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1–4 Chapter 1: Introduction
Referenced Documents
MAX II devices have an internal linear voltage regulator which supports external 
supply voltages of 3.3 V or 2.5 V, regulating the supply down to the internal operating 
voltage of 1.8 V. MAX IIG and MAX IIZ devices only accept 1.8 V as the external 
supply voltage. MAX IIZ devices are pin-compatible with MAX IIG devices in the 
100-pin Micro FineLine BGA and 256-pin Micro FineLine BGA packages. Except for 
external supply voltage requirements, MAX II and MAX II G devices have identical 
pin-outs and timing specifications. Table 1–5 shows the external supply voltages 
supported by the MAX II family.

Referenced Documents
This chapter references the following documents:

■ DC and Switching Characteristics chapter in the MAX II Device Handbook

■ MAX II Logic Element to Macrocell Conversion Methodology white paper

Document Revision History
Table 1–6 shows the revision history for this chapter.

Table 1–5. MAX II External Supply Voltages

Devices

EPM240
EPM570

EPM1270
EPM2210

EPM240G
EPM570G
EPM1270G
EPM2210G
EPM240Z

EPM570Z (1)

MultiVolt core external supply voltage (VCCINT) (2) 3.3 V, 2.5 V 1.8 V

MultiVolt I/O interface voltage levels (VCCIO) 1.5 V, 1.8 V, 2.5 V, 3.3 V 1.5 V, 1.8 V, 2.5 V, 3.3 V

Notes to Table 1–5:

(1) MAX IIG and MAX IIZ devices only accept 1.8 V on their VCCINT pins. The 1.8-V VCCINT external supply powers the device core directly.
(2) MAX II devices operate internally at 1.8 V. 

Table 1–6. Document Revision History

Date and Revision Changes Made Summary of Changes

August 2009,
version 1.9

■ Updated Table 1–2. Added information for speed grade –8

October 2008,
version 1.8

■ Updated “Introduction” section.

■ Updated new Document Format.

—

December 2007,
version1.7

■ Updated Table 1–1 through Table 1–5.

■ Added “Referenced Documents” section.

Updated document with MAX IIZ information.

December 2006,
version 1.6

■ Added document revision history. —

August 2006,
version 1.5

■ Minor update to features list. —

July 2006,
version 1.4

■ Minor updates to tables. —
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Chapter 2: MAX II Architecture 2–7
Logic Elements
Each LE’s programmable register can be configured for D, T, JK, or SR operation. Each 
register has data, true asynchronous load data, clock, clock enable, clear, and 
asynchronous load/preset inputs. Global signals, general-purpose I/O pins, or any 
LE can drive the register’s clock and clear control signals. Either general-purpose I/O 
pins or LEs can drive the clock enable, preset, asynchronous load, and asynchronous 
data. The asynchronous load data input comes from the data3 input of the LE. For 
combinational functions, the LUT output bypasses the register and drives directly to 
the LE outputs.

Each LE has three outputs that drive the local, row, and column routing resources. The 
LUT or register output can drive these three outputs independently. Two LE outputs 
drive column or row and DirectLink routing connections and one drives local 
interconnect resources. This allows the LUT to drive one output while the register 
drives another output. This register packing feature improves device utilization 
because the device can use the register and the LUT for unrelated functions. Another 
special packing mode allows the register output to feed back into the LUT of the same 
LE so that the register is packed with its own fan-out LUT. This provides another 
mechanism for improved fitting. The LE can also drive out registered and 
unregistered versions of the LUT output.

Figure 2–6. MAX II LE
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Chapter 2: MAX II Architecture 2–11
Logic Elements
The speed advantage of the carry-select chain is in the parallel precomputation of 
carry chains. Since the LAB carry-in selects the precomputed carry chain, not every LE 
is in the critical path. Only the propagation delays between LAB carry-in generation 
(LE 5 and LE 10) are now part of the critical path. This feature allows the MAX II 
architecture to implement high-speed counters, adders, multipliers, parity functions, 
and comparators of arbitrary width. 

Figure 2–9 shows the carry-select circuitry in an LAB for a 10-bit full adder. One 
portion of the LUT generates the sum of two bits using the input signals and the 
appropriate carry-in bit; the sum is routed to the output of the LE. The register can be 
bypassed for simple adders or used for accumulator functions. Another portion of the 
LUT generates carry-out bits. An LAB-wide carry-in bit selects which chain is used for 
the addition of given inputs. The carry-in signal for each chain, carry-in0 or 
carry-in1, selects the carry-out to carry forward to the carry-in signal of the next-
higher-order bit. The final carry-out signal is routed to an LE, where it is fed to local, 
row, or column interconnects. 

