
Intel - EPM570GM100C5N Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - CPLDs (Complex</u> <u>Programmable Logic Devices)</u>

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixedfunction ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

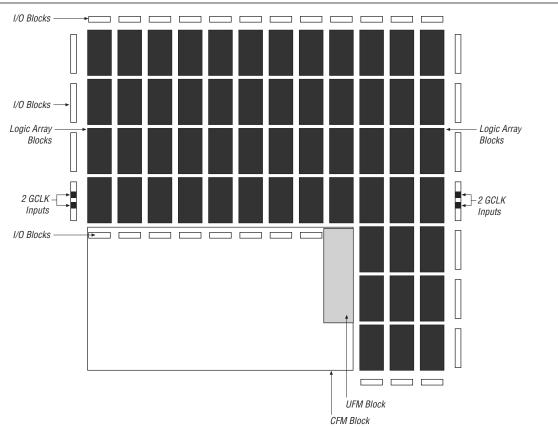
Details

Product Status	Active
Programmable Type	In System Programmable
Delay Time tpd(1) Max	5.4 ns
Voltage Supply - Internal	1.71V ~ 1.89V
Number of Logic Elements/Blocks	570
Number of Macrocells	440
Number of Gates	-
Number of I/O	76
Operating Temperature	0°C ~ 85°C (TJ)
Mounting Type	Surface Mount
Package / Case	100-TFBGA
Supplier Device Package	100-MBGA (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epm570gm100c5n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

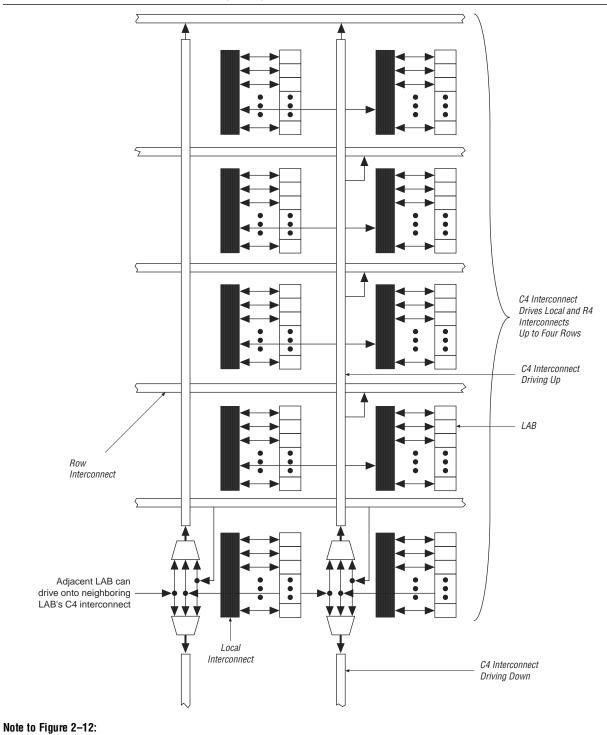
Table 2-1.	MAX II	Device Resources	,
------------	--------	------------------	---


			LAB Rows		
Devices	UFM Blocks	LAB Columns	Long LAB Rows	Short LAB Rows (Width) <i>(1)</i>	Total LABs
EPM240	1	6	4	—	24
EPM570	1	12	4	3 (3)	57
EPM1270	1	16	7	3 (5)	127
EPM2210	1	20	10	3 (7)	221

Note to Table 2–1:

(1) The width is the number of LAB columns in length.

Figure 2–2 shows a floorplan of a MAX II device.



Note to Figure 2-2:

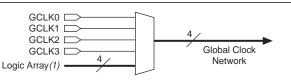

(1) The device shown is an EPM570 device. EPM1270 and EPM2210 devices have a similar floorplan with more LABs. For EPM240 devices, the CFM and UFM blocks are located on the left side of the device.

Figure 2–12. C4 Interconnect Connections (Note 1)

(1) Each C4 interconnect can drive either up or down four rows.

Note to Figure 2-13:

(1) Any I/O pin can use a MultiTrack interconnect to route as a logic array-generated global clock signal.

The global clock network drives to individual LAB column signals, LAB column clocks [3..0], that span an entire LAB column from the top to the bottom of the device. Unused global clocks or control signals in a LAB column are turned off at the LAB column clock buffers shown in Figure 2–14. The LAB column clocks [3..0] are multiplexed down to two LAB clock signals and one LAB clear signal. Other control signal types route from the global clock network into the LAB local interconnect. See "LAB Control Signals" on page 2–5 for more information.

Internal Oscillator

As shown in Figure 2–15, the dedicated circuitry within the UFM block contains an oscillator. The dedicated circuitry uses this internally for its read and program operations. This oscillator's divide by 4 output can drive out of the UFM block as a logic interface clock source or for general-purpose logic clocking. The typical OSC output signal frequency ranges from 3.3 to 5.5 MHz, and its exact frequency of operation is not programmable.

