

Welcome to E-XFL.COM

Understanding <u>Embedded - CPLDs (Complex</u> <u>Programmable Logic Devices)</u>

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixedfunction ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details

Details	
Product Status	Active
Programmable Type	In System Programmable
Delay Time tpd(1) Max	5.4 ns
Voltage Supply - Internal	1.71V ~ 1.89V
Number of Logic Elements/Blocks	570
Number of Macrocells	440
Number of Gates	-
Number of I/O	160
Operating Temperature	0°C ~ 85°C (TJ)
Mounting Type	Surface Mount
Package / Case	256-TFBGA
Supplier Device Package	256-MBGA (11x11)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=epm570gm256c5n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 1–1 shows the MAX II family features.

Feature	EPM240 EPM240G	EPM570 EPM570G	EPM1270 EPM1270G	EPM2210 EPM2210G	EPM240Z	EPM570Z
LEs	240	570	1,270	2,210	240	570
Typical Equivalent Macrocells	192	440	980	1,700	192	440
Equivalent Macrocell Range	128 to 240	240 to 570	570 to 1,270	1,270 to 2,210	128 to 240	240 to 570
UFM Size (bits)	8,192	8,192	8,192	8,192	8,192	8,192
Maximum User I/O pins	80	160	212	272	80	160
t _{PD1} (ns) <i>(1)</i>	4.7	5.4	6.2	7.0	7.5	9.0
f _{cnt} (MHz) <i>(2)</i>	304	304	304	304	152	152
t _{su} (ns)	1.7	1.2	1.2	1.2	2.3	2.2
t _{co} (ns)	4.3	4.5	4.6	4.6	6.5	6.7

Table 1–1. MAX II Family Features

Notes to Table 1-1:

(1) t_{PD1} represents a pin-to-pin delay for the worst case I/O placement with a full diagonal path across the device and combinational logic implemented in a single LUT and LAB that is adjacent to the output pin.

(2) The maximum frequency is limited by the I/O standard on the clock input pin. The 16-bit counter critical delay will run faster than this number.

For more information about equivalent macrocells, refer to the *MAX II Logic Element to Macrocell Conversion Methodology* white paper.

MAX II and MAX IIG devices are available in three speed grades: -3, -4, and -5, with -3 being the fastest. Similarly, MAX IIZ devices are available in three speed grades: -6, -7, and -8, with -6 being the fastest. These speed grades represent the overall relative performance, not any specific timing parameter. For propagation delay timing numbers within each speed grade and density, refer to the *DC and Switching Characteristics* chapter in the *MAX II Device Handbook*.

Table 1–2 shows MAX II device speed-grade offerings.

	Speed Grade					
Device	-3	-4	-5	-6	-7	-8
EPM240	\checkmark	\checkmark	\checkmark		—	—
EPM240G						
EPM570	\checkmark	\checkmark	\checkmark	_	—	—
EPM570G						
EPM1270	\checkmark	\checkmark	\checkmark	_	_	—
EPM1270G						
EPM2210	\checkmark	\checkmark	\checkmark	_	—	—
EPM2210G						
EPM240Z	_	—	_	\checkmark	\checkmark	\checkmark
EPM570Z	—	—	—	\checkmark	\checkmark	\checkmark

 Table 1–2.
 MAX II Speed Grades

^{•••}

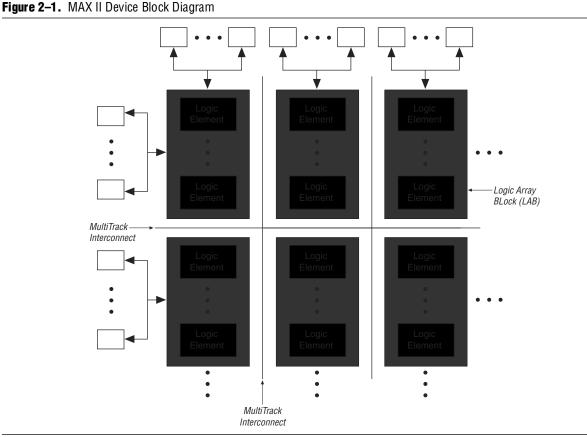


Figure 2–1 shows a functional block diagram of the MAX II device.

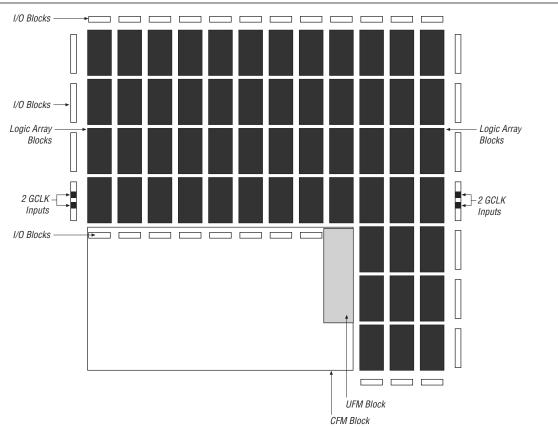
Each MAX II device contains a flash memory block within its floorplan. On the EPM240 device, this block is located on the left side of the device. On the EPM570, EPM1270, and EPM2210 devices, the flash memory block is located on the bottom-left area of the device. The majority of this flash memory storage is partitioned as the dedicated configuration flash memory (CFM) block. The CFM block provides the non-volatile storage for all of the SRAM configuration information. The CFM automatically downloads and configures the logic and I/O at power-up, providing instant-on operation.

