
E·XFL

Altera - EPM570GT144C3N Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - CPLDs (Complex</u> <u>Programmable Logic Devices)</u>

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixedfunction ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details

Details	
Product Status	Active
Programmable Type	In System Programmable
Delay Time tpd(1) Max	5.4 ns
Voltage Supply - Internal	1.71V ~ 1.89V
Number of Logic Elements/Blocks	570
Number of Macrocells	440
Number of Gates	-
Number of I/O	116
Operating Temperature	0°C ~ 85°C (TJ)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-TQFP (20x20)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=epm570gt144c3n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

MAX II devices are available in space-saving FineLine BGA, Micro FineLine BGA, and thin quad flat pack (TQFP) packages (refer to Table 1–3 and Table 1–4). MAX II devices support vertical migration within the same package (for example, you can migrate between the EPM570, EPM1270, and EPM2210 devices in the 256-pin FineLine BGA package). Vertical migration means that you can migrate to devices whose dedicated pins and JTAG pins are the same and power pins are subsets or supersets for a given package across device densities. The largest density in any package has the highest number of power pins; you must lay out for the largest planned density in a package to provide the necessary power pins for migration. For I/O pin migration across densities, cross reference the available I/O pins using the device pin-outs for all planned densities of a given package type to identify which I/O pins can be migrated. The Quartus® II software can automatically cross-reference and place all pins for you when given a device migration list.

 Table 1–3.
 MAX II Packages and User I/O Pins

Device	68-Pin Micro FineLine BGA <i>(1)</i>	100-Pin Micro FineLine BGA <i>(1)</i>	100-Pin FineLine BGA	100-Pin TQFP	144-Pin TQFP	144-Pin Micro FineLine BGA <i>(1)</i>	256-Pin Micro FineLine BGA <i>(1)</i>	256-Pin FineLine BGA	324-Pin FineLine BGA
EPM240	_	80	80	80	_	—	—	—	_
EPM240G									
EPM570	_	76	76	76	116	_	160	160	_
EPM570G									
EPM1270	—	_	_	_	116	_	212	212	_
EPM1270G									
EPM2210	—	—	—	—	—	—	—	204	272
EPM2210G									
EPM240Z	54	80	—	—	—	—	—	—	—
EPM570Z	_	76	_	_	_	116	160	—	_

Note to Table 1-3:

(1) Packages available in lead-free versions only.

Table 1-4. MAX II TQFP, FineLine BGA, and Micro FineLine BGA Package Sizes

Package	68-Pin Micro FineLine BGA	100-Pin Micro FineLine BGA	100-Pin FineLine BGA	100-Pin TQFP	144-Pin TQFP	144-Pin Micro FineLine BGA	256-Pin Micro FineLine BGA	256-Pin FineLine BGA	324-Pin FineLine BGA
Pitch (mm)	0.5	0.5	1	0.5	0.5	0.5	0.5	1	1
Area (mm2)	25	36	121	256	484	49	121	289	361
Length × width (mm × mm)	5 × 5	6 × 6	11 × 11	16 × 16	22 × 22	7×7	11 × 11	17 × 17	19 × 19

Table 1–6. Document Revision History

Date and Revision	Changes Made	Summary of Changes
June 2005, version 1.3	 Updated timing numbers in Table 1-1. 	_
December 2004, version 1.2	 Updated timing numbers in Table 1-1. 	_
June 2004, version 1.1	 Updated timing numbers in Table 1-1. 	

2. MAX II Architecture

MII51002-2.2

Introduction

This chapter describes the architecture of the MAX II device and contains the following sections:

- "Functional Description" on page 2–1
- "Logic Array Blocks" on page 2–4
- "Logic Elements" on page 2–6
- "MultiTrack Interconnect" on page 2–12
- "Global Signals" on page 2–16
- "User Flash Memory Block" on page 2–18
- "MultiVolt Core" on page 2–22
- "I/O Structure" on page 2–23

Functional Description

MAX[®] II devices contain a two-dimensional row- and column-based architecture to implement custom logic. Row and column interconnects provide signal interconnects between the logic array blocks (LABs).

The logic array consists of LABs, with 10 logic elements (LEs) in each LAB. An LE is a small unit of logic providing efficient implementation of user logic functions. LABs are grouped into rows and columns across the device. The MultiTrack interconnect provides fast granular timing delays between LABs. The fast routing between LEs provides minimum timing delay for added levels of logic versus globally routed interconnect structures.

The MAX II device I/O pins are fed by I/O elements (IOE) located at the ends of LAB rows and columns around the periphery of the device. Each IOE contains a bidirectional I/O buffer with several advanced features. I/O pins support Schmitt trigger inputs and various single-ended standards, such as 66-MHz, 32-bit PCI, and LVTTL.