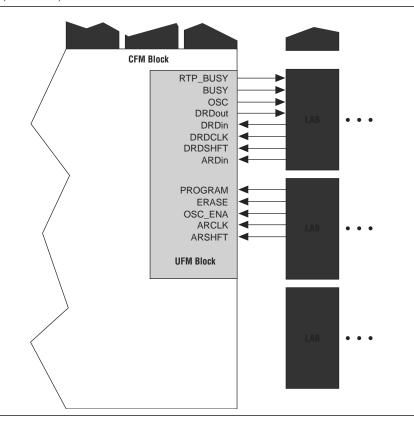
Program, Erase, and Busy Signals

The UFM block's dedicated circuitry automatically generates the necessary internal program and erase algorithm once the PROGRAM or ERASE input signals have been asserted. The PROGRAM or ERASE signal must be asserted until the busy signal deasserts, indicating the UFM internal program or erase operation has completed. The UFM block also supports JTAG as the interface for programming and/or reading.

• For more information about programming and erasing the UFM block, refer to the *Using User Flash Memory in MAX II Devices* chapter in the *MAX II Device Handbook*.

Auto-Increment Addressing

The UFM block supports standard read or stream read operations. The stream read is supported with an auto-increment address feature. Deasserting the ARSHIFT signal while clocking the ARCLK signal increments the address register value to read consecutive locations from the UFM array.

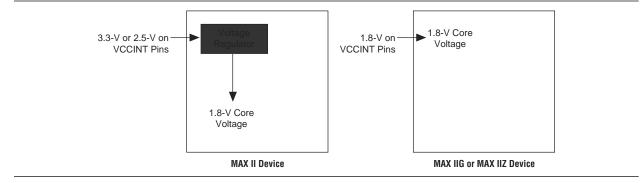

Serial Interface

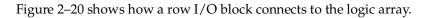
The UFM block supports a serial interface with serial address and data signals. The internal shift registers within the UFM block for address and data are 9 bits and 16 bits wide, respectively. The Quartus II software automatically generates interface logic in LEs for a parallel address and data interface to the UFM block. Other standard protocol interfaces such as SPI are also automatically generated in LE logic by the Quartus II software.

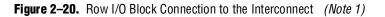
• For more information about the UFM interface signals and the Quartus II LE-based alternate interfaces, refer to the *Using User Flash Memory in MAX II Devices* chapter in the *MAX II Device Handbook*.

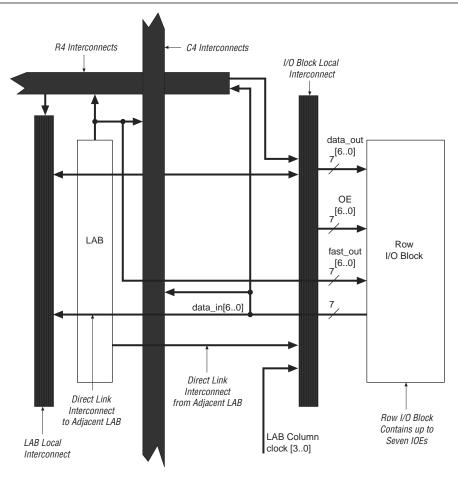
UFM Block to Logic Array Interface

The UFM block is a small partition of the flash memory that contains the CFM block, as shown in Figure 2–1 and Figure 2–2. The UFM block for the EPM240 device is located on the left side of the device adjacent to the left most LAB column. The UFM block for the EPM570, EPM1270, and EPM2210 devices is located at the bottom left of the device. The UFM input and output signals interface to all types of interconnects (R4 interconnect, C4 interconnect, and DirectLink interconnect to/from adjacent LAB rows). The UFM signals can also be driven from global clocks, GCLK[3..0]. The interface region for the EPM240 device is shown in Figure 2–16. The interface regions for EPM570, EPM1270, and EPM2210 devices are shown in Figure 2–17.




MultiVolt Core


The MAX II architecture supports the MultiVolt core feature, which allows MAX II devices to support multiple V_{CC} levels on the V_{CCINT} supply. An internal linear voltage regulator provides the necessary 1.8-V internal voltage supply to the device. The voltage regulator supports 3.3-V or 2.5-V supplies on its inputs to supply the 1.8-V internal voltage to the device, as shown in Figure 2–18. The voltage regulator is not guaranteed for voltages that are between the maximum recommended 2.5-V operating voltage and the minimum recommended 3.3-V operating voltage.

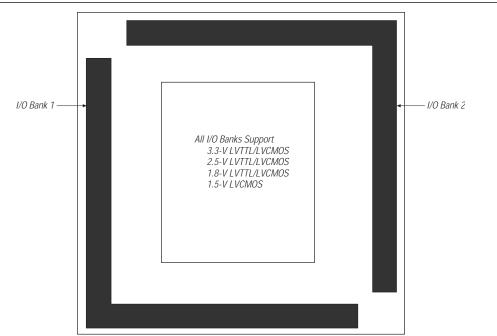

The MAX IIG and MAX IIZ devices use external 1.8-V supply. The 1.8-V V_{cc} external supply powers the device core directly.