Figure 2–9. Carry-Select Chain
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2–14 Chapter 2: MAX II Architecture
MultiTrack Interconnect
functions from LE 1 to LE 10 in the same LAB. The register chain connection allows 
the register output of one LE to connect directly to the register input of the next LE in 
the LAB for fast shift registers. The Quartus II Compiler automatically takes 
advantage of these resources to improve utilization and performance. Figure 2–11 
shows the LUT chain and register chain interconnects.

The C4 interconnects span four LABs up or down from a source LAB. Every LAB has 
its own set of C4 interconnects to drive either up or down. Figure 2–12 shows the C4 
interconnect connections from an LAB in a column. The C4 interconnects can drive 
and be driven by column and row IOEs. For LAB interconnection, a primary LAB or 
its vertical LAB neighbor can drive a given C4 interconnect. C4 interconnects can 
drive each other to extend their range as well as drive row interconnects for column-
to-column connections. 

Figure 2–11. LUT Chain and Register Chain Interconnects
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Chapter 2: MAX II Architecture 2–17
Global Signals
The global clock network drives to individual LAB column signals, LAB column 
clocks [3..0], that span an entire LAB column from the top to the bottom of the device. 
Unused global clocks or control signals in a LAB column are turned off at the LAB 
column clock buffers shown in Figure 2–14. The LAB column clocks [3..0] are 
multiplexed down to two LAB clock signals and one LAB clear signal. Other control 
signal types route from the global clock network into the LAB local interconnect. See 
“LAB Control Signals” on page 2–5 for more information.

Figure 2–13. Global Clock Generation

Note to Figure 2–13:
(1) Any I/O pin can use a MultiTrack interconnect to route as a logic array-generated global clock signal.
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2–18 Chapter 2: MAX II Architecture
User Flash Memory Block
User Flash Memory Block
MAX II devices feature a single UFM block, which can be used like a serial EEPROM 
for storing non-volatile information up to 8,192 bits. The UFM block connects to the 
logic array through the MultiTrack interconnect, allowing any LE to interface to the 
UFM block. Figure 2–15 shows the UFM block and interface signals. The logic array is 
used to create customer interface or protocol logic to interface the UFM block data 
outside of the device. The UFM block offers the following features:

■ Non-volatile storage up to 16-bit wide and 8,192 total bits

■ Two sectors for partitioned sector erase

■ Built-in internal oscillator that optionally drives logic array

■ Program, erase, and busy signals

Figure 2–14. Global Clock Network (Note 1)

Notes to Figure 2–14:
(1) LAB column clocks in I/O block regions provide high fan-out output enable signals.
(2) LAB column clocks drive to the UFM block.
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2–26 Chapter 2: MAX II Architecture
I/O Structure
Figure 2–21 shows how a column I/O block connects to the logic array.

I/O Standards and Banks
MAX II device IOEs support the following I/O standards:

■ 3.3-V LVTTL/LVCMOS

■ 2.5-V LVTTL/LVCMOS

■ 1.8-V LVTTL/LVCMOS

■ 1.5-V LVCMOS

■ 3.3-V PCI

Figure 2–21. Column I/O Block Connection to the Interconnect (Note 1)

Note to Figure 2–21:
(1) Each of the four IOEs in the column I/O block can have one data_out or fast_out output, one OE output, and one data_in input.
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Chapter 3: JTAG and In-System Programmability 3–3
IEEE Std. 1149.1 (JTAG) Boundary-Scan Support
f For JTAG AC characteristics, refer to the DC and Switching Characteristics chapter in 
the MAX II Device Handbook. 

f For more information about JTAG BST, refer to the IEEE 1149.1 (JTAG) Boundary-Scan 
Testing for MAX II Devices chapter in the MAX II Device Handbook.

JTAG Block
The MAX II JTAG block feature allows you to access the JTAG TAP and state signals 
when either the USER0 or USER1 instruction is issued to the JTAG TAP. The USER0 
and USER1 instructions bring the JTAG boundary-scan chain (TDI) through the user 
logic instead of the MAX II device’s boundary-scan cells. Each USER instruction 
allows for one unique user-defined JTAG chain into the logic array.  

Parallel Flash Loader
The JTAG block ability to interface JTAG to non-JTAG devices is ideal for general-
purpose flash memory devices (such as Intel- or Fujitsu-based devices) that require 
programming during in-circuit test. The flash memory devices can be used for FPGA 
configuration or be part of system memory. In many cases, the MAX II device is 
already connected to these devices as the configuration control logic between the 
FPGA and the flash device. Unlike ISP-capable CPLD devices, bulk flash devices do 
not have JTAG TAP pins or connections. For small flash devices, it is common to use 
the serial JTAG scan chain of a connected device to program the non-JTAG flash 
device. This is slow and inefficient in most cases and impractical for large parallel 
flash devices. Using the MAX II device’s JTAG block as a parallel flash loader, with 
the Quartus II software, to program and verify flash contents provides a fast and cost-
effective means of in-circuit programming during test. Figure 3–1 shows MAX II 
being used as a parallel flash loader.

