

Welcome to E-XFL.COM

Understanding <u>Embedded - CPLDs (Complex</u> <u>Programmable Logic Devices)</u>

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixedfunction ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details

Product Status	Active
Programmable Type	In System Programmable
Delay Time tpd(1) Max	5.4 ns
Voltage Supply - Internal	2.5V, 3.3V
Number of Logic Elements/Blocks	570
Number of Macrocells	440
Number of Gates	-
Number of I/O	76
Operating Temperature	-40°C ~ 125°C (TJ)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epm570t100a5n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 1–1 shows the MAX II family features.

Feature	EPM240 EPM240G	EPM570 EPM570G	EPM1270 EPM1270G	EPM2210 EPM2210G	EPM240Z	EPM570Z
LEs	240	570	1,270	2,210	240	570
Typical Equivalent Macrocells	192	440	980	1,700	192	440
Equivalent Macrocell Range	128 to 240	240 to 570	570 to 1,270	1,270 to 2,210	128 to 240	240 to 570
UFM Size (bits)	8,192	8,192	8,192	8,192	8,192	8,192
Maximum User I/O pins	80	160	212	272	80	160
t _{PD1} (ns) <i>(1)</i>	4.7	5.4	6.2	7.0	7.5	9.0
f _{cnt} (MHz) <i>(2)</i>	304	304	304	304	152	152
t _{su} (ns)	1.7	1.2	1.2	1.2	2.3	2.2
t _{co} (ns)	4.3	4.5	4.6	4.6	6.5	6.7

Table 1–1. MAX II Family Features

Notes to Table 1-1:

(1) t_{PD1} represents a pin-to-pin delay for the worst case I/O placement with a full diagonal path across the device and combinational logic implemented in a single LUT and LAB that is adjacent to the output pin.

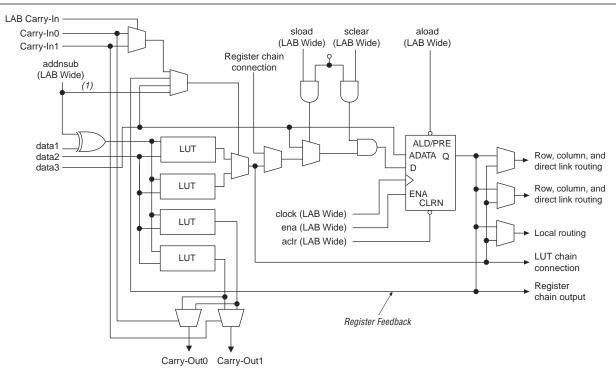
(2) The maximum frequency is limited by the I/O standard on the clock input pin. The 16-bit counter critical delay will run faster than this number.

For more information about equivalent macrocells, refer to the *MAX II Logic Element to Macrocell Conversion Methodology* white paper.

MAX II and MAX IIG devices are available in three speed grades: -3, -4, and -5, with -3 being the fastest. Similarly, MAX IIZ devices are available in three speed grades: -6, -7, and -8, with -6 being the fastest. These speed grades represent the overall relative performance, not any specific timing parameter. For propagation delay timing numbers within each speed grade and density, refer to the *DC and Switching Characteristics* chapter in the *MAX II Device Handbook*.

Table 1–2 shows MAX II device speed-grade offerings.

	Speed Grade					
Device	-3	-4	-5	-6	-7	-8
EPM240	\checkmark	\checkmark	\checkmark		—	—
EPM240G						
EPM570	\checkmark	\checkmark	\checkmark	_	—	—
EPM570G						
EPM1270	\checkmark	\checkmark	\checkmark	_	_	—
EPM1270G						
EPM2210	\checkmark	\checkmark	\checkmark	_	—	—
EPM2210G						
EPM240Z	_	—	_	\checkmark	\checkmark	\checkmark
EPM570Z	—	—	—	\checkmark	\checkmark	\checkmark

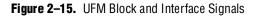

 Table 1–2.
 MAX II Speed Grades

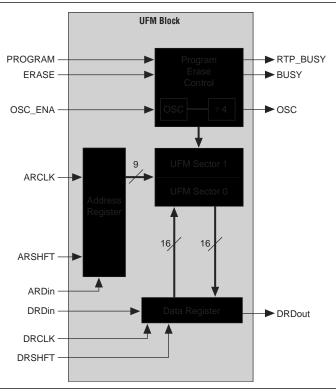
^{•••}

The other two LUTs use the data1 and data2 signals to generate two possible carry-out signals: one for a carry of 1 and the other for a carry of 0. The carry-in0 signal acts as the carry-select for the carry-out0 output and carry-in1 acts as the carry-select for the carry-out1 output. LEs in arithmetic mode can drive out registered and unregistered versions of the LUT output.