• For more information about configuration upon power-up, refer to the *Hot Socketing and Power-On Reset in MAX II Devices* chapter in the *MAX II Device Handbook*.

A portion of the flash memory within the MAX II device is partitioned into a small block for user data. This user flash memory (UFM) block provides 8,192 bits of general-purpose user storage. The UFM provides programmable port connections to the logic array for reading and writing. There are three LAB rows adjacent to this block, with column numbers varying by device.

Table 2–1 shows the number of LAB rows and columns in each device, as well as the number of LAB rows and columns adjacent to the flash memory area in the EPM570, EPM1270, and EPM2210 devices. The long LAB rows are full LAB rows that extend from one side of row I/O blocks to the other. The short LAB rows are adjacent to the UFM block; their length is shown as width in LAB columns.

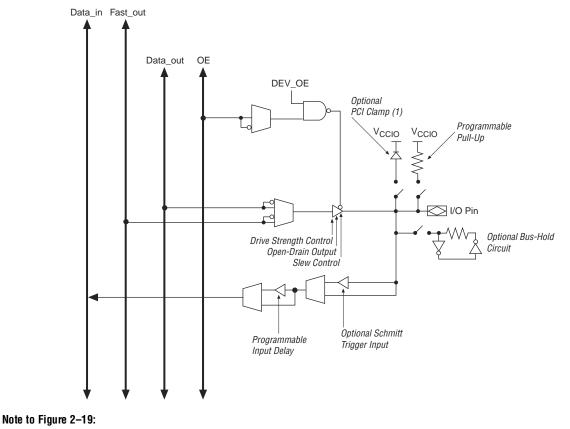
Table 2-1.	MAX II	Device Resources	,
------------	--------	------------------	---


			LAB Rows		
Devices	UFM Blocks	LAB Columns	Long LAB Rows	Short LAB Rows (Width) <i>(1)</i>	Total LABs
EPM240	1	6	4	—	24
EPM570	1	12	4	3 (3)	57
EPM1270	1	16	7	3 (5)	127
EPM2210	1	20	10	3 (7)	221

Note to Table 2–1:

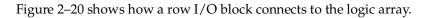
(1) The width is the number of LAB columns in length.

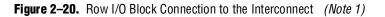
Figure 2–2 shows a floorplan of a MAX II device.

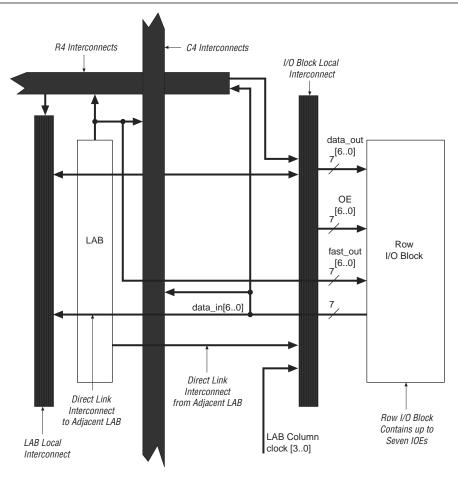


Note to Figure 2-2:

(1) The device shown is an EPM570 device. EPM1270 and EPM2210 devices have a similar floorplan with more LABs. For EPM240 devices, the CFM and UFM blocks are located on the left side of the device.


Figure 2–19. MAX II IOE Structure




(1) Available in EPM1270 and EPM2210 devices only.

I/O Blocks

The IOEs are located in I/O blocks around the periphery of the MAX II device. There are up to seven IOEs per row I/O block (5 maximum in the EPM240 device) and up to four IOEs per column I/O block. Each column or row I/O block interfaces with its adjacent LAB and MultiTrack interconnect to distribute signals throughout the device. The row I/O blocks drive row, column, or DirectLink interconnects. The column I/O blocks drive column interconnects.

Note to Figure 2-20:

(1) Each of the seven IOEs in the row I/O block can have one data_out or fast_out output, one OE output, and one data_in input.

Device	33-MHz PCI	66-MHz PCI
EPM1270	All Speed Grades	–3 Speed Grade
EPM2210	All Speed Grades	–3 Speed Grade

Table 2–5. MAX II Devices and Speed Grades that Support 3.3-V PCI Electrical Specifications and	
Meet PCI Timing	

Schmitt Trigger

The input buffer for each MAX II device I/O pin has an optional Schmitt trigger setting for the 3.3-V and 2.5-V standards. The Schmitt trigger allows input buffers to respond to slow input edge rates with a fast output edge rate. Most importantly, Schmitt triggers provide hysteresis on the input buffer, preventing slow-rising noisy input signals from ringing or oscillating on the input signal driven into the logic array. This provides system noise tolerance on MAX II inputs, but adds a small, nominal input delay.

The JTAG input pins (TMS, TCK, and TDI) have Schmitt trigger buffers that are always enabled.

P

The TCK input is susceptible to high pulse glitches when the input signal fall time is greater than 200 ns for all I/O standards.

Output Enable Signals

Each MAX II IOE output buffer supports output enable signals for tri-state control. The output enable signal can originate from the GCLK[3..0] global signals or from the MultiTrack interconnect. The MultiTrack interconnect routes output enable signals and allows for a unique output enable for each output or bidirectional pin.