EPM240Z 0000 0010 0000 1010 0101 000 0110 1110 1 0x020A50DD

EPM570Z 0000 0010 0000 1010 0110 000 0110 1110 1 0x020A60DD

Notes to Table 3–2:

(1) The most significant bit (MSB) is on the left.
(2) The IDCODE’s least significant bit (LSB) is always 1.

Table 3–3. 32-Bit MAX II Device IDCODE (Part 2 of 2)

Device

Binary IDCODE (32 Bits) (1)

HEX IDCODE
Version 
(4 Bits) Part Number

Manufacturer 
Identity (11 Bits)

LSB 
(1 Bit) (2)
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3–4 Chapter 3: JTAG and In-System Programmability
In System Programmability
In System Programmability 
MAX II devices can be programmed in-system via the industry standard 4-pin IEEE 
Std. 1149.1 (JTAG) interface. In-system programmability (ISP) offers quick, efficient 
iterations during design development and debugging cycles. The logic, circuitry, and 
interconnects in the MAX II architecture are configured with flash-based SRAM 
configuration elements. These SRAM elements require configuration data to be 
loaded each time the device is powered. The process of loading the SRAM data is 
called configuration. The on-chip configuration flash memory (CFM) block stores the 
SRAM element’s configuration data. The CFM block stores the design’s configuration 
pattern in a reprogrammable flash array. During ISP, the MAX II JTAG and ISP 
circuitry programs the design pattern into the CFM block’s non-volatile flash array.  

The MAX II JTAG and ISP controller internally generate the high programming 
voltages required to program the CFM cells, allowing in-system programming with 
any of the recommended operating external voltage supplies (that is, 3.3 V/2.5 V or 
1.8 V for the MAX IIG and MAX IIZ devices). ISP can be performed anytime after 
VCCINT and all VCCIO banks have been fully powered and the device has completed the 
configuration power-up time. By default, during in-system programming, the I/O 
pins are tri-stated and weakly pulled-up to VCCIO to eliminate board conflicts. The in-
system programming clamp and real-time ISP feature allow user control of I/O state 
or behavior during ISP.

For more information, refer to “In-System Programming Clamp” on page 3–6 and 
“Real-Time ISP” on page 3–7. 

These devices also offer an ISP_DONE bit that provides safe operation when in-
system programming is interrupted. This ISP_DONE bit, which is the last bit 
programmed, prevents all I/O pins from driving until the bit is programmed.  

Figure 3–1. MAX II Parallel Flash Loader

Notes to Figure 3–1:
(1) This block is implemented in LEs.
(2) This function is supported in the Quartus II software.
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3–6 Chapter 3: JTAG and In-System Programmability
In System Programmability
Table 3–4 shows the programming times for MAX II devices using in-circuit testers to 
execute the algorithm vectors in hardware. Software-based programming tools used 
with download cables are slightly slower because of data processing and transfer 
limitations.

UFM Programming
The Quartus II software, with the use of POF, Jam, or JBC files, supports 
programming of the user flash memory (UFM) block independent of the logic array 
design pattern stored in the CFM block. This allows updating or reading UFM 
contents through ISP without altering the current logic array design, or vice versa. By 
default, these programming files and methods will program the entire flash memory 
contents, which includes the CFM block and UFM contents. The stand-alone 
embedded Jam STAPL player and Jam Byte-Code Player provides action commands 
for programming or reading the entire flash memory (UFM and CFM together) or 
each independently.

f For more information, refer to the Using Jam STAPL for ISP via an Embedded Processor 
chapter in the MAX II Device Handbook.

In-System Programming Clamp
By default, the IEEE 1532 instruction used for entering ISP automatically tri-states all 
I/O pins with weak pull-up resistors for the duration of the ISP sequence. However, 
some systems may require certain pins on MAX II devices to maintain a specific DC 
logic level during an in-field update. For these systems, an optional in-system 
programming clamp instruction exists in MAX II circuitry to control I/O behavior 
during the ISP sequence. The in-system programming clamp instruction enables the 
device to sample and sustain the value on an output pin (an input pin would remain 
tri-stated if sampled) or to explicitly set a logic high, logic low, or tri-state value on 
any pin. Setting these options is controlled on an individual pin basis using the 
Quartus II software.

f For more information, refer to the Real-Time ISP and ISP Clamp for MAX II Devices 
chapter in the MAX II Device Handbook.