The dynamic arithmetic mode also offers clock enable, counter enable, synchronous up/down control, synchronous clear, synchronous load, and dynamic adder/subtractor options. The LAB local interconnect data inputs generate the counter enable and synchronous up/down control signals. The synchronous clear and synchronous load options are LAB-wide signals that affect all registers in the LAB. The Quartus II software automatically places any registers that are not used by the counter into other LABs. The addnsub LAB-wide signal controls whether the LE acts as an adder or subtractor.

Figure 2–8. LE in Dynamic Arithmetic Mode


Note to Figure 2-8:


(1) The addnsub signal is tied to the carry input for the first LE of a carry chain only.

Carry-Select Chain

The carry-select chain provides a very fast carry-select function between LEs in dynamic arithmetic mode. The carry-select chain uses the redundant carry calculation to increase the speed of carry functions. The LE is configured to calculate outputs for a possible carry-in of 0 and carry-in of 1 in parallel. The carry-in0 and carry-in1 signals from a lower-order bit feed forward into the higher-order bit via the parallel carry chain and feed into both the LUT and the next portion of the carry chain. Carry-select chains can begin in any LE within an LAB.

- Auto-increment addressing
- Serial interface to logic array with programmable interface

UFM Storage

Each device stores up to 8,192 bits of data in the UFM block. Table 2–3 shows the data size, sector, and address sizes for the UFM block.

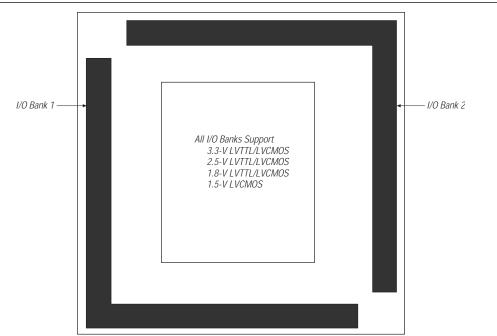
 Table 2–3.
 UFM Array Size

Device	Total Bits	Sectors	Address Bits	Data Width
EPM240	8,192	2	9	16
EPM570		(4,096 bits/sector)		
EPM1270				
EPM2210				

There are 512 locations with 9-bit addressing ranging from 000h to 1FFh. Sector 0 address space is 000h to 0FFh and Sector 1 address space is from 100h to 1FFh. The data width is up to 16 bits of data. The Quartus II software automatically creates logic to accommodate smaller read or program data widths. Erasure of the UFM involves individual sector erasing (that is, one erase of sector 0 and one erase of sector 1 is required to erase the entire UFM block). Since sector erase is required before a program or write, having two sectors enables a sector size of data to be left untouched while the other sector is erased and programmed with new data.

Table 2–4 describes the I/O standards supported by MAX II devices.

Table 2-4.	MAX II I/O	Standards
------------	------------	-----------


I/O Standard	Туре	Output Supply Voltage (VCCIO) (V)
3.3-V LVTTL/LVCMOS	Single-ended	3.3
2.5-V LVTTL/LVCMOS	Single-ended	2.5
1.8-V LVTTL/LVCMOS	Single-ended	1.8
1.5-V LVCMOS	Single-ended	1.5
3.3-V PCI (1)	Single-ended	3.3

Note to Table 2-4:

(1) The 3.3-V PCI compliant I/O is supported in Bank 3 of the EPM1270 and EPM2210 devices.

The EPM240 and EPM570 devices support two I/O banks, as shown in Figure 2–22. Each of these banks support all the LVTTL and LVCMOS standards shown in Table 2–4. PCI compliant I/O is not supported in these devices and banks.

Notes to Figure 2–22:

(1) Figure 2-22 is a top view of the silicon die.

