

Welcome to **E-XFL.COM**

Understanding Embedded - CPLDs (Complex Programmable Logic Devices)

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details	
Product Status	Active
Programmable Type	In System Programmable
Delay Time tpd(1) Max	5.4 ns
Voltage Supply - Internal	1.71V ~ 1.89V
Number of Logic Elements/Blocks	570
Number of Macrocells	440
Number of Gates	-
Number of I/O	76
Operating Temperature	0°C ~ 85°C (TJ)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=epm570gt100c4

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Features

MAX II devices are available in space-saving FineLine BGA, Micro FineLine BGA, and thin quad flat pack (TQFP) packages (refer to Table 1–3 and Table 1–4). MAX II devices support vertical migration within the same package (for example, you can migrate between the EPM570, EPM1270, and EPM2210 devices in the 256-pin FineLine BGA package). Vertical migration means that you can migrate to devices whose dedicated pins and JTAG pins are the same and power pins are subsets or supersets for a given package across device densities. The largest density in any package has the highest number of power pins; you must lay out for the largest planned density in a package to provide the necessary power pins for migration. For I/O pin migration across densities, cross reference the available I/O pins using the device pin-outs for all planned densities of a given package type to identify which I/O pins can be migrated. The Quartus® II software can automatically cross-reference and place all pins for you when given a device migration list.

Table 1-3. MAX II Packages and User I/O Pins

Device	68-Pin Micro FineLine BGA (1)	100-Pin Micro FineLine BGA (1)	100-Pin FineLine BGA	100-Pin TQFP	144-Pin TQFP	144-Pin Micro FineLine BGA (1)	256-Pin Micro FineLine BGA (1)	256-Pin FineLine BGA	324-Pin FineLine BGA
EPM240	_	80	80	80	_	_	_	_	_
EPM240G									
EPM570	_	76	76	76	116	_	160	160	_
EPM570G									
EPM1270	_	_	_	_	116	_	212	212	_
EPM1270G									
EPM2210	_	_	_	_	_	_	_	204	272
EPM2210G									
EPM240Z	54	80	_	_	_	_	_	_	_
EPM570Z	_	76		_	_	116	160	_	_

Note to Table 1-3:

Table 1-4. MAX II TQFP, FineLine BGA, and Micro FineLine BGA Package Sizes

Package	68-Pin Micro FineLine BGA	100-Pin Micro FineLine BGA	100-Pin FineLine BGA	100-Pin TQFP	144-Pin TQFP	144-Pin Micro FineLine BGA	256-Pin Micro FineLine BGA	256-Pin FineLine BGA	324-Pin FineLine BGA
Pitch (mm)	0.5	0.5	1	0.5	0.5	0.5	0.5	1	1
Area (mm2)	25	36	121	256	484	49	121	289	361
Length × width (mm × mm)	5 × 5	6 × 6	11 × 11	16 × 16	22 × 22	7×7	11 × 11	17 × 17	19 × 19

⁽¹⁾ Packages available in lead-free versions only.

MAX II devices have an internal linear voltage regulator which supports external supply voltages of 3.3 V or 2.5 V, regulating the supply down to the internal operating voltage of 1.8 V. MAX IIG and MAX IIZ devices only accept 1.8 V as the external supply voltage. MAX IIZ devices are pin-compatible with MAX IIG devices in the 100-pin Micro FineLine BGA and 256-pin Micro FineLine BGA packages. Except for external supply voltage requirements, MAX II and MAX II G devices have identical pin-outs and timing specifications. Table 1–5 shows the external supply voltages supported by the MAX II family.

Table 1-5. MAX II External Supply Voltages

Devices	EPM240 EPM570 EPM1270 EPM2210	EPM240G EPM570G EPM1270G EPM2210G EPM240Z EPM570Z <i>(1)</i>
MultiVolt core external supply voltage (V _{CCINT}) (2)	3.3 V, 2.5 V	1.8 V
MultiVolt I/O interface voltage levels (Vccio)	1.5 V, 1.8 V, 2.5 V, 3.3 V	1.5 V, 1.8 V, 2.5 V, 3.3 V

Notes to Table 1-5:

- (1) MAX IIG and MAX IIZ devices only accept 1.8 V on their VCCINT pins. The 1.8-V VCCINT external supply powers the device core directly.
- (2) MAX II devices operate internally at 1.8 V.