Table 3–4. MAX II Device Family Programming Times

Description

EPM240 
EPM240G
EPM240Z

EPM570 
EPM570G
EPM570Z

EPM1270 
EPM1270G

EPM2210 
EPM2210G Unit

Erase + Program (1 MHz) 1.72 2.16 2.90 3.92 sec

Erase + Program (10 MHz) 1.65 1.99 2.58 3.40 sec

Verify (1 MHz) 0.09 0.17 0.30 0.49 sec

Verify (10 MHz) 0.01 0.02 0.03 0.05 sec

Complete Program Cycle (1 MHz) 1.81 2.33 3.20 4.41 sec

Complete Program Cycle (10 MHz) 1.66 2.01 2.61 3.45 sec
MAX II Device Handbook © October 2008 Altera Corporation
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Chapter 3: JTAG and In-System Programmability 3–7
Referenced Documents
Real-Time ISP
For systems that require more than DC logic level control of I/O pins, the real-time 
ISP feature allows you to update the CFM block with a new design image while the 
current design continues to operate in the SRAM logic array and I/O pins. A new 
programming file is updated into the MAX II device without halting the original 
design’s operation, saving down-time costs for remote or field upgrades. The updated 
CFM block configures the new design into the SRAM upon the next power cycle. It is 
also possible to execute an immediate configuration of the SRAM without a power 
cycle by using a specific sequence of ISP commands. The configuration of SRAM 
without a power cycle takes a specific amount of time (tCONFIG). During this time, the 
I/O pins are tri-stated and weakly pulled-up to VCCIO.

Design Security
All MAX II devices contain a programmable security bit that controls access to the 
data programmed into the CFM block. When this bit is programmed, design 
programming information, stored in the CFM block, cannot be copied or retrieved. 
This feature provides a high level of design security because programmed data within 
flash memory cells is invisible. The security bit that controls this function, as well as 
all other programmed data, is reset only when the device is erased. The SRAM is also 
invisible and cannot be accessed regardless of the security bit setting. The UFM block 
data is not protected by the security bit and is accessible through JTAG or logic array 
connections.

Programming with External Hardware
MAX II devices can be programmed by downloading the information via in-circuit 
testers, embedded processors, the Altera® ByteblasterMV™, MasterBlaster™, 
ByteBlaster™ II, and USB-Blaster cables. 

BP Microsystems, System General, and other programming hardware manufacturers 
provide programming support for Altera devices. Check their websites for device 
support information.

Referenced Documents
This chapter references the following documents:

■ DC and Switching Characteristics chapter in the MAX II Device Handbook

■ IEEE 1149.1 (JTAG) Boundary-Scan Testing for MAX II Devices chapter in the MAX II 
Device Handbook

■ Real-Time ISP and ISP Clamp for MAX II Devices chapter in the MAX II Device 
Handbook

■ Using Jam STAPL for ISP via an Embedded Processor chapter in the MAX II Device 
Handbook
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4–4 Chapter 4: Hot Socketing and Power-On Reset in MAX II Devices
Hot Socketing Feature Implementation in MAX II Devices
The CMOS output drivers in the I/O pins intrinsically provide electrostatic discharge 
(ESD) protection. There are two cases to consider for ESD voltage strikes: positive 
voltage zap and negative voltage zap.

A positive ESD voltage zap occurs when a positive voltage is present on an I/O pin 
due to an ESD charge event. This can cause the N+ (Drain)/ P-Substrate junction of 
the N-channel drain to break down and the N+ (Drain)/P-Substrate/N+ (Source) 
intrinsic bipolar transistor turn on to discharge ESD current from I/O pin to GND. 
The dashed line (see Figure 4–3) shows the ESD current discharge path during a 
positive ESD zap.

Figure 4–2. Transistor-Level Diagram of MAX II Device I/O Buffers
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Figure 4–3. ESD Protection During Positive Voltage Zap
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Chapter 4: Hot Socketing and Power-On Reset in MAX II Devices 4–5
Power-On Reset Circuitry
When the I/O pin receives a negative ESD zap at the pin that is less than –0.7 V (0.7 V 
is the voltage drop across a diode), the intrinsic 
P-Substrate/N+ drain diode is forward biased. Therefore, the discharge ESD current 
path is from GND to the I/O pin, as shown in Figure 4–4. 

Power-On Reset Circuitry
MAX II devices have POR circuits to monitor VCCINT and VCCIO voltage levels during 
power-up. The POR circuit monitors these voltages, triggering download from the 
non-volatile configuration flash memory (CFM) block to the SRAM logic, maintaining 
tri-state of the I/O pins (with weak pull-up resistors enabled) before and during this 
process. When the MAX II device enters user mode, the POR circuit releases the I/O 
pins to user functionality. The POR circuit of the MAX II (except MAX IIZ) device 
continues to monitor the VCCINT voltage level to detect a brown-out condition. The 
POR circuit of the MAX IIZ device does not monitor the VCCINT voltage level after the 
device enters into user mode. More details are provided in the following sub-sections.