MAX II devices also provide a chip-wide output enable pin (DEV_OE) to control the output enable for every output pin in the design. An option set before compilation in the Quartus II software controls this pin. This chip-wide output enable uses its own routing resources and does not use any of the four global resources. If this option is turned on, all outputs on the chip operate normally when DEV_OE is asserted. When the pin is deasserted, all outputs are tri-stated. If this option is turned off, the DEV_OE pin is disabled when the device operates in user mode and is available as a user I/O pin.

Programmable Drive Strength

The output buffer for each MAX II device I/O pin has two levels of programmable drive strength control for each of the LVTTL and LVCMOS I/O standards. Programmable drive strength provides system noise reduction control for high performance I/O designs. Although a separate slew-rate control feature exists, using the lower drive strength setting provides signal slew-rate control to reduce system noise and signal overshoot without the large delay adder associated with the slew-rate control feature. Table 2–6 shows the possible settings for the I/O standards with drive strength control. The Quartus II software uses the maximum current strength as the default setting. The PCI I/O standard is always set at 20 mA with no alternate setting.

Connect VCCIO pins to either a 1.5-V, 1.8 V, 2.5-V, or 3.3-V power supply, depending on the output requirements. The output levels are compatible with systems of the same voltage as the power supply (that is, when VCCIO pins are connected to a 1.5-V power supply, the output levels are compatible with 1.5-V systems). When VCCIO pins are connected to a 3.3-V power supply, the output high is 3.3 V and is compatible with 3.3-V or 5.0-V systems. Table 2–7 summarizes MAX II MultiVolt I/O support.

Table 2–7. MAX II MultiVolt I/O Support (Note 1)

		Input Signal					Output Signal			
VCCIO (V)	1.5 V	1.8 V	2.5 V	3.3 V	5.0 V	1.5 V	1.8 V	2.5 V	3.3 V	5.0 V
1.5	\checkmark	\checkmark	\checkmark	\checkmark	—	\checkmark	_		_	—
1.8	\checkmark	\checkmark	\checkmark	\checkmark	_	✓ (2)	\checkmark	_	_	—
2.5	_	_	\checkmark	\checkmark	_	✓ (3)	✓ (3)	\checkmark	_	_
3.3	_	—	✓ (4)	\checkmark	✓ (5)	✓ (6)	✓ (6)	✓ (6)	\checkmark	✓ (7)

Notes to Table 2-7:

(1) To drive inputs higher than V_{CGIO} but less than 4.0 V including the overshoot, disable the I/O clamp diode. However, to drive 5.0-V inputs to the device, enable the I/O clamp diode to prevent V₁ from rising above 4.0 V.

- (2) When $V_{CCIO} = 1.8$ V, a MAX II device can drive a 1.5-V device with 1.8-V tolerant inputs.
- (3) When $V_{CCIO} = 2.5$ V, a MAX II device can drive a 1.5-V or 1.8-V device with 2.5-V tolerant inputs.
- (4) When V_{CCI0} = 3.3 V and a 2.5-V input signal feeds an input pin, the VCCI0 supply current will be slightly larger than expected.
- (5) MAX II devices can be 5.0-V tolerant with the use of an external resistor and the internal I/O clamp diode on the EPM1270 and EPM2210 devices.
- (6) When $V_{CCIO} = 3.3$ V, a MAX II device can drive a 1.5-V, 1.8-V, or 2.5-V device with 3.3-V tolerant inputs.
- (7) When V_{CCI0} = 3.3 V, a MAX II device can drive a device with 5.0-V TTL inputs but not 5.0-V CMOS inputs. In the case of 5.0-V CMOS, opendrain setting with internal I/O clamp diode (available only on EPM1270 and EPM2210 devices) and external resistor is required.

• For information about output pin source and sink current guidelines, refer to the *AN* 428: *MAX II CPLD Design Guidelines*.

Referenced Documents

This chapter referenced the following documents:

- AN 428: MAX II CPLD Design Guidelines
- DC and Switching Characteristics chapter in the MAX II Device Handbook
- *Hot Socketing and Power-On Reset in MAX II Devices* chapter in the *MAX II Device Handbook*
- Using User Flash Memory in MAX II Devices chapter in the MAX II Device Handbook

3. JTAG and In-System Programmability

Introduction

This chapter discusses how to use the IEEE Standard 1149.1 Boundary-Scan Test (BST) circuitry in MAX II devices and includes the following sections:

- "IEEE Std. 1149.1 (JTAG) Boundary-Scan Support" on page 3–1
- "In System Programmability" on page 3–4

IEEE Std. 1149.1 (JTAG) Boundary-Scan Support

All MAX[®] II devices provide Joint Test Action Group (JTAG) boundary-scan test (BST) circuitry that complies with the IEEE Std. 1149.1-2001 specification. JTAG boundary-scan testing can only be performed at any time after V_{CCINT} and all V_{CCIO} banks have been fully powered and a t_{CONFIG} amount of time has passed. MAX II devices can also use the JTAG port for in-system programming together with either the Quartus[®] II software or hardware using Programming Object Files (**.pof**), JamTM Standard Test and Programming Language (STAPL) Files (**.jam**), or Jam Byte-Code Files (**.jbc**).

The JTAG pins support 1.5-V, 1.8-V, 2.5-V, or 3.3-V I/O standards. The supported voltage level and standard are determined by the V_{cCIO} of the bank where it resides. The dedicated JTAG pins reside in Bank 1 of all MAX II devices.

MAX II devices support the JTAG instructions shown in Table 3–1.