MAX II devices provide a global clock network. The global clock network consists of four global clock lines that drive throughout the entire device, providing clocks for all resources within the device. The global clock lines can also be used for control signals such as clear, preset, or output enable.

LUT Chain and Register Chain

In addition to the three general routing outputs, the LEs within an LAB have LUT chain and register chain outputs. LUT chain connections allow LUTs within the same LAB to cascade together for wide input functions. Register chain outputs allow registers within the same LAB to cascade together. The register chain output allows an LAB to use LUTs for a single combinational function and the registers to be used for an unrelated shift register implementation. These resources speed up connections between LABs while saving local interconnect resources. Refer to "MultiTrack Interconnect" on page 2–12 for more information about LUT chain and register chain connections.

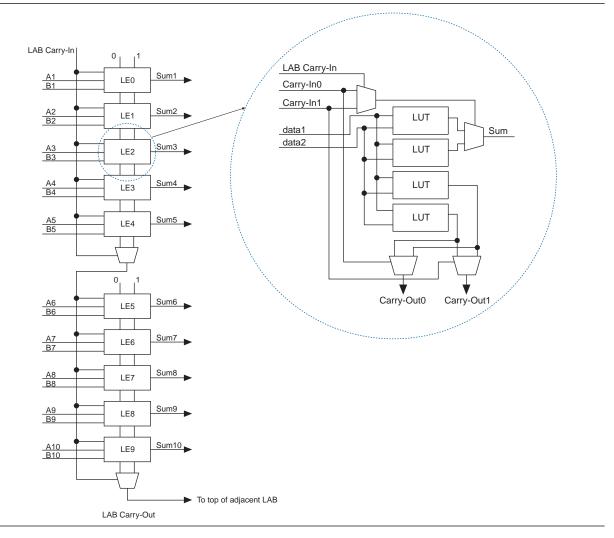
addnsub Signal

The LE's dynamic adder/subtractor feature saves logic resources by using one set of LEs to implement both an adder and a subtractor. This feature is controlled by the LAB-wide control signal addnsub. The addnsub signal sets the LAB to perform either A + B or A – B. The LUT computes addition; subtraction is computed by adding the two's complement of the intended subtractor. The LAB-wide signal converts to two's complement by inverting the B bits within the LAB and setting carry-in to 1, which adds one to the least significant bit (LSB). The LSB of an adder/subtractor must be placed in the first LE of the LAB, where the LAB-wide addnsub signal automatically sets the carry-in to 1. The Quartus II Compiler automatically places and uses the adder/subtractor feature when using adder/subtractor parameterized functions.

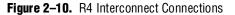
LE Operating Modes

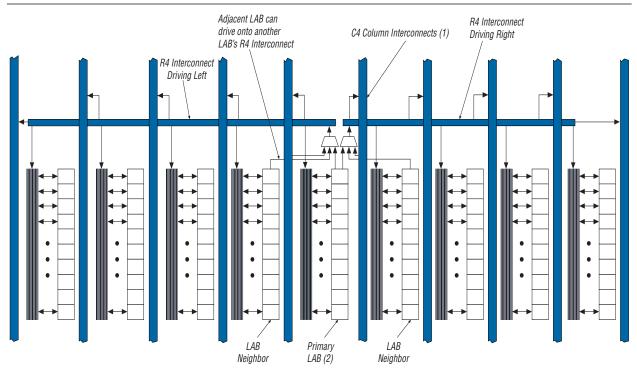
The MAX II LE can operate in one of the following modes:

- "Normal Mode"
- "Dynamic Arithmetic Mode"


Each mode uses LE resources differently. In each mode, eight available inputs to the LE, the four data inputs from the LAB local interconnect, carry-in0 and carry-in1 from the previous LE, the LAB carry-in from the previous carry-chain LAB, and the register chain connection are directed to different destinations to implement the desired logic function. LAB-wide signals provide clock, asynchronous clear, asynchronous preset/load, synchronous clear, synchronous load, and clock enable control for the register. These LAB-wide signals are available in all LE modes. The addnsub control signal is allowed in arithmetic mode.