Figure 4–4. ESD Protection During Negative Voltage Zap
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Power Consumption
Power-Up Timing
Table 5–12 shows the power-up timing characteristics for MAX II devices.

Power Consumption
Designers can use the Altera® PowerPlay Early Power Estimator and PowerPlay 
Power Analyzer to estimate the device power. 

f For more information about these power analysis tools, refer to the Understanding and 
Evaluating Power in MAX II Devices chapter in the MAX II Device Handbook and the 
PowerPlay Power Analysis chapter in volume 3 of the Quartus II Handbook.

Timing Model and Specifications
MAX II devices timing can be analyzed with the Altera Quartus® II software, a variety 
of popular industry-standard EDA simulators and timing analyzers, or with the 
timing model shown in Figure 5–2. 

MAX II devices have predictable internal delays that enable the designer to determine 
the worst-case timing of any design. The software provides timing simulation, 
point-to-point delay prediction, and detailed timing analysis for device-wide 
performance evaluation.

Table 5–12. MAX II Power-Up Timing

Symbol Parameter Device Min Typ Max Unit

tCONFIG (1) The amount of time from when 
minimum VCCINT is reached until 
the device enters user mode (2)

EPM240 — — 200 µs

EPM570 — — 300 µs

EPM1270 — — 300 µs

EPM2210 — — 450 µs

Notes to Table 5–12:

(1) Table 5–12 values apply to commercial and industrial range devices. For extended temperature range devices, the tCONFIG  maximum values are 
as follows:
Device Maximum
EPM240 300 µs
EPM570 400 µs
EPM1270 400 µs
EPM2210 500 µs

(2) For more information about POR trigger voltage, refer to the Hot Socketing and Power-On Reset in MAX II Devices chapter in the MAX II Device 
Handbook.
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1.5-V LVCMOS 4 mA  — 1,118  — 1,454  — 1,789  — 580  — 588  — 588 ps

2 mA  — 2,410  — 3,133  — 3,856  — 915  — 923  — 923 ps

3.3-V PCI 20 mA  — 19  — 25  — 31  — 72  — 71  — 74 ps

Table 5–18. tZX IOE Microparameter Adders for Slow Slew Rate

Standard

MAX II / MAX IIG MAX IIZ

Unit

–3 Speed 
Grade

–4 Speed 
Grade

–5 Speed 
Grade

–6 Speed 
Grade

–7 Speed 
Grade

–8 Speed 
Grade

Min Max Min Max Min Max Min Max Min Max Min Max

3.3-V LVTTL 16 mA  — 6,350  — 6,050  — 5,749  — 5,951  — 5,952  — 6,063 ps

8 mA  — 9,383  — 9,083  — 8,782  — 6,534  — 6,533  — 6,662 ps

3.3-V LVCMOS 8 mA  — 6,350  — 6,050  — 5,749  — 5,951  — 5,952  — 6,063 ps

4 mA  — 9,383  — 9,083  — 8,782  — 6,534  — 6,533  — 6,662 ps

2.5-V LVTTL / 
LVCMOS

14 mA  — 10,412  — 10,112  — 9,811  — 9,110  — 9,105  — 9,237 ps

7 mA  — 13,613  — 13,313  — 13,012  — 9,830  — 9,835  — 9,977 ps

3.3-V PCI 20 mA  — –75  — –97  — –120  — 6,534  — 6,533  — 6,662 ps

Table 5–19. tXZ IOE Microparameter Adders for Fast Slew Rate

Standard

MAX II / MAX IIG MAX IIZ

Unit

–3 Speed 
Grade

–4 Speed 
Grade

–5 Speed 
Grade

–6 Speed 
Grade

–7 Speed 
Grade

–8 Speed 
Grade

Min Max Min Max Min Max Min Max Min Max Min Max

3.3-V LVTTL 16 mA — 0 — 0 — 0 — 0 — 0 — 0 ps

8 mA — –56 — –72 — –89 — –69 — –69 — –69 ps

3.3-V LVCMOS 8 mA — 0 — 0 — 0 — 0 — 0 — 0 ps

4 mA — –56 — –72 — –89 — –69 — –69 — –69 ps

2.5-V LVTTL / 
LVCMOS

14 mA — –3 — –4 — –5 — –7 — –11 — –11 ps

7 mA — –47 — –61 — –75 — –66 — –70 — –70 ps

1.8-V LVTTL / 
LVCMOS

6 mA — 119 — 155 — 191 — 45 — 34 — 37 ps

3 mA — 207 — 269 — 331 — 34 — 22 — 25 ps

1.5-V LVCMOS 4 mA — 606 — 788 — 970 — 166 — 154 — 155 ps

2 mA — 673 — 875 — 1,077 — 190 — 177 — 179 ps

3.3-V PCI 20 mA — 71 — 93 — 114 — –69 — –69 — –69 ps

Table 5–17. tZX IOE Microparameter Adders for Fast Slew Rate (Part 2 of 2)