JTAG Instruction	Instruction Code	Description
SAMPLE/PRELOAD	00 0000 0101	Allows a snapshot of signals at the device pins to be captured and examined during normal device operation, and permits an initial data pattern to be output at the device pins.
extest (1)	00 0000 1111	Allows the external circuitry and board-level interconnects to be tested by forcing a test pattern at the output pins and capturing test results at the input pins.
BYPASS	11 1111 1111	Places the 1-bit bypass register between the TDI and TDO pins, which allows the BST data to pass synchronously through selected devices to adjacent devices during normal device operation.
USERCODE	00 0000 0111	Selects the 32-bit USERCODE register and places it between the TDI and TDO pins, allowing the USERCODE to be serially shifted out of TDO. This register defaults to all 1's if not specified in the Quartus II software.
IDCODE	00 0000 0110	Selects the IDCODE register and places it between TDI and TDO, allowing the IDCODE to be serially shifted out of TDO.
HIGHZ (1)	00 0000 1011	Places the 1-bit bypass register between the TDI and TDO pins, which allows the boundary scan test data to pass synchronously through selected devices to adjacent devices during normal device operation, while tri-stating all of the I/O pins.

Table 3–1. MAX II JTAG Instructions (Part 1 of 2)

Device	Version (4 Bits)	Part Number	Manufacturer Identity (11 Bits)	LSB (1 Bit) <i>(2)</i>	HEX IDCODE
EPM240Z	0000	0010 0000 1010 0101	000 0110 1110	1	0x020A50DD
EPM570Z	0000	0010 0000 1010 0110	000 0110 1110	1	0x020A60DD

Table 3-3. 32-Bit MAX II Device IDCODE (Part 2 of 2)

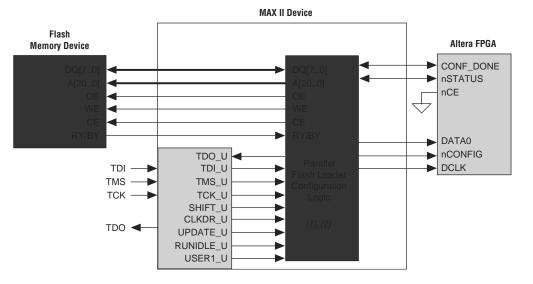
Notes to Table 3-2:

(1) The most significant bit (MSB) is on the left.

(2) The IDCODE's least significant bit (LSB) is always 1.

JTAG Block

The MAX II JTAG block feature allows you to access the JTAG TAP and state signals when either the USER0 or USER1 instruction is issued to the JTAG TAP. The USER0 and USER1 instructions bring the JTAG boundary-scan chain (TDI) through the user logic instead of the MAX II device's boundary-scan cells. Each USER instruction allows for one unique user-defined JTAG chain into the logic array.


Parallel Flash Loader

The JTAG block ability to interface JTAG to non-JTAG devices is ideal for generalpurpose flash memory devices (such as Intel- or Fujitsu-based devices) that require programming during in-circuit test. The flash memory devices can be used for FPGA configuration or be part of system memory. In many cases, the MAX II device is already connected to these devices as the configuration control logic between the FPGA and the flash device. Unlike ISP-capable CPLD devices, bulk flash devices do not have JTAG TAP pins or connections. For small flash devices, it is common to use the serial JTAG scan chain of a connected device to program the non-JTAG flash device. This is slow and inefficient in most cases and impractical for large parallel flash devices. Using the MAX II device's JTAG block as a parallel flash loader, with the Quartus II software, to program and verify flash contents provides a fast and costeffective means of in-circuit programming during test. Figure 3–1 shows MAX II being used as a parallel flash loader.

[•] For JTAG AC characteristics, refer to the *DC* and *Switching Characteristics* chapter in the *MAX II Device Handbook*.

For more information about JTAG BST, refer to the *IEEE 1149.1 (JTAG) Boundary-Scan Testing for MAX II Devices* chapter in the *MAX II Device Handbook*.

Figure 3-1. MAX II Parallel Flash Loader

Notes to Figure 3-1:

(1) This block is implemented in LEs.

(2) This function is supported in the Quartus II software.

In System Programmability

MAX II devices can be programmed in-system via the industry standard 4-pin IEEE Std. 1149.1 (JTAG) interface. In-system programmability (ISP) offers quick, efficient iterations during design development and debugging cycles. The logic, circuitry, and interconnects in the MAX II architecture are configured with flash-based SRAM configuration elements. These SRAM elements require configuration data to be loaded each time the device is powered. The process of loading the SRAM data is called configuration. The on-chip configuration flash memory (CFM) block stores the SRAM element's configuration data. The CFM block stores the design's configuration pattern in a reprogrammable flash array. During ISP, the MAX II JTAG and ISP circuitry programs the design pattern into the CFM block's non-volatile flash array.

The MAX II JTAG and ISP controller internally generate the high programming voltages required to program the CFM cells, allowing in-system programming with any of the recommended operating external voltage supplies (that is, 3.3 V/2.5 V or 1.8 V for the MAX IIG and MAX IIZ devices). ISP can be performed anytime after V_{CCINT} and all V_{CCIO} banks have been fully powered and the device has completed the configuration power-up time. By default, during in-system programming, the I/O pins are tri-stated and weakly pulled-up to V_{CCIO} to eliminate board conflicts. The insystem programming clamp and real-time ISP feature allow user control of I/O state or behavior during ISP.

For more information, refer to "In-System Programming Clamp" on page 3–6 and "Real-Time ISP" on page 3–7.