Referenced Documents

This chapter references the following documents:

- DC and Switching Characteristics chapter in the MAX II Device Handbook
- MAX II Logic Element to Macrocell Conversion Methodology white paper

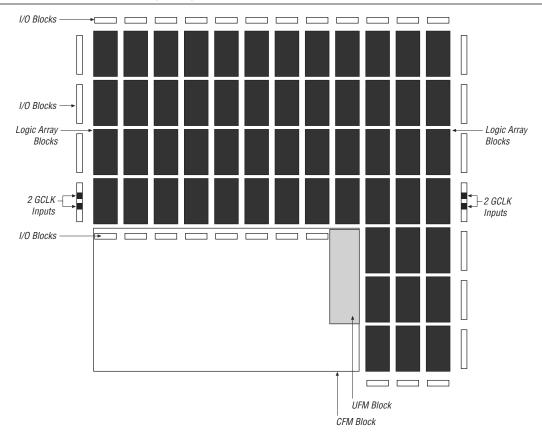
Document Revision History

Table 1–6 shows the revision history for this chapter.

Table 1-6. Document Revision History

Date and Revision	Changes Made	Summary of Changes
August 2009, version 1.9	■ Updated Table 1–2.	Added information for speed grade –8
October 2008, version 1.8	Updated "Introduction" section.Updated new Document Format.	_
December 2007, version1.7	Updated Table 1–1 through Table 1–5.Added "Referenced Documents" section.	Updated document with MAX IIZ information.
December 2006, version 1.6	Added document revision history.	_
August 2006, version 1.5	■ Minor update to features list.	_
July 2006, version 1.4	■ Minor updates to tables.	_

Table 2-1. MAX II Device Resources

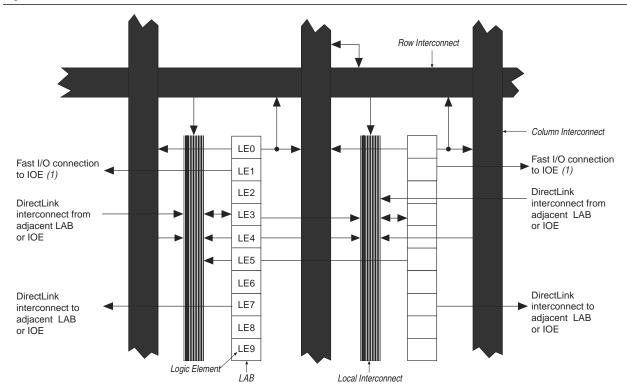

			LAB Rows		
Devices	UFM Blocks	LAB Columns	Long LAB Rows	Short LAB Rows (Width) <i>(1)</i>	Total LABs
EPM240	1	6	4	_	24
EPM570	1	12	4	3 (3)	57
EPM1270	1	16	7	3 (5)	127
EPM2210	1	20	10	3 (7)	221

Note to Table 2-1:

(1) The width is the number of LAB columns in length.

Figure 2–2 shows a floorplan of a MAX II device.

Figure 2–2. MAX II Device Floorplan (Note 1)

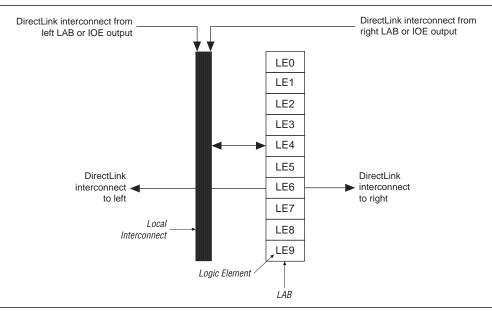

Note to Figure 2-2:

(1) The device shown is an EPM570 device. EPM1270 and EPM2210 devices have a similar floorplan with more LABs. For EPM240 devices, the CFM and UFM blocks are located on the left side of the device.

Logic Array Blocks

Each LAB consists of 10 LEs, LE carry chains, LAB control signals, a local interconnect, a look-up table (LUT) chain, and register chain connection lines. There are 26 possible unique inputs into an LAB, with an additional 10 local feedback input lines fed by LE outputs in the same LAB. The local interconnect transfers signals between LEs in the same LAB. LUT chain connections transfer the output of one LE's LUT to the adjacent LE for fast sequential LUT connections within the same LAB. Register chain connections transfer the output of one LE's register to the adjacent LE's register within an LAB. The Quartus® II software places associated logic within an LAB or adjacent LABs, allowing the use of local, LUT chain, and register chain connections for performance and area efficiency. Figure 2–3 shows the MAX II LAB.

Figure 2–3. MAX II LAB Structure


Note to Figure 2-3:

(1) Only from LABs adjacent to IOEs.

LAB Interconnects

The LAB local interconnect can drive LEs within the same LAB. The LAB local interconnect is driven by column and row interconnects and LE outputs within the same LAB. Neighboring LABs, from the left and right, can also drive an LAB's local interconnect through the DirectLink connection. The DirectLink connection feature minimizes the use of row and column interconnects, providing higher performance and flexibility. Each LE can drive 30 other LEs through fast local and DirectLink interconnects. Figure 2–4 shows the DirectLink connection.