Standard

MAX II / MAX IIG MAX IIZ

Unit

–3 Speed 
Grade

–4 Speed 
Grade

–5 Speed 
Grade

–6 Speed 
Grade

–7 Speed 
Grade

–8 Speed 
Grade

Min Max Min Max Min Max Min Max Min Max Min Max
© August 2009 Altera Corporation MAX II Device Handbook

http://www.altera.com/literature/hb/max2/max2_mii5v1.pdf


Chapter 5: DC and Switching Characteristics 5–15
Timing Model and Specifications
tDDS Data register data in 
setup to data register 
clock

20 — 20 — 20 — 20 — 20 — 20 — ns

tDDH Data register data in 
hold from data 
register clock

20 — 20 — 20 — 20 — 20 — 20 — ns

tDP Program signal to 
data clock hold time

0 — 0 — 0 — 0 — 0 — 0 — ns

tPB Maximum delay 
between program 
rising edge to UFM 
busy signal rising 
edge

— 960 — 960 — 960 — 960 — 960 — 960 ns

tBP Minimum delay 
allowed from UFM 
busy signal going low 
to program signal 
going low

20 — 20 — 20 — 20 — 20 — 20 — ns

tPPMX Maximum length of 
busy pulse during a 
program

— 100 — 100 — 100 — 100 — 100 — 100 µs

tAE Minimum erase signal 
to address clock hold 
time

0 — 0 — 0 — 0 — 0 — 0 — ns

tEB Maximum delay 
between the erase 
rising edge to the 
UFM busy signal 
rising edge

— 960 — 960 — 960 — 960 — 960 — 960 ns

tBE Minimum delay 
allowed from the UFM 
busy signal going low 
to erase signal going 
low

20 — 20 — 20 — 20 — 20 — 20 — ns

tEPMX Maximum length of 
busy pulse during an 
erase

— 500 — 500 — 500 — 500 — 500 — 500 ms

tDCO Delay from data 
register clock to data 
register output

— 5 — 5 — 5 — 5 — 5 — 5 ns

Table 5–21. UFM Block Internal Timing Microparameters (Part 2 of 3)

Symbol Parameter

MAX II / MAX IIG MAX IIZ

Unit

–3 Speed 
Grade

–4 Speed 
Grade

–5 Speed 
Grade

–6 Speed 
Grade

–7 Speed 
Grade

–8 Speed 
Grade

Min Max Min Max Min Max Min Max Min Max Min Max
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z

k 

it

Unit

ns

ns

ns

ns

ns

ps

ps

ns
Table 5–24 shows the external I/O timing parameters for EPM570 devices.

fCNT Maximum 
global clock 
frequency for 
16-bit 
counter

— — 304.0 
(1)

— 247.5 — 201.1 — 184.1 — 123.5 — 118.3 MH

Note to Table 5–23:

(1) The maximum frequency is limited by the I/O standard on the clock input pin. The 16-bit counter critical delay performs faster than this global cloc
input pin maximum frequency.

Table 5–23. EPM240 Global Clock External I/O Timing Parameters (Part 2 of 2)

Symbol Parameter Condition

MAX II / MAX IIG MAX IIZ

Un

–3 Speed 
Grade

–4 Speed 
Grade

–5 Speed 
Grade

–6 Speed 
Grade

–7 Speed 
Grade

–8 Speed 
Grade

Min Max Min Max Min Max Min Max Min Max Min Max

Table 5–24. EPM570 Global Clock External I/O Timing Parameters (Part 1 of 2)

Symbol Parameter Condition

MAX II / MAX IIG MAX IIZ

–3 Speed 
Grade

–4 Speed 
Grade

–5 Speed 
Grade

–6 Speed 
Grade

–7 Speed 
Grade

–8 Speed 
Grade

Min Max Min Max Min Max Min Max Min Max Min Max

tPD1 Worst case pin-
to-pin delay 
through 1 look-
up table (LUT)

10 pF — 5.4 — 7.0 — 8.7 — 9.5 — 15.1 — 17.7

tPD2 Best case pin-
to-pin delay 
through 1 LUT

10 pF — 3.7 — 4.8 — 5.9 — 5.7 — 7.7 — 8.5

tSU Global clock 
setup time

— 1.2 — 1.5 — 1.9 — 2.2 — 3.9 — 4.4 —

tH Global clock 
hold time

— 0 — 0 — 0 — 0 — 0 — 0 —

tCO Global clock to 
output delay

10 pF 2.0 4.5 2.0 5.8 2.0 7.1 2.0 6.7 2.0 8.2 2.0 8.7

tCH Global clock 
high time

— 166 — 216 — 266 — 253 — 335 — 339 —

tCL Global clock 
low time

— 166 — 216 — 266 — 253 — 335 — 339 —

tCNT Minimum 
global clock 
period for 
16-bit counter

— 3.3 — 4.0 — 5.0 — 5.4 — 8.1 — 8.4 —
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Table 5–26 shows the external I/O timing parameters for EPM2210 devices.