These devices also offer an ISP_DONE bit that provides safe operation when insystem programming is interrupted. This ISP_DONE bit, which is the last bit programmed, prevents all I/O pins from driving until the bit is programmed.

IEEE 1532 Support

The JTAG circuitry and ISP instruction set in MAX II devices is compliant to the IEEE 1532-2002 programming specification. This provides industry-standard hardware and software for in-system programming among multiple vendor programmable logic devices (PLDs) in a JTAG chain.

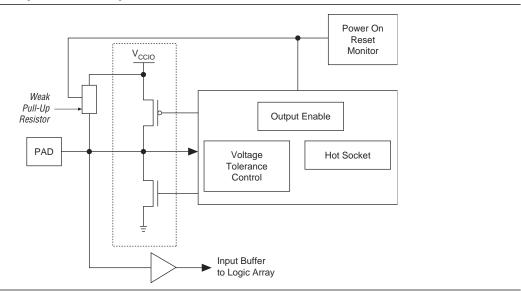
The MAX II 1532 BSDL files will be released on the Altera website when available.

Jam Standard Test and Programming Language (STAPL)

The Jam STAPL JEDEC standard, JESD71, can be used to program MAX II devices with in-circuit testers, PCs, or embedded processors. The Jam byte code is also supported for MAX II devices. These software programming protocols provide a compact embedded solution for programming MAX II devices.

Programming Sequence

During in-system programming, 1532 instructions, addresses, and data are shifted into the MAX II device through the TDI input pin. Data is shifted out through the TDO output pin and compared against the expected data. Programming a pattern into the device requires the following six ISP steps. A stand-alone verification of a programmed pattern involves only stages 1, 2, 5, and 6. These steps are automatically executed by third-party programmers, the Quartus II software, or the Jam STAPL and Jam Byte-Code Players.

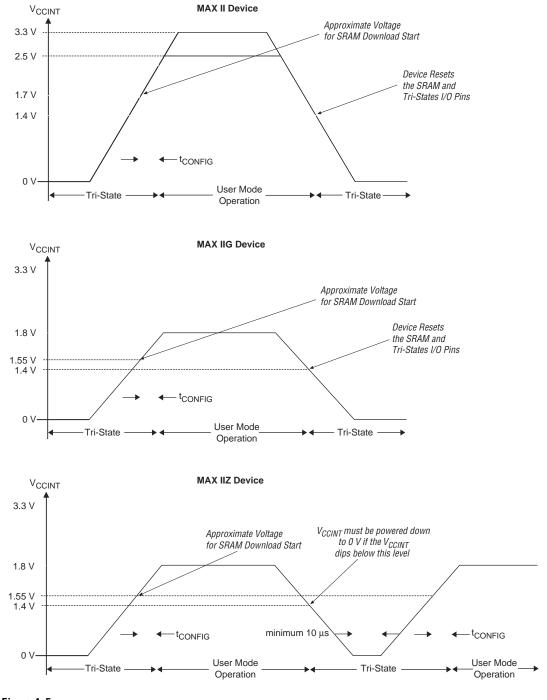

- 1. *Enter ISP*—The enter ISP stage ensures that the I/O pins transition smoothly from user mode to ISP mode.
- 2. *Check ID*—Before any program or verify process, the silicon ID is checked. The time required to read this silicon ID is relatively small compared to the overall programming time.
- 3. *Sector Erase*—Erasing the device in-system involves shifting in the instruction to erase the device and applying an erase pulse(s). The erase pulse is automatically generated internally by waiting in the run/test/idle state for the specified erase pulse time of 500 ms for the CFM block and 500 ms for each sector of the UFM block.
- 4. *Program*—Programming the device in-system involves shifting in the address, data, and program instruction and generating the program pulse to program the flash cells. The program pulse is automatically generated internally by waiting in the run/test/idle state for the specified program pulse time of 75 µs. This process is repeated for each address in the CFM and UFM blocks.
- 5. *Verify*—Verifying a MAX II device in-system involves shifting in addresses, applying the verify instruction to generate the read pulse, and shifting out the data for comparison. This process is repeated for each CFM and UFM address.
- 6. *Exit ISP*—An exit ISP stage ensures that the I/O pins transition smoothly from ISP mode to user mode.

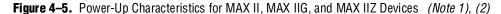
[•] For more information, refer to the Using Jam STAPL for ISP via an Embedded Processor chapter in the MAX II Device Handbook.

Make sure that the V_{CCNT} is within the recommended operating range even though SRAM download has completed.

Each I/O and clock pin has the circuitry shown in Figure 4–1.

Figure 4–1. Hot Socketing Circuit Block Diagram for MAX II Devices




The POR circuit monitors V_{CCINT} and V_{CCIO} voltage levels and keeps I/O pins tri-stated until the device has completed its flash memory configuration of the SRAM logic. The weak pull-up resistor (R) from the I/O pin to V_{CCIO} is enabled during download to keep the I/O pins from floating. The 3.3-V tolerance control circuit permits the I/O pins to be driven by 3.3 V before V_{CCIO} and/or V_{CCINT} are powered, and it prevents the I/O pins from driving out when the device is not fully powered or operational. The hot socket circuit prevents I/O pins from internally powering V_{CCIO} and V_{CCINT} when driven by external signals before the device is powered.

٠.,

For information about 5.0-V tolerance, refer to the *Using MAX II Devices in Multi-Voltage Systems* chapter in the *MAX II Device Handbook*.