Figure 2-4. DirectLink Connection

LAB Control Signals

Each LAB contains dedicated logic for driving control signals to its LEs. The control signals include two clocks, two clock enables, two asynchronous clears, a synchronous clear, an asynchronous preset/load, a synchronous load, and add/subtract control signals, providing a maximum of 10 control signals at a time. Although synchronous load and clear signals are generally used when implementing counters, they can also be used with other functions.

Each LAB can use two clocks and two clock enable signals. Each LAB's clock and clock enable signals are linked. For example, any LE in a particular LAB using the labclk1 signal also uses labclkena1. If the LAB uses both the rising and falling edges of a clock, it also uses both LAB-wide clock signals. Deasserting the clock enable signal turns off the LAB-wide clock.

Each LAB can use two asynchronous clear signals and an asynchronous load/preset signal. By default, the Quartus II software uses a NOT gate push-back technique to achieve preset. If you disable the NOT gate push-back option or assign a given register to power-up high using the Quartus II software, the preset is then achieved using the asynchronous load signal with asynchronous load data input tied high.

With the LAB-wide addnsub control signal, a single LE can implement a one-bit adder and subtractor. This saves LE resources and improves performance for logic functions such as correlators and signed multipliers that alternate between addition and subtraction depending on data.

The LAB column clocks [3..0], driven by the global clock network, and LAB local interconnect generate the LAB-wide control signals. The MultiTrack interconnect structure drives the LAB local interconnect for non-global control signal generation. The MultiTrack interconnect's inherent low skew allows clock and control signal distribution in addition to data. Figure 2–5 shows the LAB control signal generation circuit.

Internal Oscillator

As shown in Figure 2–15, the dedicated circuitry within the UFM block contains an oscillator. The dedicated circuitry uses this internally for its read and program operations. This oscillator's divide by 4 output can drive out of the UFM block as a logic interface clock source or for general-purpose logic clocking. The typical OSC output signal frequency ranges from 3.3 to 5.5 MHz, and its exact frequency of operation is not programmable.

Program, Erase, and Busy Signals

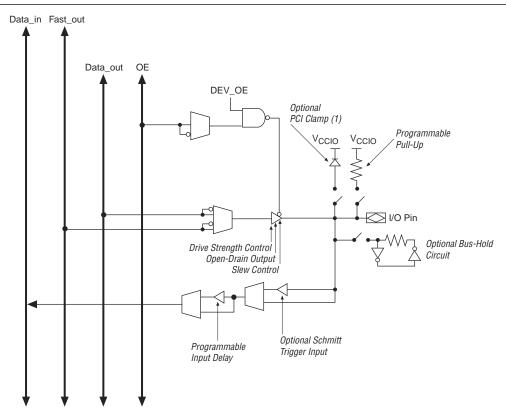
The UFM block's dedicated circuitry automatically generates the necessary internal program and erase algorithm once the PROGRAM or ERASE input signals have been asserted. The PROGRAM or ERASE signal must be asserted until the busy signal deasserts, indicating the UFM internal program or erase operation has completed. The UFM block also supports JTAG as the interface for programming and/or reading.

For more information about programming and erasing the UFM block, refer to the *Using User Flash Memory in MAX II Devices* chapter in the *MAX II Device Handbook*.

Auto-Increment Addressing

The UFM block supports standard read or stream read operations. The stream read is supported with an auto-increment address feature. Deasserting the ARSHIFT signal while clocking the ARCLK signal increments the address register value to read consecutive locations from the UFM array.

Serial Interface


The UFM block supports a serial interface with serial address and data signals. The internal shift registers within the UFM block for address and data are 9 bits and 16 bits wide, respectively. The Quartus II software automatically generates interface logic in LEs for a parallel address and data interface to the UFM block. Other standard protocol interfaces such as SPI are also automatically generated in LE logic by the Quartus II software.

For more information about the UFM interface signals and the Quartus II LE-based alternate interfaces, refer to the *Using User Flash Memory in MAX II Devices* chapter in the *MAX II Device Handbook*.

UFM Block to Logic Array Interface

The UFM block is a small partition of the flash memory that contains the CFM block, as shown in Figure 2–1 and Figure 2–2. The UFM block for the EPM240 device is located on the left side of the device adjacent to the left most LAB column. The UFM block for the EPM570, EPM1270, and EPM2210 devices is located at the bottom left of the device. The UFM input and output signals interface to all types of interconnects (R4 interconnect, C4 interconnect, and DirectLink interconnect to/from adjacent LAB rows). The UFM signals can also be driven from global clocks, GCLK[3..0]. The interface region for the EPM240 device is shown in Figure 2–16. The interface regions for EPM570, EPM1270, and EPM2210 devices are shown in Figure 2–17.

Figure 2–19. MAX II IOE Structure

Note to Figure 2-19:

(1) Available in EPM1270 and EPM2210 devices only.