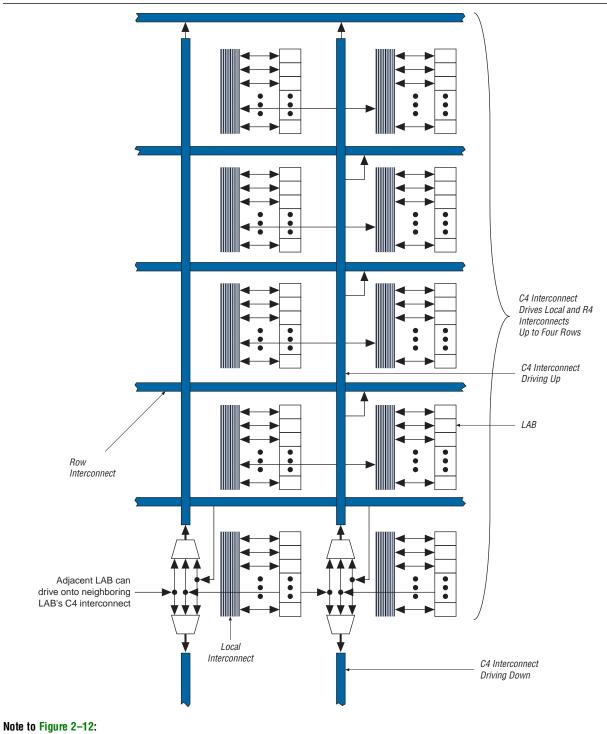
The Quartus II software, in conjunction with parameterized functions such as library of parameterized modules (LPM) functions, automatically chooses the appropriate mode for common functions such as counters, adders, subtractors, and arithmetic functions.


The speed advantage of the carry-select chain is in the parallel precomputation of carry chains. Since the LAB carry-in selects the precomputed carry chain, not every LE is in the critical path. Only the propagation delays between LAB carry-in generation (LE 5 and LE 10) are now part of the critical path. This feature allows the MAX II architecture to implement high-speed counters, adders, multipliers, parity functions, and comparators of arbitrary width.


Figure 2–9 shows the carry-select circuitry in an LAB for a 10-bit full adder. One portion of the LUT generates the sum of two bits using the input signals and the appropriate carry-in bit; the sum is routed to the output of the LE. The register can be bypassed for simple adders or used for accumulator functions. Another portion of the LUT generates carry-out bits. An LAB-wide carry-in bit selects which chain is used for the addition of given inputs. The carry-in signal for each chain, carry-in0 or carry-in1, selects the carry-out to carry forward to the carry-in signal of the next-higher-order bit. The final carry-out signal is routed to an LE, where it is fed to local, row, or column interconnects.

The R4 interconnects span four LABs and are used for fast row connections in a four-LAB region. Every LAB has its own set of R4 interconnects to drive either left or right. Figure 2–10 shows R4 interconnect connections from an LAB. R4 interconnects can drive and be driven by row IOEs. For LAB interfacing, a primary LAB or horizontal LAB neighbor can drive a given R4 interconnect. For R4 interconnects that drive to the right, the primary LAB and right neighbor can drive on to the interconnect. For R4 interconnects that drive to the left, the primary LAB and its left neighbor can drive on to the interconnect. R4 interconnects can drive other R4 interconnects to extend the range of LABs they can drive. R4 interconnects can also drive C4 interconnects for connections from one row to another.

Notes to Figure 2–10:


- (1) C4 interconnects can drive R4 interconnects.
- (2) This pattern is repeated for every LAB in the LAB row.

The column interconnect operates similarly to the row interconnect. Each column of LABs is served by a dedicated column interconnect, which vertically routes signals to and from LABs and row and column IOEs. These column resources include:

- LUT chain interconnects within an LAB
- Register chain interconnects within an LAB
- C4 interconnects traversing a distance of four LABs in an up and down direction

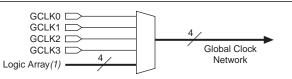
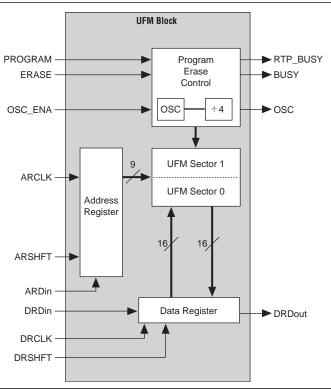

MAX II devices include an enhanced interconnect structure within LABs for routing LE output to LE input connections faster using LUT chain connections and register chain connections. The LUT chain connection allows the combinational output of an LE to directly drive the fast input of the LE right below it, bypassing the local interconnect. These resources can be used as a high-speed connection for wide fan-in

Figure 2–12. C4 Interconnect Connections (Note 1)

(1) Each C4 interconnect can drive either up or down four rows.


Note to Figure 2-13:

(1) Any I/O pin can use a MultiTrack interconnect to route as a logic array-generated global clock signal.

The global clock network drives to individual LAB column signals, LAB column clocks [3..0], that span an entire LAB column from the top to the bottom of the device. Unused global clocks or control signals in a LAB column are turned off at the LAB column clock buffers shown in Figure 2–14. The LAB column clocks [3..0] are multiplexed down to two LAB clock signals and one LAB clear signal. Other control signal types route from the global clock network into the LAB local interconnect. See "LAB Control Signals" on page 2–5 for more information.