Figure 4–2 shows a transistor-level cross section of the MAX II device I/O buffers. This design ensures that the output buffers do not drive when V_{CCIO} is powered before V_{CCINT} or if the I/O pad voltage is higher than V_{CCIO} . This also applies for sudden voltage spikes during hot insertion. The V_{PAD} leakage current charges the 3.3-V tolerant circuit capacitance.

Notes to Figure 4–5:

(1) Time scale is relative.

(2) Figure 4–5 assumes all V_{CCIO} banks power up simultaneously with the V_{CCINT} profile shown. If not, t_{CONFIG} stretches out until all V_{CCIO} banks are powered.

After SRAM configuration, all registers in the device are cleared and released into user function before I/O tri-states are released. To release clears after tri-states are released, use the DEV_CLRn pin option. To hold the tri-states beyond the power-up configuration time, use the DEV_OE pin option.

Recommended Operating Conditions

Table 5–2 shows the MAX II device family recommended operating conditions.

Table 5-2. MAX II Device Recommended Operating Conditions

Symbol	Parameter	Conditions	Minimum	Maximum	Unit
V _{ccint} (1)	3.3-V supply voltage for internal logic and ISP	MAX II devices	3.00	3.60	V
	2.5-V supply voltage for internal logic and ISP	MAX II devices	2.375	2.625	V
	1.8-V supply voltage for internal logic and ISP	MAX IIG and MAX IIZ devices	1.71	1.89	V
V _{ccio} (1)	Supply voltage for I/O buffers, 3.3-V operation	_	3.00	3.60	V
	Supply voltage for I/O buffers, 2.5-V operation	_	2.375	2.625	V
	Supply voltage for I/O buffers, 1.8-V operation	_	1.71	1.89	V
	Supply voltage for I/O buffers, 1.5-V operation	_	1.425	1.575	V
Vi	Input voltage	(2), (3), (4)	-0.5	4.0	V
Vo	Output voltage	-	0	Vccio	V
TJ	Operating junction temperature	Commercial range	0	85	°C
		Industrial range	-40	100	°C
		Extended range (5)	-40	125	°C

Notes to Table 5-2:

(1) MAX II device in-system programming and/or user flash memory (UFM) programming via JTAG or logic array is not guaranteed outside the recommended operating conditions (for example, if brown-out occurs in the system during a potential write/program sequence to the UFM, users are recommended to read back UFM contents and verify against the intended write data).

(2) Minimum DC input is -0.5 V. During transitions, the inputs may undershoot to -2.0 V for input currents less than 100 mA and periods shorter than 20 ns.

(3) During transitions, the inputs may overshoot to the voltages shown in the following table based upon input duty cycle. The DC case is equivalent to 100% duty cycle. For more information about 5.0-V tolerance, refer to the Using MAX II Devices in Multi-Voltage Systems chapter in the MAX II Device Handbook.

- V_ℕ 4.0 V Max. Duty Cycle
- 100% (DC)
- 4.1 90%
- 4.2 50%
- 4.3 30%
- 17% 4.4
- 4.5 10%

(4) All pins, including clock, I/O, and JTAG pins, may be driven before V_{CCINT} and V_{CCIO} are powered.

(5) For the extended temperature range of 100 to 125° C, MAX II UFM programming (erase/write) is only supported via the JTAG interface. UFM programming via the logic array interface is not guaranteed in this range.

Device	Preliminary	Final
EPM1270	_	\checkmark
EPM2210	_	\checkmark
N	•	•

 Table 5–13.
 MAX II Device Timing Model Status
 (Part 2 of 2)

Note to Table 5-13:

(1) The MAX IIZ device timing models are only available in the Quartus II software version 8.0 and later.

Performance

Table 5–14 shows the MAX II device performance for some common designs. All performance values were obtained with the Quartus II software compilation of megafunctions. Performance values for –3, –4, and –5 speed grades are based on an EPM1270 device target, while –6, –7, and –8 speed grades are based on an EPM570Z device target.

Table 5–14. MAX II Device Performance

							Perfor	mance			
		Reso	ources	Used	MA	X II / MAX	(IIG		MAX IIZ		
Resource Used	Design Size and Function	Mode	LEs	UFM Blocks	–3 Speed Grade	–4 Speed Grade	–5 Speed Grade	–6 Speed Grade	–7 Speed Grade	–8 Speed Grade	Unit
LE	16-bit counter (1)	—	16	0	304.0	247.5	201.1	184.1	123.5	118.3	MHz
	64-bit counter (1)	—	64	0	201.5	154.8	125.8	83.2	83.2	80.5	MHz
	16-to-1 multiplexer	_	11	0	6.0	8.0	9.3	17.4	17.3	20.4	ns
	32-to-1 multiplexer	_	24	0	7.1	9.0	11.4	12.5	22.8	25.3	ns
	16-bit XOR function	_	5	0	5.1	6.6	8.2	9.0	15.0	16.1	ns
	16-bit decoder with single address line		5	0	5.2	6.6	8.2	9.2	15.0	16.1	ns
UFM	512 × 16	None	3	1	10.0	10.0	10.0	10.0	10.0	10.0	MHz
	512 × 16	SPI <i>(2)</i>	37	1	8.0	8.0	8.0	9.7	9.7	9.7	MHz
	512 × 8	Parallel <i>(3)</i>	73	1	(4)	(4)	(4)	(4)	(4)	(4)	MHz
	512 × 16	I²C <i>(3)</i>	142	1	100 <i>(5)</i>	100 <i>(5)</i>	100 <i>(5)</i>	100 <i>(5)</i>	100 <i>(5)</i>	100 <i>(5)</i>	kHz

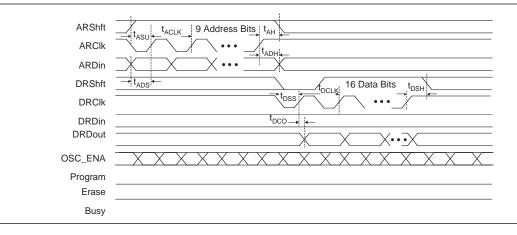
Notes to Table 5-14:

(1) This design is a binary loadable up counter.