I/O Blocks

The IOEs are located in I/O blocks around the periphery of the MAX II device. There are up to seven IOEs per row I/O block (5 maximum in the EPM240 device) and up to four IOEs per column I/O block. Each column or row I/O block interfaces with its adjacent LAB and MultiTrack interconnect to distribute signals throughout the device. The row I/O blocks drive row, column, or DirectLink interconnects. The column I/O blocks drive column interconnects.

Bus Hold

Each MAX II device I/O pin provides an optional bus-hold feature. The bus-hold circuitry can hold the signal on an I/O pin at its last-driven state. Since the bus-hold feature holds the last-driven state of the pin until the next input signal is present, an external pull-up or pull-down resistor is not necessary to hold a signal level when the bus is tri-stated.

The bus-hold circuitry also pulls undriven pins away from the input threshold voltage where noise can cause unintended high-frequency switching. The designer can select this feature individually for each I/O pin. The bus-hold output will drive no higher than V_{CCIO} to prevent overdriving signals. If the bus-hold feature is enabled, the device cannot use the programmable pull-up option.

The bus-hold circuitry uses a resistor to pull the signal level to the last driven state. The *DC and Switching Characteristics* chapter in the *MAX II Device Handbook* gives the specific sustaining current for each V_{CCIO} voltage level driven through this resistor and overdrive current used to identify the next-driven input level.

The bus-hold circuitry is only active after the device has fully initialized. The bus-hold circuit captures the value on the pin present at the moment user mode is entered.

Programmable Pull-Up Resistor

Each MAX II device I/O pin provides an optional programmable pull-up resistor during user mode. If the designer enables this feature for an I/O pin, the pull-up resistor holds the output to the V_{CCIO} level of the output pin's bank.

The programmable pull-up resistor feature should not be used at the same time as the bus-hold feature on a given I/O pin.

Programmable Input Delay

The MAX II IOE includes a programmable input delay that is activated to ensure zero hold times. A path where a pin directly drives a register, with minimal routing between the two, may require the delay to ensure zero hold time. However, a path where a pin drives a register through long routing or through combinational logic may not require the delay to achieve a zero hold time. The Quartus II software uses this delay to ensure zero hold times when needed.

MultiVolt I/O Interface

The MAX II architecture supports the MultiVolt I/O interface feature, which allows MAX II devices in all packages to interface with systems of different supply voltages. The devices have one set of VCC pins for internal operation (V_{CCINT}), and up to four sets for input buffers and I/O output driver buffers (V_{CCIO}), depending on the number of I/O banks available in the devices where each set of VCC pins powers one I/O bank. The EPM240 and EPM570 devices have two I/O banks respectively while the EPM1270 and EPM2210 devices have four I/O banks respectively.

This instruction allows you to define the scan chain between TDI and TDO in the MAX II logic array. This instruction is also used for

This instruction allows you to define the scan chain between TDI

and ${\tt TDO}$ in the MAX II logic array. This instruction is also used for

IEEE 1532 ISC instructions used when programming a MAX II device

USER0

USER1

Table 6 11 W/W/WII 61/WATI	istractions (rate 2 or 2)	
JTAG Instruction	Instruction Code	Description
CLAMP (1)	00 0000 1010	Places the 1-bit bypass register between the TDI and TDO pins, which allows the boundary scan test data to pass synchronously through selected devices to adjacent devices during normal device operation, while holding I/O pins to a state defined by the data in the boundary-scan register.

Table 3-1. MAX II JTAG Instructions (Part 2 of 2)

instr	ucti	ons
Notes to	Table	3–1:

IEEE 1532

(1) HIGHZ, CLAMP, and EXTEST instructions do not disable weak pull-up resistors or bus hold features.

00 0000 1100

00 0000 1110

(2)

(2) These instructions are shown in the 1532 BSDL files, which will be posted on the Altera® website at www.altera.com when they are available.

via the JTAG port.

Unsupported JTAG instructions should not be issued to the MAX II device as this may put the device into an unknown state, requiring a power cycle to recover device operation.

custom logic and JTAG interfaces.

custom logic and JTAG interfaces.

The MAX II device instruction register length is 10 bits and the USERCODE register length is 32 bits. Table 3–2 and Table 3–3 show the boundary-scan register length and device IDCODE information for MAX II devices.