- Auto-increment addressing
- Serial interface to logic array with programmable interface

UFM Storage

Each device stores up to 8,192 bits of data in the UFM block. Table 2–3 shows the data size, sector, and address sizes for the UFM block.

 Table 2–3.
 UFM Array Size

Device	Total Bits	Sectors	Address Bits	Data Width
EPM240	8,192	2	9	16
EPM570		(4,096 bits/sector)		
EPM1270				
EPM2210				

There are 512 locations with 9-bit addressing ranging from 000h to 1FFh. Sector 0 address space is 000h to 0FFh and Sector 1 address space is from 100h to 1FFh. The data width is up to 16 bits of data. The Quartus II software automatically creates logic to accommodate smaller read or program data widths. Erasure of the UFM involves individual sector erasing (that is, one erase of sector 0 and one erase of sector 1 is required to erase the entire UFM block). Since sector erase is required before a program or write, having two sectors enables a sector size of data to be left untouched while the other sector is erased and programmed with new data.

Connect VCCIO pins to either a 1.5-V, 1.8 V, 2.5-V, or 3.3-V power supply, depending on the output requirements. The output levels are compatible with systems of the same voltage as the power supply (that is, when VCCIO pins are connected to a 1.5-V power supply, the output levels are compatible with 1.5-V systems). When VCCIO pins are connected to a 3.3-V power supply, the output high is 3.3 V and is compatible with 3.3-V or 5.0-V systems. Table 2–7 summarizes MAX II MultiVolt I/O support.

Table 2–7. MAX II MultiVolt I/O Support (Note 1)

			Input Signa	I		Output Signal				
VCCIO (V)	1.5 V	1.8 V	2.5 V	3.3 V	5.0 V	1.5 V	1.8 V	2.5 V	3.3 V	5.0 V
1.5	\checkmark	\checkmark	\checkmark	\checkmark	—	\checkmark	_		_	
1.8	\checkmark	\checkmark	\checkmark	~	_	(2)	\checkmark	_	_	_
2.5		_	\checkmark	~	_	(3)	🗸 (3)	\checkmark		
3.3		_	✓ (4)	~	 (5) 	 (6) 	🗸 (6)	🗸 (6)	\checkmark	 (7)

Notes to Table 2-7:

(1) To drive inputs higher than V_{CGIO} but less than 4.0 V including the overshoot, disable the I/O clamp diode. However, to drive 5.0-V inputs to the device, enable the I/O clamp diode to prevent V₁ from rising above 4.0 V.

- (2) When $V_{CCIO} = 1.8$ V, a MAX II device can drive a 1.5-V device with 1.8-V tolerant inputs.
- (3) When $V_{CCIO} = 2.5$ V, a MAX II device can drive a 1.5-V or 1.8-V device with 2.5-V tolerant inputs.
- (4) When V_{CCI0} = 3.3 V and a 2.5-V input signal feeds an input pin, the VCCI0 supply current will be slightly larger than expected.
- (5) MAX II devices can be 5.0-V tolerant with the use of an external resistor and the internal I/O clamp diode on the EPM1270 and EPM2210 devices.
- (6) When $V_{CCIO} = 3.3$ V, a MAX II device can drive a 1.5-V, 1.8-V, or 2.5-V device with 3.3-V tolerant inputs.
- (7) When V_{CCI0} = 3.3 V, a MAX II device can drive a device with 5.0-V TTL inputs but not 5.0-V CMOS inputs. In the case of 5.0-V CMOS, opendrain setting with internal I/O clamp diode (available only on EPM1270 and EPM2210 devices) and external resistor is required.

• For information about output pin source and sink current guidelines, refer to the *AN* 428: *MAX II CPLD Design Guidelines*.

Referenced Documents

This chapter referenced the following documents:

- AN 428: MAX II CPLD Design Guidelines
- DC and Switching Characteristics chapter in the MAX II Device Handbook
- Hot Socketing and Power-On Reset in MAX II Devices chapter in the MAX II Device Handbook
- Using User Flash Memory in MAX II Devices chapter in the MAX II Device Handbook

Table 3-1.	MAX II JTAG	Instructions	(Part 2 of 2)
------------	-------------	--------------	---------------

JTAG Instruction	Instruction Code	Description
CLAMP (1)	00 0000 1010	Places the 1-bit bypass register between the TDI and TDO pins, which allows the boundary scan test data to pass synchronously through selected devices to adjacent devices during normal device operation, while holding I/O pins to a state defined by the data in the boundary-scan register.
USER0	00 0000 1100	This instruction allows you to define the scan chain between TDI and TDO in the MAX II logic array. This instruction is also used for custom logic and JTAG interfaces.
USER1	00 0000 1110	This instruction allows you to define the scan chain between TDI and TDO in the MAX II logic array. This instruction is also used for custom logic and JTAG interfaces.
IEEE 1532 instructions	(2)	IEEE 1532 ISC instructions used when programming a MAX II device via the JTAG port.