(2) This design is configured for read-only operation in Extended mode. Read and write ability increases the number of LEs used.

(3) This design is configured for read-only operation. Read and write ability increases the number of LEs used.

(4) This design is asynchronous.


(5) The I²C megafunction is verified in hardware up to 100-kHz serial clock line (SCL) rate.

			N	IAX II /	MAX I	G				MA	X IIZ			
		-3 Speed Grade					peed Ide	–6 Speed Grade		–7 Speed Grade		–8 Speed Grade		
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
t _{oe}	Delay from data register clock to data register output	180	-	180	_	180	_	180		180		180		ns
t _{RA}	Maximum read access time		65	_	65		65	_	65	_	65	_	65	ns
t _{oscs}	Maximum delay between the OSC_ENA rising edge to the erase/program signal rising edge	250	_	250	_	250		250		250		250		ns
t _{osch}	Minimum delay allowed from the erase/program signal going low to OSC_ENA signal going low	250	_	250	_	250		250		250		250		ns

Table 5-21. UFM Block Internal Timing Microparameters (Part 3 of 3)

Figure 5–3 through Figure 5–5 show the read, program, and erase waveforms for UFM block timing parameters shown in Table 5–21.

Figure 5–3. UFM Read Waveforms

External Timing Parameters

External timing parameters are specified by device density and speed grade. All external I/O timing parameters shown are for the 3.3-V LVTTL I/O standard with the maximum drive strength and fast slew rate. For external I/O timing using standards other than LVTTL or for different drive strengths, use the I/O standard input and output delay adders in Table 5–27 through Table 5–31.

Table 5–23 shows the external I/O timing parameters for EPM240 devices.

 Table 5–23.
 EPM240 Global Clock External I/O Timing Parameters
 (Part 1 of 2)

				ľ	MAX II /	MAX II	G				MA	X IIZ			
				Speed rade		peed ade		Speed ade		Speed ade		Speed ade		Speed ade]
Symbol	Parameter	Condition	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
t _{PD1}	Worst case pin-to-pin delay through 1 look-up table (LUT)	10 pF		4.7		6.1	_	7.5		7.9		12.0	_	14.0	ns
t _{PD2}	Best case pin-to-pin delay through 1 LUT	10 pF		3.7	_	4.8	_	5.9		5.8		7.8	_	8.5	ns
t _{su}	Global clock setup time	_	1.7		2.2	_	2.7		2.4		4.1		4.6		ns
t _H	Global clock hold time	_	0		0		0		0		0		0		ns
t _{co}	Global clock to output delay	10 pF	2.0	4.3	2.0	5.6	2.0	6.9	2.0	6.6	2.0	8.1	2.0	8.6	ns
t _{CH}	Global clock high time	_	166		216		266		253		335	_	339		ps
t _{CL}	Global clock low time	—	166		216		266		253		335		339		ps
t _{cnt}	Minimum global clock period for 16-bit counter		3.3		4.0		5.0		5.4		8.1		8.4		ns

For more information about each external timing parameters symbol, refer to the *Understanding Timing in MAX II Devices* chapter in the *MAX II Device Handbook*.

Table 5–26 shows the external I/O timing parameters for EPM2210 devices.

					MAX II /	MAX IIG					
			–3 Spee	ed Grade	–4 Spee	ed Grade	–5 Spee				
Symbol	Parameter	Condition	Min	Max	Min	Max	Min	Max	Unit		
t _{PD1}	Worst case pin-to-pin delay through 1 look-up table (LUT)	10 pF		7.0		9.1		11.2	ns		
t _{PD2}	Best case pin-to-pin delay through 1 LUT	10 pF	_	3.7	_	4.8	_	5.9	ns		
t _{su}	Global clock setup time	_	1.2		1.5		1.9		ns		
t _H	Global clock hold time	—	0	—	0	_	0	_	ns		
t _{co}	Global clock to output delay	10 pF	2.0	4.6	2.0	6.0	2.0	7.4	ns		
t _{сн}	Global clock high time	—	166	—	216	_	266	—	ps		
t _{cl}	Global clock low time	—	166	—	216	_	266	—	ps		
t _{cnt}	Minimum global clock period for 16-bit counter	_	3.3	-	4.0	_	5.0	-	ns		
f _{cnt}	Maximum global clock frequency for 16-bit counter	—	_	304.0 <i>(1)</i>	_	247.5		201.1	MHz		

Table 5–26. El	PM2210	Global Clock	External I/O	Timing Parameters
----------------	--------	---------------------	--------------	-------------------

Note to Table 5-26:

(1) The maximum frequency is limited by the I/O standard on the clock input pin. The 16-bit counter critical delay performs faster than this global clock input pin maximum frequency.

External Timing I/O Delay Adders

The I/O delay timing parameters for I/O standard input and output adders, and input delays are specified by speed grade independent of device density.