Note to Figure 2-20:

(1) Each of the seven IOEs in the row I/O block can have one data_out or fast_out output, one OE output, and one data_in input.

Table 2–4 describes the I/O standards supported by MAX II devices.

Table 2-4.	MAX II I/O	Standards
------------	------------	-----------


I/O Standard	Туре	Output Supply Voltage (VCCIO) (V)
3.3-V LVTTL/LVCMOS	Single-ended	3.3
2.5-V LVTTL/LVCMOS	Single-ended	2.5
1.8-V LVTTL/LVCMOS	Single-ended	1.8
1.5-V LVCMOS	Single-ended	1.5
3.3-V PCI (1)	Single-ended	3.3

Note to Table 2-4:

(1) The 3.3-V PCI compliant I/O is supported in Bank 3 of the EPM1270 and EPM2210 devices.

The EPM240 and EPM570 devices support two I/O banks, as shown in Figure 2–22. Each of these banks support all the LVTTL and LVCMOS standards shown in Table 2–4. PCI compliant I/O is not supported in these devices and banks.

Notes to Figure 2–22:

(1) Figure 2-22 is a top view of the silicon die.

(2) Figure 2-22 is a graphical representation only. Refer to the pin list and the Quartus II software for exact pin locations.

The EPM1270 and EPM2210 devices support four I/O banks, as shown in Figure 2–23. Each of these banks support all of the LVTTL and LVCMOS standards shown in Table 2–4. PCI compliant I/O is supported in Bank 3. Bank 3 supports the PCI clamping diode on inputs and PCI drive compliance on outputs. You must use Bank 3 for designs requiring PCI compliant I/O pins. The Quartus II software automatically places I/O pins in this bank if assigned with the PCI I/O standard.

2–30	

I/O Standard	IOH/IOL Current Strength Setting (mA)
3.3-V LVTTL	16
	8
3.3-V LVCMOS	8
	4
2.5-V LVTTL/LVCMOS	14
	7
1.8-V LVTTL/LVCMOS	6
	3
1.5-V LVCMOS	4
	2

Table 2–6. Programmable Drive Strength (Note

Note to Table 2-6:

(1) The I_{0H} current strength numbers shown are for a condition of a V_{0UT} = V_{0H} minimum, where the V_{0H} minimum is specified by the I/O standard. The I_{0L} current strength numbers shown are for a condition of a V_{0UT} = V_{0L} maximum, where the V_{0L} maximum is specified by the I/O standard. For 2.5-V LVTTL/LVCMOS, the I_{0H} condition is V_{0UT} = 1.7 V and the I_{0L} condition is V_{0UT} = 0.7 V.

Slew-Rate Control

The output buffer for each MAX II device I/O pin has a programmable output slewrate control that can be configured for low noise or high-speed performance. A faster slew rate provides high-speed transitions for high-performance systems. However, these fast transitions may introduce noise transients into the system. A slow slew rate reduces system noise, but adds a nominal output delay to rising and falling edges. The lower the voltage standard (for example, 1.8-V LVTTL) the larger the output delay when slow slew is enabled. Each I/O pin has an individual slew-rate control, allowing the designer to specify the slew rate on a pin-by-pin basis. The slew-rate control affects both the rising and falling edges.

Open-Drain Output

MAX II devices provide an optional open-drain (equivalent to open-collector) output for each I/O pin. This open-drain output enables the device to provide system-level control signals (for example, interrupt and write enable signals) that can be asserted by any of several devices. This output can also provide an additional wired-OR plane.

Programmable Ground Pins

Each unused I/O pin on MAX II devices can be used as an additional ground pin. This programmable ground feature does not require the use of the associated LEs in the device. In the Quartus II software, unused pins can be set as programmable GND on a global default basis or they can be individually assigned. Unused pins also have the option of being set as tri-stated input pins.

Bus Hold

Each MAX II device I/O pin provides an optional bus-hold feature. The bus-hold circuitry can hold the signal on an I/O pin at its last-driven state. Since the bus-hold feature holds the last-driven state of the pin until the next input signal is present, an external pull-up or pull-down resistor is not necessary to hold a signal level when the bus is tri-stated.

The bus-hold circuitry also pulls undriven pins away from the input threshold voltage where noise can cause unintended high-frequency switching. The designer can select this feature individually for each I/O pin. The bus-hold output will drive no higher than $V_{\rm CCIO}$ to prevent overdriving signals. If the bus-hold feature is enabled, the device cannot use the programmable pull-up option.