Notes to Table 3-1:

(1) HIGHZ, CLAMP, and EXTEST instructions do not disable weak pull-up resistors or bus hold features.

(2) These instructions are shown in the 1532 BSDL files, which will be posted on the Altera® website at www.altera.com when they are available.

Unsupported JTAG instructions should not be issued to the MAX II device as this may put the device into an unknown state, requiring a power cycle to recover device operation.

The MAX II device instruction register length is 10 bits and the USERCODE register length is 32 bits. Table 3–2 and Table 3–3 show the boundary-scan register length and device IDCODE information for MAX II devices.

Table 3–2. MAX II Boundary-Scan Register Length

Device	Boundary-Scan Register Length
EPM240	240
EPM570	480
EPM1270	636
EPM2210	816

Table 3-3. 32-Bit MAX II Device IDCODE (Part 1 of 2)

Device	Version (4 Bits)	Part Number	Manufacturer Identity (11 Bits)	LSB (1 Bit) <i>(2)</i>	HEX IDCODE
EPM240	0000	0010 0000 1010 0001	000 0110 1110	1	0x020A10DD
EPM240G					
EPM570	0000	0010 0000 1010 0010	000 0110 1110	1	0x020A20DD
EPM570G					
EPM1270	0000	0010 0000 1010 0011	000 0110 1110	1	0x020A30DD
EPM1270G					
EPM2210	0000	0010 0000 1010 0100	000 0110 1110	1	0x020A40DD
EPM2210G					

Device	Version (4 Bits)	Part Number	Manufacturer Identity (11 Bits)	LSB (1 Bit) <i>(2)</i>	HEX IDCODE
EPM240Z	0000	0010 0000 1010 0101	000 0110 1110	1	0x020A50DD
EPM570Z	0000	0010 0000 1010 0110	000 0110 1110	1	0x020A60DD

Table 3-3. 32-Bit MAX II Device IDCODE (Part 2 of 2)

Notes to Table 3-2:

(1) The most significant bit (MSB) is on the left.

(2) The IDCODE's least significant bit (LSB) is always 1.

• For more information about JTAG BST, refer to the *IEEE 1149.1 (JTAG) Boundary-Scan Testing for MAX II Devices* chapter in the *MAX II Device Handbook*.

JTAG Block

The MAX II JTAG block feature allows you to access the JTAG TAP and state signals when either the USER0 or USER1 instruction is issued to the JTAG TAP. The USER0 and USER1 instructions bring the JTAG boundary-scan chain (TDI) through the user logic instead of the MAX II device's boundary-scan cells. Each USER instruction allows for one unique user-defined JTAG chain into the logic array.

Parallel Flash Loader

The JTAG block ability to interface JTAG to non-JTAG devices is ideal for generalpurpose flash memory devices (such as Intel- or Fujitsu-based devices) that require programming during in-circuit test. The flash memory devices can be used for FPGA configuration or be part of system memory. In many cases, the MAX II device is already connected to these devices as the configuration control logic between the FPGA and the flash device. Unlike ISP-capable CPLD devices, bulk flash devices do not have JTAG TAP pins or connections. For small flash devices, it is common to use the serial JTAG scan chain of a connected device to program the non-JTAG flash device. This is slow and inefficient in most cases and impractical for large parallel flash devices. Using the MAX II device's JTAG block as a parallel flash loader, with the Quartus II software, to program and verify flash contents provides a fast and costeffective means of in-circuit programming during test. Figure 3–1 shows MAX II being used as a parallel flash loader.

For JTAG AC characteristics, refer to the DC and Switching Characteristics chapter in the MAX II Device Handbook.

Table 3–4 shows the programming times for MAX II devices using in-circuit testers to execute the algorithm vectors in hardware. Software-based programming tools used with download cables are slightly slower because of data processing and transfer limitations.