Table 3-2. MAX II Boundary-Scan Register Length

Device	Boundary-Scan Register Length
EPM240	240
EPM570	480
EPM1270	636
EPM2210	816

Table 3-3. 32-Bit MAX II Device IDCODE (Part 1 of 2)

	Binary IDCODE (32 Bits) <i>(1)</i>				
Device	Version (4 Bits)	Part Number	Manufacturer Identity (11 Bits)	LSB (1 Bit) <i>(2)</i>	HEX IDCODE
EPM240	0000	0010 0000 1010 0001	000 0110 1110	1	0x020A10DD
EPM240G					
EPM570	0000	0010 0000 1010 0010	000 0110 1110	1	0x020A20DD
EPM570G					
EPM1270	0000	0010 0000 1010 0011	000 0110 1110	1	0x020A30DD
EPM1270G					
EPM2210	0000	0010 0000 1010 0100	000 0110 1110	1	0x020A40DD
EPM2210G					

Document Revision History

Table 3–5 shows the revision history for this chapter.

Table 3-5. Document Revision History

Date and Revision	Changes Made	Summary of Changes
October 2008, version 1.6	Updated New Document Format.	_
December 2007,	■ Added warning note after Table 3–1.	_
version 1.5	■ Updated Table 3–3 and Table 3–4.	
	■ Added "Referenced Documents" section.	
December 2006, version 1.4	Added document revision history.	_
June 2005, version 1.3	Added text and Table 3-4.	_
June 2005, version 1.3	■ Updated text on pages 3-5 to 3-8.	_
June 2004, version 1.1	Corrected Figure 3-1. Added CFM acronym.	_

MII51004-2.1

Introduction

MAX® II devices offer hot socketing, also known as hot plug-in or hot swap, and power sequencing support. Designers can insert or remove a MAX II board in a system during operation without undesirable effects to the system bus. The hot socketing feature removes some of the difficulties designers face when using components on printed circuit boards (PCBs) that contain a mixture of 3.3-, 2.5-, 1.8-, and 1.5-V devices.

The MAX II device hot socketing feature provides:

- Board or device insertion and removal
- Support for any power-up sequence
- Non-intrusive I/O buffers to system buses during hot insertion

This chapter contains the following sections:

- "MAX II Hot-Socketing Specifications" on page 4–1
- "Power-On Reset Circuitry" on page 4–5

MAX II Hot-Socketing Specifications

MAX II devices offer all three of the features required for the hot-socketing capability listed above without any external components or special design requirements. The following are hot-socketing specifications:

- The device can be driven before and during power-up or power-down without any damage to the device itself.
- I/O pins remain tri-stated during power-up. The device does not drive out before or during power-up, thereby affecting other buses in operation.
- Signal pins do not drive the V_{CCIO} or V_{CCINT} power supplies. External input signals to device I/O pins do not power the device V_{CCIO} or V_{CCINT} power supplies via internal paths. This is true if the V_{CCINT} and the V_{CCIO} supplies are held at GND.

Altera uses GND as reference for the hot-socketing and I/O buffers circuitry designs. You must connect the GND between boards before connecting the V_{CCINT} and the V_{CCIO} power supplies to ensure device reliability and compliance to the hot-socketing specifications.

Devices Can Be Driven before Power-Up

Signals can be driven into the MAX II device I/O pins and GCLK [3 . . 0] pins before or during power-up or power-down without damaging the device. MAX II devices support any power-up or power-down sequence (V_{CCIO1} , V_{CCIO2} , V_{CCIO3} , V_{CCIO4} , V_{CCIO4} , V_{CCIO4} , V_{CCIO7}), simplifying the system-level design.

Timing Model and Specifications

Table 3-13. WAX II Device IIIIIIII Would Status (I alt 2 01 2	Table 5-13.	MAX II Device	Timing Model Status	(Part 2 of 2
---	-------------	---------------	---------------------	--------------

Device	Preliminary	Final
EPM1270	_	✓
EPM2210	_	✓

Note to Table 5-13:

(1) The MAX IIZ device timing models are only available in the Quartus II software version 8.0 and later.

Performance

Table 5–14 shows the MAX II device performance for some common designs. All performance values were obtained with the Quartus II software compilation of megafunctions. Performance values for -3, -4, and -5 speed grades are based on an EPM1270 device target, while -6, -7, and -8 speed grades are based on an EPM570Z device target.

Table 5-14. MAX II Device Performance

							Perfor	mance			
		Reso	ources	Used	MA	X II / MAX	(IIG		MAX IIZ		
Resource Used	Design Size and Function	Mode	LEs	UFM Blocks	–3 Speed Grade	–4 Speed Grade	–5 Speed Grade	-6 Speed Grade	–7 Speed Grade	–8 Speed Grade	Unit
LE	16-bit counter (1)	_	16	0	304.0	247.5	201.1	184.1	123.5	118.3	MHz
	64-bit counter (1)	_	64	0	201.5	154.8	125.8	83.2	83.2	80.5	MHz
	16-to-1 multiplexer	_	11	0	6.0	8.0	9.3	17.4	17.3	20.4	ns
	32-to-1 multiplexer	_	24	0	7.1	9.0	11.4	12.5	22.8	25.3	ns
	16-bit XOR function	_	5	0	5.1	6.6	8.2	9.0	15.0	16.1	ns
	16-bit decoder with single address line	_	5	0	5.2	6.6	8.2	9.2	15.0	16.1	ns
UFM	512 × 16	None	3	1	10.0	10.0	10.0	10.0	10.0	10.0	MHz
	512 × 16	SPI (2)	37	1	8.0	8.0	8.0	9.7	9.7	9.7	MHz
	512 × 8	Parallel (3)	73	1	(4)	(4)	(4)	(4)	(4)	(4)	MHz
	512 × 16	I ² C (3)	142	1	100 <i>(5)</i>	100 <i>(5)</i>	100 <i>(5)</i>	100 <i>(5)</i>	100 <i>(5)</i>	100 <i>(5)</i>	kHz