Table 5–27 through Table 5–31 show the adder delays associated with I/O pins for all packages. The delay numbers for –3, –4, and –5 speed grades shown in Table 5–27 through Table 5–33 are based on an EPM1270 device target, while –6, –7, and –8 speed grade values are based on an EPM570Z device target. If an I/O standard other than 3.3-V LVTTL is selected, add the input delay adder to the external t_{su} timing parameters shown in Table 5–23 through Table 5–26. If an I/O standard other than 3.3-V LVTTL with 16 mA drive strength and fast slew rate is selected, add the output delay adder to the external t_{co} and t_{PD} shown in Table 5–23 through Table 5–26.

			N	i XAN	MAX I	IG		MAX IIZ						
			peed ade		peed ade		Speed rade		peed ade		peed ade		peed ade	
I/O S	tandard	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min Max		Unit
3.3-V LVTTL	Without Schmitt Trigger	_	0	—	0	—	0	—	0		0	—	0	ps
	With Schmitt Trigger	—	334	_	434	-	535	—	387	_	434	—	442	ps

			N	iax II /	/ MAX I	IG				MA	X IIZ			
			peed ade		peed ade		Speed rade		peed ade		peed ade		peed ade	
I/0 St	andard	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
3.3-V LVCMOS	Without Schmitt Trigger	—	0	—	0	—	0	—	0	—	0	—	0	ps
	With Schmitt Trigger	_	334	_	434	_	535	_	387	_	434	_	442	ps
2.5-V LVTTL / LVCMOS	Without Schmitt Trigger	—	23	_	30	—	37	—	42	_	43	—	43	ps
	With Schmitt Trigger	—	339	_	441	—	543	—	429	_	476	—	483	ps
1.8-V LVTTL / LVCMOS	Without Schmitt Trigger	_	291	_	378	—	466	—	378	_	373	_	373	ps
1.5-V LVCMOS	Without Schmitt Trigger	_	681	_	885	_	1,090	_	681	_	622	_	658	ps
3.3-V PCI	Without Schmitt Trigger	_	0	_	0	_	0	_	0	_	0	—	0	ps

Table 5–27. External Timing Input Delay Adders (Part 2 of 2)

			ſ	II XAN	/ MAX II	G				MA	X IIZ			
			peed ade		Speed rade		Speed ade		peed ade		peed ade		peed ade	
I/O St	andard	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
3.3-V LVTTL	Without Schmitt Trigger	—	0	-	0	—	0	-	0	—	0	—	0	ps
	With Schmitt Trigger	—	308	-	400	_	493	_	387	_	434	—	442	ps
3.3-V LVCMOS	Without Schmitt Trigger	—	0	-	0	_	0	—	0	_	0	—	0	ps
	With Schmitt Trigger	—	308	-	400	—	493	—	387	_	434	—	442	ps
2.5-V LVTTL / LVCMOS	Without Schmitt Trigger	—	21	-	27	_	33	_	42	_	43	—	43	ps
	With Schmitt Trigger	—	423	-	550	_	677	_	429	_	476	_	483	ps
1.8-V LVTTL / LVCMOS	Without Schmitt Trigger	—	353	-	459	—	565	—	378	_	373	—	373	ps
1.5-V LVCMOS	Without Schmitt Trigger	—	855	-	1,111	—	1,368	-	681	—	622	—	658	ps
3.3-V PCI	Without Schmitt Trigger	—	6	_	7	_	9	_	0	_	0	_	0	ps

Symbol	Parameter	Min	Max	Unit
t _{JPSU}	JTAG port setup time (2)	8	—	ns
t _{JPH}	JTAG port hold time	10	—	ns
t _{JPCO}	JTAG port clock to output (2)	_	15	ns
t _{JPZX}	JTAG port high impedance to valid output (2)	_	15	ns
t _{JPXZ}	JTAG port valid output to high impedance (2)	_	15	ns
t _{ussu}	Capture register setup time	8	_	ns
t _{лsн}	Capture register hold time	10	—	ns
t _{JSCO}	Update register clock to output	_	25	ns
t _{JSZX}	Update register high impedance to valid output	_	25	ns
t _{JSXZ}	Update register valid output to high impedance	_	25	ns

Table 5–34. MAX II JTAG Timing Parameters (Part 2 of 2)

Notes to Table 5-34:

(1) Minimum clock period specified for 10 pF load on the TDO pin. Larger loads on TDO will degrade the maximum TCK frequency.

(2) This specification is shown for 3.3-V LVTTL/LVCMOS and 2.5-V LVTTL/LVCMOS operation of the JTAG pins. For 1.8-V LVTTL/LVCMOS and 1.5-V LVCMOS, the t_{JPSU} minimum is 6 ns and t_{JPC0}, t_{JPZX}, and t_{JPXZ} are maximum values at 35 ns.

Referenced Documents

This chapter references the following documents:

- *I/O Structure* section in the *MAX II Architecture* chapter in the *MAX II Device Handbook*
- Hot Socketing and Power-On Reset in MAX II Devices chapter in the MAX II Device Handbook
- Operating Requirements for Altera Devices Data Sheet
- PowerPlay Power Analysis chapter in volume 3 of the Quartus II Handbook
- Understanding and Evaluating Power in MAX II Devices chapter in the MAX II Device Handbook
- Understanding Timing in MAX II Devices chapter in the MAX II Device Handbook
- Using MAX II Devices in Multi-Voltage Systems chapter in the MAX II Device Handbook