Description	EPM240 EPM240G EPM240Z	EPM570 EPM570G EPM570Z	EPM1270 EPM1270G	EPM2210 EPM2210G	Unit
Erase + Program (1 MHz)	1.72	2.16	2.90	3.92	sec
Erase + Program (10 MHz)	1.65	1.99	2.58	3.40	sec
Verify (1 MHz)	0.09	0.17	0.30	0.49	sec
Verify (10 MHz)	0.01	0.02	0.03	0.05	sec
Complete Program Cycle (1 MHz)	1.81	2.33	3.20	4.41	sec
Complete Program Cycle (10 MHz)	1.66	2.01	2.61	3.45	sec

Table 3-4. MAX II Device Family Programming Times

UFM Programming

The Quartus II software, with the use of POF, Jam, or JBC files, supports programming of the user flash memory (UFM) block independent of the logic array design pattern stored in the CFM block. This allows updating or reading UFM contents through ISP without altering the current logic array design, or vice versa. By default, these programming files and methods will program the entire flash memory contents, which includes the CFM block and UFM contents. The stand-alone embedded Jam STAPL player and Jam Byte-Code Player provides action commands for programming or reading the entire flash memory (UFM and CFM together) or each independently.

For more information, refer to the *Using Jam STAPL for ISP via an Embedded Processor* chapter in the *MAX II Device Handbook*.

In-System Programming Clamp

By default, the IEEE 1532 instruction used for entering ISP automatically tri-states all I/O pins with weak pull-up resistors for the duration of the ISP sequence. However, some systems may require certain pins on MAX II devices to maintain a specific DC logic level during an in-field update. For these systems, an optional in-system programming clamp instruction exists in MAX II circuitry to control I/O behavior during the ISP sequence. The in-system programming clamp instruction enables the device to sample and sustain the value on an output pin (an input pin would remain tri-stated if sampled) or to explicitly set a logic high, logic low, or tri-state value on any pin. Setting these options is controlled on an individual pin basis using the Quartus II software.

•••

• For more information, refer to the *Real-Time ISP and ISP Clamp for MAX II Devices* chapter in the *MAX II Device Handbook*.

MII51004-2.1

Introduction

MAX® II devices offer hot socketing, also known as hot plug-in or hot swap, and power sequencing support. Designers can insert or remove a MAX II board in a system during operation without undesirable effects to the system bus. The hot socketing feature removes some of the difficulties designers face when using components on printed circuit boards (PCBs) that contain a mixture of 3.3-, 2.5-, 1.8-, and 1.5-V devices.

The MAX II device hot socketing feature provides:

- Board or device insertion and removal
- Support for any power-up sequence
- Non-intrusive I/O buffers to system buses during hot insertion

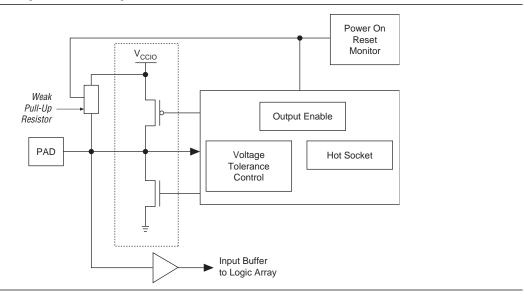
This chapter contains the following sections:

- "MAX II Hot-Socketing Specifications" on page 4–1
- "Power-On Reset Circuitry" on page 4–5

MAX II Hot-Socketing Specifications

MAX II devices offer all three of the features required for the hot-socketing capability listed above without any external components or special design requirements. The following are hot-socketing specifications:

- The device can be driven before and during power-up or power-down without any damage to the device itself.
- I/O pins remain tri-stated during power-up. The device does not drive out before or during power-up, thereby affecting other buses in operation.
- Signal pins do not drive the V_{CCIO} or V_{CCINT} power supplies. External input signals to device I/O pins do not power the device V_{CCIO} or V_{CCINT} power supplies via internal paths. This is true if the V_{CCINT} and the V_{CCIO} supplies are held at GND.


Devices Can Be Driven before Power-Up

Signals can be driven into the MAX II device I/O pins and GCLK[3..0] pins before or during power-up or power-down without damaging the device. MAX II devices support any power-up or power-down sequence (V_{CCIO1} , V_{CCIO2} , V_{CCIO3} , V_{CCIO4} , V_{CCINT}), simplifying the system-level design.

Make sure that the V_{CCNT} is within the recommended operating range even though SRAM download has completed.

Each I/O and clock pin has the circuitry shown in Figure 4–1.

Figure 4-1. Hot Socketing Circuit Block Diagram for MAX II Devices

The POR circuit monitors V_{CCINT} and V_{CCIO} voltage levels and keeps I/O pins tri-stated until the device has completed its flash memory configuration of the SRAM logic. The weak pull-up resistor (R) from the I/O pin to V_{CCIO} is enabled during download to keep the I/O pins from floating. The 3.3-V tolerance control circuit permits the I/O pins to be driven by 3.3 V before V_{CCIO} and/or V_{CCINT} are powered, and it prevents the I/O pins from driving out when the device is not fully powered or operational. The hot socket circuit prevents I/O pins from internally powering V_{CCIO} and V_{CCINT} when driven by external signals before the device is powered.