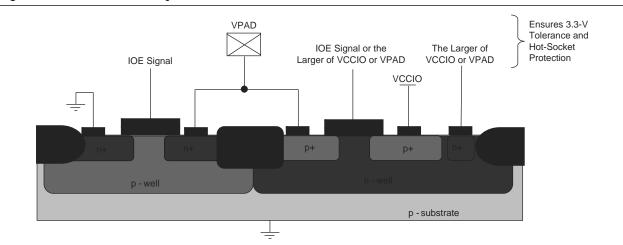
The bus-hold circuitry uses a resistor to pull the signal level to the last driven state. The *DC and Switching Characteristics* chapter in the *MAX II Device Handbook* gives the specific sustaining current for each V_{CCIO} voltage level driven through this resistor and overdrive current used to identify the next-driven input level.

The bus-hold circuitry is only active after the device has fully initialized. The bus-hold circuit captures the value on the pin present at the moment user mode is entered.

Programmable Pull-Up Resistor

Each MAX II device I/O pin provides an optional programmable pull-up resistor during user mode. If the designer enables this feature for an I/O pin, the pull-up resistor holds the output to the V_{CCIO} level of the output pin's bank.

P


The programmable pull-up resistor feature should not be used at the same time as the bus-hold feature on a given I/O pin.

Programmable Input Delay

The MAX II IOE includes a programmable input delay that is activated to ensure zero hold times. A path where a pin directly drives a register, with minimal routing between the two, may require the delay to ensure zero hold time. However, a path where a pin drives a register through long routing or through combinational logic may not require the delay to achieve a zero hold time. The Quartus II software uses this delay to ensure zero hold times when needed.

MultiVolt I/O Interface

The MAX II architecture supports the MultiVolt I/O interface feature, which allows MAX II devices in all packages to interface with systems of different supply voltages. The devices have one set of VCC pins for internal operation (V_{CCINT}), and up to four sets for input buffers and I/O output driver buffers (V_{CCIO}), depending on the number of I/O banks available in the devices where each set of VCC pins powers one I/O bank. The EPM240 and EPM570 devices have two I/O banks respectively while the EPM1270 and EPM2210 devices have four I/O banks respectively.

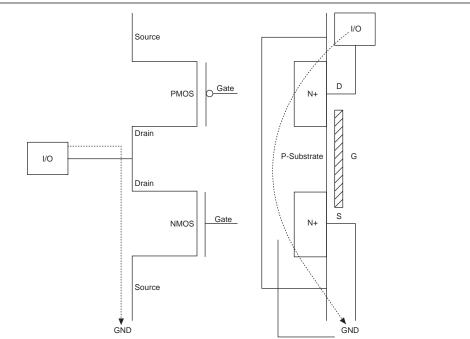


Figure 4-2. Transistor-Level Diagram of MAX II Device I/O Buffers

The CMOS output drivers in the I/O pins intrinsically provide electrostatic discharge (ESD) protection. There are two cases to consider for ESD voltage strikes: positive voltage zap and negative voltage zap.

A positive ESD voltage zap occurs when a positive voltage is present on an I/O pin due to an ESD charge event. This can cause the N+ (Drain)/ P-Substrate junction of the N-channel drain to break down and the N+ (Drain)/P-Substrate/N+ (Source) intrinsic bipolar transistor turn on to discharge ESD current from I/O pin to GND. The dashed line (see Figure 4–3) shows the ESD current discharge path during a positive ESD zap.

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit
I _{pullup}	I/O pin pull-up resistor current when I/O is unprogrammed	_			300	μA
C ₁₀	Input capacitance for user I/O pin		_	_	8	pF
C _{gclk}	Input capacitance for dual-purpose GCLK/user I/O pin	_			8	pF

 Table 5-4.
 MAX II Device DC Electrical Characteristics (Note 1) (Part 2 of 2)

Notes to Table 5-4:

- (1) Typical values are for $T_A = 25^{\circ}$ C, $V_{CCINT} = 3.3$ or 2.5 V, and $V_{CCIO} = 1.5$ V, 1.8 V, 2.5 V, or 3.3 V.
- (2) This value is specified for normal device operation. The value may vary during power-up. This applies for all V_{ccio} settings (3.3, 2.5, 1.8, and 1.5 V).
- (3) V_1 = ground, no load, no toggling inputs.
- (4) Commercial temperature ranges from 0°C to 85°C with maximum current at 85°C.
- (5) Industrial temperature ranges from -40°C to 100°C with maximum current at 100°C.
- (6) This value applies to commercial and industrial range devices. For extended temperature range devices, the V_{SCHMITT} typical value is 300 mV for V_{CCI0} = 3.3 V and 120 mV for V_{CCI0} = 2.5 V.
- (7) The TCK input is susceptible to high pulse glitches when the input signal fall time is greater than 200 ns for all I/O standards.
- (8) This is a peak current value with a maximum duration of t_{CONFIG} time.
- (9) Pin pull-up resistance values will lower if an external source drives the pin higher than V_{CCIO}.