(2) Figure 2-22 is a graphical representation only. Refer to the pin list and the Quartus II software for exact pin locations.

The EPM1270 and EPM2210 devices support four I/O banks, as shown in Figure 2–23. Each of these banks support all of the LVTTL and LVCMOS standards shown in Table 2–4. PCI compliant I/O is supported in Bank 3. Bank 3 supports the PCI clamping diode on inputs and PCI drive compliance on outputs. You must use Bank 3 for designs requiring PCI compliant I/O pins. The Quartus II software automatically places I/O pins in this bank if assigned with the PCI I/O standard.

Device	33-MHz PCI	66-MHz PCI
EPM1270	All Speed Grades	–3 Speed Grade
EPM2210	All Speed Grades	–3 Speed Grade

Table 2–5. MAX II Devices and Speed Grades that Support 3.3-V PCI Electrical Specifications and	
Meet PCI Timing	

Schmitt Trigger

The input buffer for each MAX II device I/O pin has an optional Schmitt trigger setting for the 3.3-V and 2.5-V standards. The Schmitt trigger allows input buffers to respond to slow input edge rates with a fast output edge rate. Most importantly, Schmitt triggers provide hysteresis on the input buffer, preventing slow-rising noisy input signals from ringing or oscillating on the input signal driven into the logic array. This provides system noise tolerance on MAX II inputs, but adds a small, nominal input delay.

The JTAG input pins (TMS, TCK, and TDI) have Schmitt trigger buffers that are always enabled.

P

The TCK input is susceptible to high pulse glitches when the input signal fall time is greater than 200 ns for all I/O standards.

Output Enable Signals

Each MAX II IOE output buffer supports output enable signals for tri-state control. The output enable signal can originate from the GCLK[3..0] global signals or from the MultiTrack interconnect. The MultiTrack interconnect routes output enable signals and allows for a unique output enable for each output or bidirectional pin.

MAX II devices also provide a chip-wide output enable pin (DEV_OE) to control the output enable for every output pin in the design. An option set before compilation in the Quartus II software controls this pin. This chip-wide output enable uses its own routing resources and does not use any of the four global resources. If this option is turned on, all outputs on the chip operate normally when DEV_OE is asserted. When the pin is deasserted, all outputs are tri-stated. If this option is turned off, the DEV_OE pin is disabled when the device operates in user mode and is available as a user I/O pin.

Programmable Drive Strength

The output buffer for each MAX II device I/O pin has two levels of programmable drive strength control for each of the LVTTL and LVCMOS I/O standards. Programmable drive strength provides system noise reduction control for high performance I/O designs. Although a separate slew-rate control feature exists, using the lower drive strength setting provides signal slew-rate control to reduce system noise and signal overshoot without the large delay adder associated with the slew-rate control feature. Table 2–6 shows the possible settings for the I/O standards with drive strength control. The Quartus II software uses the maximum current strength as the default setting. The PCI I/O standard is always set at 20 mA with no alternate setting.

Connect VCCIO pins to either a 1.5-V, 1.8 V, 2.5-V, or 3.3-V power supply, depending on the output requirements. The output levels are compatible with systems of the same voltage as the power supply (that is, when VCCIO pins are connected to a 1.5-V power supply, the output levels are compatible with 1.5-V systems). When VCCIO pins are connected to a 3.3-V power supply, the output high is 3.3 V and is compatible with 3.3-V or 5.0-V systems. Table 2–7 summarizes MAX II MultiVolt I/O support.

Table 2–7. MAX II MultiVolt I/O Support (Note 1)

		Input Signal					0	utput Signa	al	
VCCIO (V)	1.5 V	1.8 V	2.5 V	3.3 V	5.0 V	1.5 V	1.8 V	2.5 V	3.3 V	5.0 V
1.5	\checkmark	\checkmark	\checkmark	\checkmark	—	\checkmark	_		_	—
1.8	\checkmark	\checkmark	\checkmark	\checkmark	_	✓ (2)	\checkmark	_	_	—
2.5	_	_	\checkmark	\checkmark	_	✓ (3)	✓ (3)	\checkmark	_	_
3.3	_	—	✓ (4)	\checkmark	✓ (5)	✓ (6)	✓ (6)	✓ (6)	\checkmark	✓ (7)

Notes to Table 2-7:

(1) To drive inputs higher than V_{CGIO} but less than 4.0 V including the overshoot, disable the I/O clamp diode. However, to drive 5.0-V inputs to the device, enable the I/O clamp diode to prevent V₁ from rising above 4.0 V.