Notes to Table 5-14:

- (1) This design is a binary loadable up counter.
- (2) This design is configured for read-only operation in Extended mode. Read and write ability increases the number of LEs used.
- (3) This design is configured for read-only operation. Read and write ability increases the number of LEs used.
- (4) This design is asynchronous.
- (5) The I^2C megafunction is verified in hardware up to 100-kHz serial clock line (SCL) rate.

External Timing Parameters

External timing parameters are specified by device density and speed grade. All external I/O timing parameters shown are for the 3.3-V LVTTL I/O standard with the maximum drive strength and fast slew rate. For external I/O timing using standards other than LVTTL or for different drive strengths, use the I/O standard input and output delay adders in Table 5–27 through Table 5–31.

For more information about each external timing parameters symbol, refer to the *Understanding Timing in MAX II Devices* chapter in the *MAX II Device Handbook*.

Table 5–23 shows the external I/O timing parameters for EPM240 devices.

Table 5–23. EPM240 Global Clock External I/O Timing Parameters (Part 1 of 2)

				ı	MAX II	MAX II	G				MA	X IIZ			
				Speed rade		Speed ade		Speed ade		Speed ade		Speed ade		Speed ade	Ī
Symbol	Parameter	Condition	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
t _{PD1}	Worst case pin-to-pin delay through 1 look-up table (LUT)	10 pF	_	4.7	_	6.1	_	7.5	_	7.9	_	12.0	_	14.0	ns
t _{PD2}	Best case pin-to-pin delay through 1 LUT	10 pF		3.7	_	4.8	_	5.9	_	5.8	_	7.8	_	8.5	ns
t _{SU}	Global clock setup time	_	1.7	_	2.2	_	2.7	_	2.4	_	4.1	_	4.6	_	ns
t _H	Global clock hold time	_	0		0	_	0	_	0	_	0	_	0	_	ns
t _{co}	Global clock to output delay	10 pF	2.0	4.3	2.0	5.6	2.0	6.9	2.0	6.6	2.0	8.1	2.0	8.6	ns
t _{CH}	Global clock high time	_	166	_	216	_	266	_	253	_	335	_	339	_	ps
t _{CL}	Global clock low time	_	166	_	216	_	266	_	253		335	_	339	_	ps
t _{CNT}	Minimum global clock period for 16-bit counter	_	3.3		4.0	_	5.0		5.4		8.1	_	8.4		ns

Table 5–23. EPM240 Global Clock External I/O Timing Parameters (Part 2 of 2)

			MAX II / MAX IIG							MAX IIZ					
				Speed rade		Speed ade		Speed rade		Speed ade		Speed ade		Speed ade	
Symbol	Parameter	Condition	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
f _{CNT}	Maximum global clock frequency for 16-bit counter	_	_	304.0 (1)	_	247.5	_	201.1	_	184.1	_	123.5	_	118.3	MHz

Note to Table 5-23:

Table 5–24 shows the external I/O timing parameters for EPM570 devices.

Table 5–24. EPM570 Global Clock External I/O Timing Parameters (Part 1 of 2)

				N	/IAX II	/ MAX I	IG				MA	X IIZ			
				Speed ade		Speed ade		Speed ade		peed ade		Speed ade		Speed ade	
Symbol	Parameter	Condition	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
t _{PD1}	Worst case pin- to-pin delay through 1 look- up table (LUT)	10 pF	_	5.4	_	7.0	_	8.7	_	9.5	_	15.1	_	17.7	ns
t _{PD2}	Best case pin- to-pin delay through 1 LUT	10 pF	_	3.7	_	4.8	_	5.9	_	5.7	_	7.7	_	8.5	ns
t _{su}	Global clock setup time	_	1.2	_	1.5	_	1.9	_	2.2	_	3.9		4.4		ns
t _H	Global clock hold time	_	0	_	0	_	0	_	0	_	0	_	0	_	ns
t _{co}	Global clock to output delay	10 pF	2.0	4.5	2.0	5.8	2.0	7.1	2.0	6.7	2.0	8.2	2.0	8.7	ns
t _{cH}	Global clock high time	_	166	_	216	_	266	_	253	_	335	_	339	_	ps
t _{CL}	Global clock low time	_	166	_	216	_	266	_	253	_	335	_	339	_	ps
t _{cnt}	Minimum global clock period for 16-bit counter	_	3.3	_	4.0	_	5.0	_	5.4	_	8.1	_	8.4	_	ns

⁽¹⁾ The maximum frequency is limited by the I/O standard on the clock input pin. The 16-bit counter critical delay performs faster than this global clock input pin maximum frequency.