5–6	

Symbol	Parameter	Conditions	Minimum	Maximum	Unit
V _{OH}	High-level output voltage	$V_{ccio} = 3.0,$ IOH = -0.1 mA (1)	$V_{\text{ccio}} - 0.2$	—	V
V _{OL}	Low-level output voltage	$V_{ccio} = 3.0,$ IOL = 0.1 mA (1)	_	0.2	V

Table 5-6. 3.3-V LVCMOS Specifications (Part 2 of 2)

Table 5-7. 2.5-V I/O Specifications

Symbol	Parameter	Conditions	Minimum	Maximum	Unit
V _{CCIO}	I/O supply voltage	_	2.375	2.625	V
VIH	High-level input voltage		1.7	4.0	V
VIL	Low-level input voltage		-0.5	0.7	V
V _{он}	High-level output voltage	IOH = -0.1 mA (1)	2.1		V
		IOH = -1 mA (1)	2.0	—	V
		IOH = -2 mA (1)	1.7		V
V _{ol}	Low-level output voltage	IOL = 0.1 mA (1)		0.2	V
		IOL = 1 mA (1)		0.4	V
		IOL = 2 mA (1)	_	0.7	V

Table 5-8. 1.8-V I/O Specifications

Symbol	Parameter	Conditions	Minimum	Maximum	Unit
V _{ccio}	I/O supply voltage	—	1.71	1.89	V
VIH	High-level input voltage	—	$0.65 \times V_{\text{CCIO}}$	2.25 <i>(2)</i>	V
VIL	Low-level input voltage	—	-0.3	$0.35 \times V_{ccio}$	V
V _{OH}	High-level output voltage	IOH = -2 mA (1)	$V_{\text{ccio}}-0.45$	_	V
V _{ol}	Low-level output voltage	IOL = 2 mA <i>(1)</i>		0.45	V

Table 5-9. 1.5-V I/O Specifications

Symbol	Parameter	Conditions	Minimum	Maximum	Unit
V _{ccio}	I/O supply voltage	—	1.425	1.575	V
VIH	High-level input voltage	—	$0.65 \times V_{ccio}$	V _{ccio} + 0.3 <i>(2)</i>	V
VIL	Low-level input voltage	—	-0.3	$0.35 \times V_{ccio}$	V
V _{OH}	High-level output voltage	IOH = -2 mA (1)	$0.75 \times V_{ccio}$		V
Vol	Low-level output voltage	IOL = 2 mA (1)	—	$0.25 \times V_{ccio}$	V

Notes to Table 5–5 through Table 5–9:

(1) This specification is supported across all the programmable drive strength settings available for this I/O standard, as shown in the MAX II Architecture chapter (I/O Structure section) in the MAX II Device Handbook.

(2) This maximum V_{IH} reflects the JEDEC specification. The MAX II input buffer can tolerate a V_{IH} maximum of 4.0, as specified by the V_{I} parameter in Table 5–2.

			Ν	IAX II	/ MAX II	G				M	AX IIZ			
			Speed ade		Speed rade		peed ade		Speed rade	–7 Speed Grade		–8 Speed Grade		
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
t _{fastio}	Data output delay from adjacent LE to I/O block		159		207		254		170		348		428	ps
t _{iN}	I/O input pad and buffer delay	_	708	_	920		1,132	_	907	_	970	_	986	ps
t _{glob} (1)	I/O input pad and buffer delay used as global signal pin	_	1,519		1,974	_	2,430		2,261		2,670	_	3,322	ps
t _{ioe}	Internally generated output enable delay		354	_	374		460		530	_	966	_	1,410	ps
t _{DL}	Input routing delay	_	224	—	291	_	358	_	318	—	410	_	509	ps
t _{od} (2)	Output delay buffer and pad delay	_	1,064		1,383		1,702	—	1,319		1,526	_	1,543	ps
t _{xz} <i>(3)</i>	Output buffer disable delay	_	756	_	982	—	1,209	—	1,045	—	1,264	_	1,276	ps
t _{zx} (4)	Output buffer enable delay	—	1,003		1,303		1,604	_	1,160	_	1,325	—	1,353	ps

Table 5–16. IOE Internal Timing Microparameters

Notes to Table 5-16:

(1) Delay numbers for t_{GLOB} differ for each device density and speed grade. The delay numbers for t_{GLOB}, shown in Table 5–16, are based on an EPM240 device target.

(2) Refer to Table 5–32 and 5–24 for delay adders associated with different I/O standards, drive strengths, and slew rates.

(3) Refer to Table 5–19 and 5–14 for txz delay adders associated with different I/O standards, drive strengths, and slew rates.

(4) Refer to Table 5–17 and 5–13 for t_{zx} delay adders associated with different I/O standards, drive strengths, and slew rates.

Table 5–17 through Table 5–20 show the adder delays for t_{zx} and t_{xz} microparameters when using an I/O standard other than 3.3-V LVTTL with 16 mA drive strength.