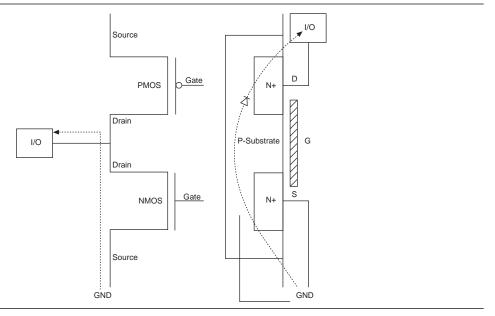

For information about 5.0-V tolerance, refer to the Using MAX II Devices in Multi-Voltage Systems chapter in the MAX II Device Handbook.

Figure 4–2 shows a transistor-level cross section of the MAX II device I/O buffers. This design ensures that the output buffers do not drive when V_{CCIO} is powered before V_{CCINT} or if the I/O pad voltage is higher than V_{CCIO} . This also applies for sudden voltage spikes during hot insertion. The V_{PAD} leakage current charges the 3.3-V tolerant circuit capacitance.

When the I/O pin receives a negative ESD zap at the pin that is less than -0.7 V (0.7 V is the voltage drop across a diode), the intrinsic

P-Substrate/N+ drain diode is forward biased. Therefore, the discharge ESD current path is from GND to the I/O pin, as shown in Figure 4–4.

Power-On Reset Circuitry

MAX II devices have POR circuits to monitor V_{CCINT} and V_{CCIO} voltage levels during power-up. The POR circuit monitors these voltages, triggering download from the non-volatile configuration flash memory (CFM) block to the SRAM logic, maintaining tri-state of the I/O pins (with weak pull-up resistors enabled) before and during this process. When the MAX II device enters user mode, the POR circuit releases the I/O pins to user functionality. The POR circuit of the MAX II (except MAX IIZ) device continues to monitor the V_{CCINT} voltage level to detect a brown-out condition. The POR circuit of the MAX IIZ device does not monitor the V_{CCINT} voltage level after the device enters into user mode. More details are provided in the following sub-sections.

External Timing Parameters

External timing parameters are specified by device density and speed grade. All external I/O timing parameters shown are for the 3.3-V LVTTL I/O standard with the maximum drive strength and fast slew rate. For external I/O timing using standards other than LVTTL or for different drive strengths, use the I/O standard input and output delay adders in Table 5–27 through Table 5–31.

For more information about each external timing parameters symbol, refer to the *Understanding Timing in MAX II Devices* chapter in the *MAX II Device Handbook*.

Table 5–23 shows the external I/O timing parameters for EPM240 devices.

			MAX II / MAX IIG						MAX IIZ							
			–3 Speed Grade		–4 Speed Grade		–5 Speed Grade		–6 Speed Grade		–7 Speed Grade		–8 Speed Grade			
Symbol	Parameter	Condition	Min	Max	Min	Max	Unit									
t _{PD1}	Worst case pin-to-pin delay through 1 look-up table (LUT)	10 pF		4.7	_	6.1	_	7.5	_	7.9		12.0	_	14.0	ns	
t _{PD2}	Best case pin-to-pin delay through 1 LUT	10 pF		3.7	_	4.8	_	5.9	_	5.8	_	7.8	_	8.5	ns	
t _{su}	Global clock setup time	_	1.7		2.2		2.7	_	2.4	_	4.1	_	4.6		ns	
t _H	Global clock hold time	_	0		0		0	_	0	_	0		0		ns	
t _{co}	Global clock to output delay	10 pF	2.0	4.3	2.0	5.6	2.0	6.9	2.0	6.6	2.0	8.1	2.0	8.6	ns	
t _{ch}	Global clock high time	—	166		216		266	_	253	_	335	_	339	_	ps	
t _{CL}	Global clock low time	_	166		216	_	266		253		335	_	339	_	ps	
t _{cnt}	Minimum global clock period for 16-bit counter	_	3.3		4.0		5.0	_	5.4	_	8.1		8.4		ns	

 Table 5–23.
 EPM240 Global Clock External I/O Timing Parameters
 (Part 1 of 2)

Table 5–26 shows the external I/O timing parameters for EPM2210 devices.

