 speed grade values are based on an EPM570Z device target. If an I/O standard other than 3.3-V LVTTL is selected, add the input delay adder to the external t_{su} timing parameters shown in Table 5–23 through Table 5–26. If an I/O standard other than 3.3-V LVTTL with 16 mA drive strength and fast slew rate is selected, add the output delay adder to the external t_{co} and t_{PD} shown in Table 5–23 through Table 5–26.

		MAX II / MAX IIG					MAX IIZ							
			peed ade		peed ade		Speed rade		peed ade	–7 Speed –8 Speed Grade Grade				
I/O Standard		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
3.3-V LVTTL	Without Schmitt Trigger	_	0	—	0	—	0	—	0		0	—	0	ps
	With Schmitt Trigger	—	334	_	434	-	535	—	387	_	434	—	442	ps

Table 5–31. MAX II IOE Programmable Delays

		ľ	NAX II	/ MAX II	G				MA	X IIZ								
	–3 Speed Grade		–4 Speed Grade		–5 Speed Grade		–6 Speed Grade		–7 Speed Grade		–8 Speed Grade							
Parameter	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit					
Input Delay from Pin to Internal Cells = 1	_	1,225	-	1,592	-	1,960	_	1,858	_	2,171	_	2,214	ps					
Input Delay from Pin to Internal Cells = 0	—	89	-	115	—	142	_	569	—	609	—	616	ps					

Maximum Input and Output Clock Rates

Table 5–32 and Table 5–33 show the maximum input and output clock rates for standard I/O pins in MAX II devices.

Table 5-32. MAX II Maximum Input Clock Rate for I/O

		MAX II / MAX IIG						
I/O Standard		–3 Speed Grade	–4 Speed Grade	–5 Speed Grade	–6 Speed Grade	–7 Speed Grade	–8 Speed Grade	Unit
3.3-V LVTTL	Without Schmitt Trigger	304	304	304	304	304	304	MHz
	With Schmitt Trigger	250	250	250	250	250	250	MHz
3.3-V LVCMOS	Without Schmitt Trigger	304	304	304	304	304	304	MHz
	With Schmitt Trigger	250	250	250	250	250	250	MHz
2.5-V LVTTL	Without Schmitt Trigger	220	220	220	220	220	220	MHz
	With Schmitt Trigger	188	188	188	188	188	188	MHz
2.5-V LVCMOS	Without Schmitt Trigger	220	220	220	220	220	220	MHz
	With Schmitt Trigger	188	188	188	188	188	188	MHz
1.8-V LVTTL	Without Schmitt Trigger	200	200	200	200	200	200	MHz
1.8-V LVCMOS	Without Schmitt Trigger	200	200	200	200	200	200	MHz
1.5-V LVCMOS	Without Schmitt Trigger	150	150	150	150	150	150	MHz
3.3-V PCI	Without Schmitt Trigger	304	304	304	304	304	304	MHz