Table 5–29. External Timing Output Delay and $t_{\mbox{\tiny OD}}$ Adders for Fast Slew Rate

			M	AX II /	MAX IIG	ì				MA	X IIZ			
		ı	Speed ade		Speed ade		Speed ade		peed ade		peed ade		peed ade	
I/O Standa	ırd	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
3.3-V LVTTL	16 mA	_	0	_	0	_	0	_	0	_	0	_	0	ps
	8 mA	_	65	_	84	_	104	_	-6	_	-2	_	-3	ps
3.3-V LVCMOS	8 mA		0	_	0	_	0	_	0	_	0	_	0	ps
	4 mA	_	65	_	84	_	104	_	-6	_	-2	_	-3	ps
2.5-V LVTTL /	14 mA	_	122	_	158	_	195	_	-63	_	-71	_	-88	ps
LVCMOS	7 mA		193	_	251	_	309	_	10	_	-1	_	1	ps
1.8-V LVTTL /	6 mA	_	568	_	738	_	909	_	128	_	118	_	118	ps
LVCMOS	3 mA	_	654	_	850	_	1,046	_	352	_	327	_	332	ps
1.5-V LVCMOS	4 mA	_	1,059	_	1,376	_	1,694	_	421	_	400	_	400	ps
	2 mA	_	1,167	_	1,517	_	1,867	_	757	_	743	_	743	ps
3.3-V PCI	20 mA	_	3	_	4	_	5	_	-6	_	-2	_	-3	ps

Table 5–30. External Timing Output Delay and $t_{\tiny OD}$ Adders for Slow Slew Rate

			ľ	II XAN	/ MAX IIO	ì				M	AX IIZ			
			-3 Speed -4 Speed Grade Grade				Speed rade		−6 Speed −7 Speed Grade Grade		•	ı	Speed rade	
I/O Standa	rd	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
3.3-V LVTTL	16 mA	_	7,064	_	6,745	_	6,426	_	5,966	_	5,992	_	6,118	ps
	8 mA	_	7,946	_	7,627	_	7,308	_	6,541	_	6,570	_	6,720	ps
3.3-V LVCMOS	8 mA	_	7,064	_	6,745	_	6,426	_	5,966	_	5,992	_	6,118	ps
	4 mA	_	7,946	_	7,627	_	7,308	_	6,541	_	6,570	_	6,720	ps
2.5-V LVTTL /	14 mA	_	10,434	_	10,115	_	9,796	_	9,141	_	9,154	_	9,297	ps
LVCMOS	7 mA	_	11,548	_	11,229	_	10,910	_	9,861	_	9,874	_	10,037	ps
1.8-V LVTTL /	6 mA	_	22,927	_	22,608	_	22,289	_	21,811	_	21,854	_	21,857	ps
LVCMOS	3 mA	_	24,731	_	24,412	_	24,093	_	23,081	_	23,034	_	23,107	ps
1.5-V LVCMOS	4 mA	_	38,723	_	38,404	_	38,085	_	39,121	_	39,124	_	39,124	ps
	2 mA	_	41,330	_	41,011	_	40,692	_	40,631	_	40,634	_	40,634	ps
3.3-V PCI	20 mA	_	261	_	339	_	418	_	6,644	_	6,627	_	6,914	ps

Table 5–31. MAX II IOE Programmable Delays

		N	/IAX II	/ MAX II	G		MAX IIZ						
	-3 Speed -4 Speed Grade Grade		ı	–5 Speed Grade		-6 Speed Grade		Speed ade	-8 Speed Grade				
Parameter	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Input Delay from Pin to Internal Cells = 1	_	1,225	_	1,592	_	1,960	_	1,858	_	2,171	_	2,214	ps
Input Delay from Pin to Internal Cells = 0	_	89	_	115	_	142	_	569	_	609		616	ps

Maximum Input and Output Clock Rates

Table 5–32 and Table 5–33 show the maximum input and output clock rates for standard I/O pins in MAX II devices.