			MAX II / MAX IIG								
			–3 Spee	ed Grade	–4 Spee	ed Grade	–5 Speed Grade		Ť		
Symbol	Parameter	Condition	Min	Max	Min	Max	Min	Max	Unit		
t _{PD1}	Worst case pin-to-pin delay through 1 look-up table (LUT)	10 pF		7.0		9.1		11.2	ns		
t_{PD2}	Best case pin-to-pin delay through 1 LUT	10 pF	_	3.7	_	4.8	_	5.9	ns		
t _{su}	Global clock setup time	_	1.2	—	1.5	_	1.9	_	ns		
t _H	Global clock hold time	_	0	_	0	_	0	_	ns		
t _{co}	Global clock to output delay	10 pF	2.0	4.6	2.0	6.0	2.0	7.4	ns		
t _{сн}	Global clock high time	_	166	—	216	—	266	_	ps		
t _{cL}	Global clock low time	_	166	_	216		266	_	ps		
t _{cnt}	Minimum global clock period for 16-bit counter	_	3.3	_	4.0	-	5.0	-	ns		
\mathbf{f}_{cnt}	Maximum global clock frequency for 16-bit counter	-	_	304.0 <i>(1)</i>	_	247.5		201.1	MHz		

Table 5–26. EPM2210 Global Clock External I/O Timing Parameter	Table 5–26.	EPM2210	Global	Clock	External I/	0 Timing	Parameters
--	-------------	---------	--------	-------	-------------	----------	------------

Note to Table 5-26:

(1) The maximum frequency is limited by the I/O standard on the clock input pin. The 16-bit counter critical delay performs faster than this global clock input pin maximum frequency.

External Timing I/O Delay Adders

The I/O delay timing parameters for I/O standard input and output adders, and input delays are specified by speed grade independent of device density.

Table 5–27 through Table 5–31 show the adder delays associated with I/O pins for all packages. The delay numbers for –3, –4, and –5 speed grades shown in Table 5–27 through Table 5–33 are based on an EPM1270 device target, while –6, –7, and –8 speed grade values are based on an EPM570Z device target. If an I/O standard other than 3.3-V LVTTL is selected, add the input delay adder to the external t_{su} timing parameters shown in Table 5–23 through Table 5–26. If an I/O standard other than 3.3-V LVTTL with 16 mA drive strength and fast slew rate is selected, add the output delay adder to the external t_{co} and t_{PD} shown in Table 5–23 through Table 5–26.

			MAX II / MAX IIG						MAX IIZ					
			peed ade		peed ade		Speed rade		peed ade		peed ade		peed ade	
I/O Standard		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
3.3-V LVTTL	Without Schmitt Trigger	—	0	_	0	—	0	—	0	_	0	—	0	ps
	With Schmitt Trigger	—	334	_	434	_	535	_	387	_	434	—	442	ps

Document Revision History

Table 5–35 shows the revision history for this chapter.

 Table 5–35.
 Document Revision History (Part 1 of 2)

Date and Revision	Changes Made	Summary of Changes			
August 2009,	Added Table 5–28, Table 5–29, and Table 5–30.	Added information for			
version 2.5	 Updated Table 5–2, Table 5–4, Table 5–14, Table 5–15, Table 5–16, Table 5–17, Table 5–18, Table 5–19, Table 5–20, Table 5–21, Table 5–22, Table 5–23, Table 5–24, Table 5–27, Table 5–31, Table 5–32, and Table 5–33. 	speed grade –8			
November 2008,	Updated Table 5–2.	_			
version 2.4	 Updated "Internal Timing Parameters" section. 				
October 2008,	Updated New Document Format.	_			
version 2.3	 Updated Figure 5-1. 				
July 2008, version 2.2	 Updated Table 5–14 , Table 5–23 , and Table 5–24. 	_			
March 2008, version 2.1	Added (Note 5) to Table 5–4.	_			
December 2007,	 Updated (Note 3) and (4) to Table 5–1. 	Updated document wit MAX IIZ information.			
version 2.0	 Updated Table 5–2 and added (Note 5). 				
	 Updated ICCSTANDBY and ICCPOWERUP information and added IPULLUP information in Table 5–4. 				
	Added (Note 1) to Table 5–10.				
	 Updated Figure 5–2. 				
	Added (Note 1) to Table 5–13.				
	 Updated Table 5–13 through Table 5–24, and Table 5–27 through Table 5–30. 				
	 Added tCOMB information to Table 5–15. 				
	 Updated Figure 5–6. 				
	 Added "Referenced Documents" section. 				
December 2006,	Added note to Table 5–1.	—			
version 1.8	 Added document revision history. 				
July 2006, version 1.7	 Minor content and table updates. 	_			
February 2006,	 Updated "External Timing I/O Delay Adders" section. 	—			
version 1.6	 Updated Table 5–29. 				
	 Updated Table 5–30. 				
November 2005, version 1.5	 Updated Tables 5-2, 5-4, and 5-12. 	—			
August 2005,	 Updated Figure 5-1. 	_			
version 1.4	Updated Tables 5-13, 5-16, and 5-26.				
	 Removed Note 1 from Table 5-12. 				