 Table 5–17.
 t_{ZX} IOE Microparameter Adders for Fast Slew Rate
 (Part 1 of 2)

			I	MAX II ,	/ MAX III	G				MA	X IIZ			
			-3 Speed -4 Speed Grade Grade				Speed rade		peed ade		peed ade		peed ade	
Standard	d	Min					Max	Min	Max	Min	Max	Min	Max	Unit
3.3-V LVTTL	16 mA	—	0	—	0	—	0	—	0	—	0	—	0	ps
	8 mA	—	28		37		45	—	72	_	71		74	ps
3.3-V LVCMOS	8 mA	—	0	_	0	_	0	—	0	—	0	_	0	ps
	4 mA	_	28		37		45	_	72	_	71		74	ps
2.5-V LVTTL /	14 mA	—	14		19		23	—	75	—	87	_	90	ps
LVCMOS	7 mA	—	314	_	409	_	503	—	162	—	174	_	177	ps
1.8-V LVTTL /	6 mA	—	450	—	585	_	720	—	279	_	289	_	291	ps
LVCMOS	3 mA	_	1,443		1,876		2,309		499		508		512	ps

			N	IAX II /	MAX II	G				MA	X IIZ			
			peed ade		peed ade		peed ade		peed ade		peed ade		Speed ade	
Standard	ł	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
3.3-V LVTTL	16 mA	—	206	—	-20		-247	—	1,433		1,446	—	1,454	ps
	8 mA	_	891	_	665		438	_	1,332		1,345	_	1,348	ps
3.3-V LVCMOS	8 mA	_	206	_	-20		-247	—	1,433		1,446	—	1,454	ps
	4 mA	_	891	_	665	—	438	—	1,332	_	1,345	—	1,348	ps
2.5-V LVTTL /	14 mA		222		-4	_	-231	—	213		208	—	213	ps
LVCMOS	7 mA	_	943		717	—	490	—	166		161	—	166	ps
3.3-V PCI	20 mA	_	161		210		258	—	1,332		1,345	—	1,348	ps

Table 5–20. t_{XZ} IOE Microparameter Adders for Slow Slew Rate

The default slew rate setting for MAX II devices in the Quartus II design software is "fast".

		MAX II / MAX IIG	
Table 5-21	I. UFM Block Internal Ti	ming Microparameters (Part 1 of 3)	

		MAX II / MAX IIG -3 Speed -4 Speed -5 Speed								MA	X IIZ			
		–3 Sp Gra		–4 S Gra		–5 S Gra		-6 Speed Grade			peed ade		peed ade	
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
t _{aclk}	Address register clock period	100	-	100	-	100	-	100	—	100	-	100	_	ns
t _{asu}	Address register shift signal setup to address register clock	20	_	20	—	20	—	20	_	20	-	20		ns
t _{an}	Address register shift signal hold to address register clock	20	_	20	_	20	_	20	_	20	_	20		ns
t _{ads}	Address register data in setup to address register clock	20	-	20	-	20	-	20	_	20	-	20		ns
t _{adh}	Address register data in hold from address register clock	20	_	20	_	20	_	20	_	20	_	20		ns
t_{dclk}	Data register clock period	100	-	100	-	100	-	100	-	100	-	100	_	ns
t_{DSS}	Data register shift signal setup to data register clock	60	-	60	-	60	-	60	-	60	-	60	_	ns
t _{dsh}	Data register shift signal hold from data register clock	20	_	20	_	20	_	20	_	20	_	20		ns

			M	AX II /	MAX II	G				MA	X IIZ			
		–3 Sj Gra		–4 S Gra	peed ade	–5 S Gra			peed ade		peed ade		peed ade	
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
t_{DDS}	Data register data in setup to data register clock	20		20	_	20		20		20		20		ns
t _{ddh}	Data register data in hold from data register clock	20		20	-	20	-	20	_	20	-	20	_	ns
t _{DP}	Program signal to data clock hold time	0		0	-	0	-	0	-	0	-	0	-	ns
t _{PB}	Maximum delay between program rising edge to UFM busy signal rising edge		960		960		960		960		960		960	ns
t _{BP}	Minimum delay allowed from UFM busy signal going low to program signal going low	20	_	20	_	20	_	20	_	20	_	20		ns
t _{ppmx}	Maximum length of busy pulse during a program		100		100		100		100	_	100		100	μs
t _{AE}	Minimum erase signal to address clock hold time	0	—	0	—	0	_	0	_	0	—	0	_	ns
t _{eb}	Maximum delay between the erase rising edge to the UFM busy signal rising edge		960		960		960		960		960		960	ns
t _{BE}	Minimum delay allowed from the UFM busy signal going low to erase signal going low	20	_	20		20	_	20		20		20		ns
t _{epmx}	Maximum length of busy pulse during an erase		500		500		500		500		500		500	ms
t_{DCO}	Delay from data register clock to data register output		5		5		5		5		5		5	ns