External Timing I/O Delay Adders
The I/O delay timing parameters for I/O standard input and output adders, and 
input delays are specified by speed grade independent of device density.

Table 5–27 through Table 5–31 show the adder delays associated with I/O pins for all 
packages. The delay numbers for –3, –4, and –5 speed grades shown in Table 5–27 
through Table 5–33 are based on an EPM1270 device target, while –6, –7, and –8 speed 
grade values are based on an EPM570Z device target. If an I/O standard other than 
3.3-V LVTTL is selected, add the input delay adder to the external tSU timing 
parameters shown in Table 5–23 through Table 5–26. If an I/O standard other than 
3.3-V LVTTL with 16 mA drive strength and fast slew rate is selected, add the output 
delay adder to the external tCO and tPD shown in Table 5–23 through Table 5–26.

Table 5–26. EPM2210 Global Clock External I/O Timing Parameters

Symbol Parameter Condition

MAX II / MAX IIG

Unit

–3 Speed Grade –4 Speed Grade –5 Speed Grade

Min Max Min Max Min Max

tPD1 Worst case pin-to-pin delay 
through 1 look-up table 
(LUT)

10 pF — 7.0 — 9.1 — 11.2 ns

tPD2 Best case pin-to-pin delay 
through 1 LUT

10 pF — 3.7 — 4.8 — 5.9 ns

tSU Global clock setup time — 1.2 — 1.5 — 1.9 — ns

tH Global clock hold time — 0 — 0 — 0 — ns

tCO Global clock to output delay 10 pF 2.0 4.6 2.0 6.0 2.0 7.4 ns

tCH Global clock high time — 166 — 216 — 266 — ps

tCL Global clock low time — 166 — 216 — 266 — ps

tCNT Minimum global clock 
period for 
16-bit counter

— 3.3 — 4.0 — 5.0 — ns

fCNT Maximum global clock 
frequency for 16-bit counter

— — 304.0 
(1)

— 247.5 — 201.1 MHz

Note to Table 5–26:

(1) The maximum frequency is limited by the I/O standard on the clock input pin. The 16-bit counter critical delay performs faster than this global 
clock input pin maximum frequency.

Table 5–27. External Timing Input Delay Adders (Part 1 of 2)

I/O Standard

MAX II / MAX IIG MAX IIZ

Unit

–3 Speed 
Grade

–4 Speed 
Grade

–5 Speed 
Grade

–6 Speed 
Grade

–7 Speed 
Grade

–8 Speed 
Grade

Min Max Min Max Min Max Min Max Min Max Min Max

3.3-V LVTTL Without Schmitt 
Trigger

— 0 — 0 — 0 — 0 — 0 — 0 ps

With Schmitt 
Trigger

— 334 — 434 — 535 — 387 — 434 — 442 ps
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3.3-V LVCMOS Without Schmitt 
Trigger