Table 5-32. MAX II Maximum Input Clock Rate for I/O

		М	AX II / MAX	IIG		MAX IIZ		
I/0 St	tandard	-3 Speed Grade	–4 Speed Grade	–5 Speed Grade	-6 Speed Grade	–7 Speed Grade	–8 Speed Grade	Unit
3.3-V LVTTL	Without Schmitt Trigger	304	304	304	304	304	304	MHz
	With Schmitt Trigger	250	250	250	250	250	250	MHz
3.3-V LVCMOS	Without Schmitt Trigger	304	304	304	304	304	304	MHz
	With Schmitt Trigger	250	250	250	250	250	250	MHz
2.5-V LVTTL	Without Schmitt Trigger	220	220	220	220	220	220	MHz
	With Schmitt Trigger	188	188	188	188	188	188	MHz
2.5-V LVCMOS	Without Schmitt Trigger	220	220	220	220	220	220	MHz
	With Schmitt Trigger	188	188	188	188	188	188	MHz
1.8-V LVTTL	Without Schmitt Trigger	200	200	200	200	200	200	MHz
1.8-V LVCMOS	Without Schmitt Trigger	200	200	200	200	200	200	MHz
1.5-V LVCMOS	Without Schmitt Trigger	150	150	150	150	150	150	MHz
3.3-V PCI	Without Schmitt Trigger	304	304	304	304	304	304	MHz

Document Revision History

Table 5–35 shows the revision history for this chapter.

Table 5–35. Document Revision History (Part 1 of 2)

Date and Revision	Changes Made	Summary of Changes
August 2009, version 2.5	■ Added Table 5–28, Table 5–29, and Table 5–30. ■ Updated Table 5–2, Table 5–4, Table 5–14, Table 5–15, Table 5–16, Table 5–17, Table 5–18, Table 5–19, Table 5–20, Table 5–21, Table 5–22, Table 5–23, Table 5–24, Table 5–27, Table 5–31, Table 5–32, and Table 5–33.	Added information for speed grade –8
November 2008, version 2.4	 Updated Table 5–2. Updated "Internal Timing Parameters" section. 	_
October 2008, version 2.3	■ Updated New Document Format. ■ Updated Figure 5–1.	_
July 2008, version 2.2	■ Updated Table 5–14 , Table 5–23 , and Table 5–24.	_
March 2008, version 2.1	■ Added (Note 5) to Table 5–4.	_
December 2007, version 2.0	 Updated (Note 3) and (4) to Table 5–1. Updated Table 5–2 and added (Note 5). Updated ICCSTANDBY and ICCPOWERUP information and added IPULLUP information in Table 5–4. Added (Note 1) to Table 5–10. Updated Figure 5–2. Added (Note 1) to Table 5–13. Updated Table 5–13 through Table 5–24, and Table 5–27 through Table 5–30. Added tCOMB information to Table 5–15. Updated Figure 5–6. Added "Referenced Documents" section. 	Updated document with MAX IIZ information.
December 2006, version 1.8	Added note to Table 5–1.Added document revision history.	_
July 2006, version 1.7	■ Minor content and table updates.	_
February 2006, version 1.6	 Updated "External Timing I/O Delay Adders" section. Updated Table 5–29. Updated Table 5–30. 	_
November 2005, version 1.5	■ Updated Tables 5-2, 5-4, and 5-12.	_
August 2005, version 1.4	 Updated Figure 5-1. Updated Tables 5-13, 5-16, and 5-26. Removed Note 1 from Table 5-12. 	_

Table 5-35. Document Revision History (Part 2 of 2)

Date and Revision	Changes Made	Summary of Changes
June 2005,	■ Updated the R _{PULLUP} parameter in Table 5-4.	_
version 1.3	■ Added Note 2 to Tables 5-8 and 5-9.	
	■ Updated Table 5-13.	
	■ Added "Output Drive Characteristics" section.	
	■ Added I ² C mode and Notes 5 and 6 to Table 5-14.	
	■ Updated timing values to Tables 5-14 through 5-33.	
December 2004,	■ Updated timing Tables 5-2, 5-4, 5-12, and Tables 15-14 through 5-34.	_
version 1.2	■ Table 5-31 is new.	
June 2004, version 1.1	■ Updated timing Tables 5-15 through 5-32.	_

Referenced Documents

This chapter references the following document:

■ Package Information chapter in the MAX II Device Handbook

Document Revision History

Table 6–1 shows the revision history for this chapter.

Table 6-1. Document Revision History

Date and Revision	Changes Made	Summary of Changes
August 2009, version 1.6	■ Updated Figure 6–1.	Added information for speed grade –8
October 2008, version 1.5	Updated New Document Format.	_
December 2007, version 1.4	Added "Referenced Documents" section.Updated Figure 6–1.	Updated document with MAX IIZ information.
December 2006, version 1.3	Added document revision history.	_
October 2006, version 1.2	■ Updated Figure 6-1.	_
June 2005, version 1.1	Removed Dual Marking section.	_