Table 5–21. UFM Block Internal Timing Microparameters (Part 2 of 3)

				N	II XAN	/ MAX I	IG				MA	X IIZ			
				Speed rade	1	Speed ade		Speed ade		Speed ade		Speed rade		Speed rade	
Symbol	Parameter	Condition	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
f _{cnt}	Maximum global clock frequency for 16-bit counter			304.0 <i>(1)</i>		247.5		201.1		184.1		123.5		118.3	MHz

 Table 5–24.
 EPM570 Global Clock External I/O Timing Parameters
 (Part 2 of 2)

Note to Table 5-24:

(1) The maximum frequency is limited by the I/O standard on the clock input pin. The 16-bit counter critical delay performs faster than this global clock input pin maximum frequency.

Table 5–25 shows the external I/O timing parameters for EPM1270 devices.

Table 5-25. EPM1270 Global Clock External I/O Timing Parameters

				Γ	MAX II / N	IAX IIG			
			-3 Sp	eed Grade	–4 Spec	ed Grade	–5 Spee	ed Grade	
Symbol	Parameter	Condition	Min	Max	Min	Max	Min	Max	Unit
t _{PD1}	Worst case pin-to-pin delay through 1 look-up table (LUT)	10 pF	_	6.2	-	8.1	—	10.0	ns
t _{PD2}	Best case pin-to-pin delay through 1 LUT	10 pF		3.7	—	4.8	_	5.9	ns
t _{su}	Global clock setup time	_	1.2	_	1.5	—	1.9	—	ns
t _H	Global clock hold time	_	0	_	0	_	0	—	ns
t _{co}	Global clock to output delay	10 pF	2.0	4.6	2.0	5.9	2.0	7.3	ns
t _{сн}	Global clock high time	_	166		216		266		ps
t _{cL}	Global clock low time	_	166		216	_	266	_	ps
t _{cnt}	Minimum global clock period for 16-bit counter	_	3.3	_	4.0	_	5.0	_	ns
f _{cnt}	Maximum global clock frequency for 16-bit counter	—		304.0 (1)		247.5		201.1	MHz

Note to Table 5-25:

(1) The maximum frequency is limited by the I/O standard on the clock input pin. The 16-bit counter critical delay performs faster than this global clock input pin maximum frequency.

			Μ	AX II /	MAX IIG	ì				MA	X IIZ			
		1	-3 Speed -4 Speed Grade Grade				Speed ade	1	peed ade	-7 Speed Grade		–8 Speed Grade		
I/O Standa	rd	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
3.3-V LVTTL	16 mA	—	0	—	0	_	0	—	0	—	0	—	0	ps
	8 mA		65	—	84		104	—	-6	—	-2	—	-3	ps
3.3-V LVCMOS	8 mA		0	—	0		0	—	0	—	0	—	0	ps
	4 mA	—	65	—	84	—	104	—	-6	—	-2	—	-3	ps
2.5-V LVTTL /	14 mA	_	122		158		195	_	-63	—	-71	—	-88	ps
LVCMOS	7 mA	_	193		251		309	—	10	—	-1	—	1	ps
1.8-V LVTTL /	6 mA	_	568		738		909	_	128	—	118	—	118	ps
LVCMOS	3 mA	_	654	_	850		1,046	_	352	—	327	—	332	ps
1.5-V LVCMOS	4 mA	_	1,059	—	1,376		1,694		421	—	400	—	400	ps
	2 mA	_	1,167		1,517		1,867	_	757	—	743	—	743	ps
3.3-V PCI	20 mA	_	3	—	4	_	5	_	-6	—	-2	—	-3	ps

Table 5–29. External Timing Output Delay and $t_{\scriptscriptstyle OD}$ Adders for Fast Slew Rate

				MAX II / MAX IIG				MAX IIZ						
		-3 Speed Grade		–4 Speed Grade		–5 Speed Grade		–6 Speed Grade		–7 Speed Grade		–8 Speed Grade		
I/O Standa	rd	Min	Max	Unit										
3.3-V LVTTL	16 mA	_	7,064	—	6,745	—	6,426	—	5,966	—	5,992	—	6,118	ps
	8 mA		7,946		7,627		7,308		6,541		6,570	—	6,720	ps
3.3-V LVCMOS	8 mA	_	7,064		6,745		6,426		5,966		5,992	—	6,118	ps
	4 mA	_	7,946	_	7,627		7,308		6,541		6,570	—	6,720	ps
2.5-V LVTTL /	14 mA	_	10,434	_	10,115		9,796		9,141		9,154	—	9,297	ps
LVCMOS	7 mA	_	11,548	—	11,229		10,910		9,861		9,874	—	10,037	ps
1.8-V LVTTL /	6 mA	_	22,927	—	22,608		22,289		21,811		21,854	—	21,857	ps
LVCMOS	3 mA	_	24,731	_	24,412		24,093	_	23,081		23,034	—	23,107	ps
1.5-V LVCMOS	4 mA	_	38,723	—	38,404		38,085		39,121		39,124	—	39,124	ps
	2 mA	_	41,330	_	41,011		40,692		40,631		40,634	—	40,634	ps
3.3-V PCI	20 mA		261		339		418		6,644		6,627		6,914	ps