— 0 — 0 — 0 — 0 — 0 — 0 ps

With Schmitt 
Trigger

— 334 — 434 — 535 — 387 — 434 — 442 ps

2.5-V LVTTL / 
LVCMOS

Without Schmitt 
Trigger

— 23 — 30 — 37 — 42 — 43 — 43 ps

With Schmitt 
Trigger

— 339 — 441 — 543 — 429 — 476 — 483 ps

1.8-V LVTTL / 
LVCMOS 

Without Schmitt 
Trigger

— 291 — 378 — 466 — 378 — 373 — 373 ps

1.5-V LVCMOS Without Schmitt 
Trigger

— 681 — 885 — 1,090 — 681 — 622 — 658 ps

3.3-V PCI Without Schmitt 
Trigger

— 0 — 0 — 0 — 0 — 0 — 0 ps

Table 5–28. External Timing Input Delay tGLOB Adders for GCLK Pins

I/O Standard

MAX II / MAX IIG MAX IIZ

Unit

–3 Speed 
Grade

–4 Speed 
Grade

–5 Speed 
Grade

–6 Speed 
Grade

–7 Speed 
Grade

–8 Speed 
Grade

Min Max Min Max Min Max Min Max Min Max Min Max

3.3-V LVTTL Without Schmitt 
Trigger

— 0 — 0 — 0 — 0 — 0 — 0 ps

With Schmitt 
Trigger

— 308 — 400 — 493 — 387 — 434 — 442 ps

3.3-V LVCMOS Without Schmitt 
Trigger

— 0 — 0 — 0 — 0 — 0 — 0 ps

With Schmitt 
Trigger

— 308 — 400 — 493 — 387 — 434 — 442 ps

2.5-V LVTTL / 
LVCMOS

Without Schmitt 
Trigger

— 21 — 27 — 33 — 42 — 43 — 43 ps

With Schmitt 
Trigger

— 423 — 550 — 677 — 429 — 476 — 483 ps

1.8-V LVTTL / 
LVCMOS

Without Schmitt 
Trigger

— 353 — 459 — 565 — 378 — 373 — 373 ps

1.5-V LVCMOS Without Schmitt 
Trigger

— 855 — 1,111 — 1,368 — 681 — 622 — 658 ps

3.3-V PCI Without Schmitt 
Trigger

— 6 — 7 — 9 — 0 — 0 — 0 ps

Table 5–27. External Timing Input Delay Adders (Part 2 of 2)

I/O Standard

MAX II / MAX IIG MAX IIZ

Unit

–3 Speed 
Grade

–4 Speed 
Grade

–5 Speed 
Grade

–6 Speed 
Grade

–7 Speed 
Grade

–8 Speed 
Grade

Min Max Min Max Min Max Min Max Min Max Min Max
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Table 5–29. External Timing Output Delay and tOD Adders for Fast Slew Rate

I/O Standard

MAX II / MAX IIG MAX IIZ

Unit

–3 Speed 
Grade

–4 Speed 
Grade

–5 Speed 
Grade

–6 Speed 
Grade

–7 Speed 
Grade

–8 Speed 
Grade

Min Max Min Max Min Max Min Max Min Max Min Max

3.3-V LVTTL 16 mA — 0 — 0 — 0 — 0 — 0 — 0 ps

8 mA — 65 — 84 — 104 — –6 — –2 — –3 ps

3.3-V LVCMOS 8 mA — 0 — 0 — 0 — 0 — 0 — 0 ps

4 mA — 65 — 84 — 104 — –6 — –2 — –3 ps

2.5-V LVTTL / 
LVCMOS

14 mA — 122 — 158 — 195 — –63 — –71 — –88 ps

7 mA — 193 — 251 — 309 — 10 — –1 — 1 ps

1.8-V LVTTL / 
LVCMOS

6 mA — 568 — 738 — 909 — 128 — 118 — 118 ps

3 mA — 654 — 850 — 1,046 — 352 — 327 — 332 ps

1.5-V LVCMOS 4 mA — 1,059 — 1,376 — 1,694 — 421 — 400 — 400 ps

2 mA — 1,167 — 1,517 — 1,867 — 757 — 743 — 743 ps

3.3-V PCI 20 mA — 3 — 4 — 5 — –6 — –2 — –3 ps

Table 5–30. External Timing Output Delay and tOD Adders for Slow Slew Rate

I/O Standard

MAX II / MAX IIG MAX IIZ

Unit

–3 Speed 
Grade

–4 Speed 
Grade

–5 Speed 
Grade

–6 Speed 
Grade

–7 Speed 
Grade

–8 Speed 
Grade

Min Max Min Max Min Max Min Max Min Max Min Max

3.3-V LVTTL 16 mA — 7,064 — 6,745 — 6,426 — 5,966 — 5,992 — 6,118 ps

8 mA — 7,946 — 7,627 — 7,308 — 6,541 — 6,570 — 6,720 ps

3.3-V LVCMOS 8 mA — 7,064 — 6,745 — 6,426 — 5,966 — 5,992 — 6,118 ps

4 mA — 7,946 — 7,627 — 7,308 — 6,541 — 6,570 — 6,720 ps

2.5-V LVTTL / 
LVCMOS

14 mA — 10,434 — 10,115 — 9,796 — 9,141 — 9,154 — 9,297 ps

7 mA — 11,548 — 11,229 — 10,910 — 9,861 — 9,874 — 10,037 ps

1.8-V LVTTL / 
LVCMOS

6 mA — 22,927 — 22,608 — 22,289 — 21,811 — 21,854 — 21,857 ps

3 mA — 24,731 — 24,412 — 24,093 — 23,081 — 23,034 — 23,107 ps

1.5-V LVCMOS 4 mA — 38,723 — 38,404 — 38,085 — 39,121 — 39,124 — 39,124 ps

2 mA — 41,330 — 41,011 — 40,692 — 40,631 — 40,634 — 40,634 ps

3.3-V PCI 20 mA — 261 — 339 — 418 — 6,644 — 6,627 — 6,914 ps
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