Symbol	Parameter	Min	Max	Unit
t _{JPSU}	JTAG port setup time (2)	8	—	ns
t _{JPH}	JTAG port hold time	10	—	ns
t _{JPCO}	JTAG port clock to output (2)	_	15	ns
t _{JPZX}	JTAG port high impedance to valid output (2)	_	15	ns
t _{JPXZ}	JTAG port valid output to high impedance (2)	_	15	ns
t _{ussu}	Capture register setup time	8	_	ns
t _{лsн}	Capture register hold time	10	—	ns
t _{JSCO}	Update register clock to output	_	25	ns
t _{JSZX}	Update register high impedance to valid output	_	25	ns
t _{JSXZ}	Update register valid output to high impedance	_	25	ns

Table 5–34. MAX II JTAG Timing Parameters (Part 2 of 2)

Notes to Table 5-34:

(1) Minimum clock period specified for 10 pF load on the TDO pin. Larger loads on TDO will degrade the maximum TCK frequency.

(2) This specification is shown for 3.3-V LVTTL/LVCMOS and 2.5-V LVTTL/LVCMOS operation of the JTAG pins. For 1.8-V LVTTL/LVCMOS and 1.5-V LVCMOS, the t_{JPSU} minimum is 6 ns and t_{JPC0}, t_{JPZX}, and t_{JPXZ} are maximum values at 35 ns.

Referenced Documents

This chapter references the following documents:

- *I/O Structure* section in the *MAX II Architecture* chapter in the *MAX II Device Handbook*
- Hot Socketing and Power-On Reset in MAX II Devices chapter in the MAX II Device Handbook
- Operating Requirements for Altera Devices Data Sheet
- PowerPlay Power Analysis chapter in volume 3 of the Quartus II Handbook
- Understanding and Evaluating Power in MAX II Devices chapter in the MAX II Device Handbook
- Understanding Timing in MAX II Devices chapter in the MAX II Device Handbook
- Using MAX II Devices in Multi-Voltage Systems chapter in the MAX II Device Handbook

6. Reference and Ordering Information

Software

MAX® II devices are supported by the Altera® Quartus® II design software with new, optional MAX+PLUS® II look and feel, which provides HDL and schematic design entry, compilation and logic synthesis, full simulation and advanced timing analysis, and device programming. Refer to the Design Software Selector Guide for more details about the Quartus II software features.

The Quartus II software supports the Windows XP/2000/NT, Sun Solaris, Linux Red Hat v8.0, and HP-UX operating systems. It also supports seamless integration with industry-leading EDA tools through the NativeLink interface.

Device Pin-Outs

Printed device pin-outs for MAX II devices are available on the Altera website (www.altera.com).

Ordering Information

Figure 6–1 describes the ordering codes for MAX II devices. For more information about a specific package, refer to the *Package Information* chapter in the *MAX II Device Handbook*.

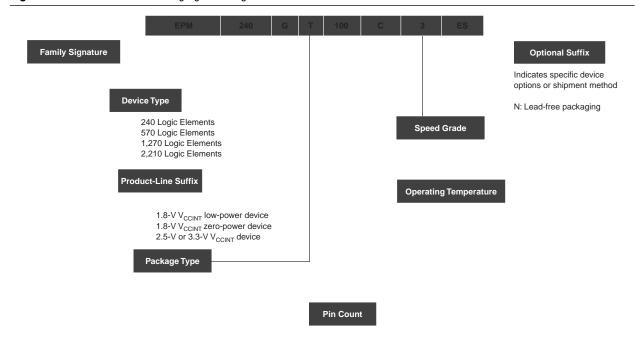


Figure 6-1. MAX II Device Packaging Ordering Information

Referenced Documents

This chapter references the following document:

■ *Package Information* chapter in the MAX II Device Handbook

Document Revision History

Table 6–1 shows the revision history for this chapter.

Date and Revision	Changes Made	Summary of Changes		
August 2009, version 1.6	■ Updated Figure 6–1.	Added information for speed grade –8		
October 2008, version 1.5	 Updated New Document Format. 	_		
December 2007, version 1.4	Added "Referenced Documents" section.	Updated document with		
	■ Updated Figure 6–1.	MAX IIZ information.		
December 2006, version 1.3	 Added document revision history. 	_		
October 2006, version 1.2	■ Updated Figure 6-1.	_		
June 2005, version 1.1	 Removed Dual Marking section. 	-		

 Table 6–1.
 Document Revision History