- (2) When $V_{CCIO} = 1.8$ V, a MAX II device can drive a 1.5-V device with 1.8-V tolerant inputs.
- (3) When $V_{CCIO} = 2.5$ V, a MAX II device can drive a 1.5-V or 1.8-V device with 2.5-V tolerant inputs.
- (4) When V_{CCI0} = 3.3 V and a 2.5-V input signal feeds an input pin, the VCCI0 supply current will be slightly larger than expected.
- (5) MAX II devices can be 5.0-V tolerant with the use of an external resistor and the internal I/O clamp diode on the EPM1270 and EPM2210 devices.
- (6) When $V_{CCIO} = 3.3$ V, a MAX II device can drive a 1.5-V, 1.8-V, or 2.5-V device with 3.3-V tolerant inputs.
- (7) When V_{CCI0} = 3.3 V, a MAX II device can drive a device with 5.0-V TTL inputs but not 5.0-V CMOS inputs. In the case of 5.0-V CMOS, opendrain setting with internal I/O clamp diode (available only on EPM1270 and EPM2210 devices) and external resistor is required.

• For information about output pin source and sink current guidelines, refer to the *AN* 428: *MAX II CPLD Design Guidelines*.

Referenced Documents

This chapter referenced the following documents:

- AN 428: MAX II CPLD Design Guidelines
- DC and Switching Characteristics chapter in the MAX II Device Handbook
- *Hot Socketing and Power-On Reset in MAX II Devices* chapter in the *MAX II Device Handbook*
- Using User Flash Memory in MAX II Devices chapter in the MAX II Device Handbook

	Table 3-1.	MAX II JTAG	Instructions	(Part 2 of 2)
--	------------	-------------	--------------	---------------

JTAG Instruction	Instruction Code	Description
CLAMP (1)	00 0000 1010	Places the 1-bit bypass register between the TDI and TDO pins, which allows the boundary scan test data to pass synchronously through selected devices to adjacent devices during normal device operation, while holding I/O pins to a state defined by the data in the boundary-scan register.
USER0	00 0000 1100	This instruction allows you to define the scan chain between TDI and TDO in the MAX II logic array. This instruction is also used for custom logic and JTAG interfaces.
USER1	00 0000 1110	This instruction allows you to define the scan chain between TDI and TDO in the MAX II logic array. This instruction is also used for custom logic and JTAG interfaces.
IEEE 1532 instructions	(2)	IEEE 1532 ISC instructions used when programming a MAX II device via the JTAG port.

Notes to Table 3-1:

(1) HIGHZ, CLAMP, and EXTEST instructions do not disable weak pull-up resistors or bus hold features.

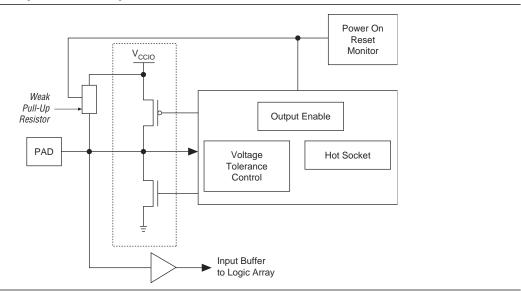
(2) These instructions are shown in the 1532 BSDL files, which will be posted on the Altera® website at www.altera.com when they are available.

Unsupported JTAG instructions should not be issued to the MAX II device as this may put the device into an unknown state, requiring a power cycle to recover device operation.

The MAX II device instruction register length is 10 bits and the USERCODE register length is 32 bits. Table 3–2 and Table 3–3 show the boundary-scan register length and device IDCODE information for MAX II devices.

Table 3–2. MAX II Boundary-Scan Register Length

Device	Boundary-Scan Register Length
EPM240	240
EPM570	480
EPM1270	636
EPM2210	816


Table 3-3. 32-Bit MAX II Device IDCODE (Part 1 of 2)

	Binary IDCODE (32 Bits) <i>(1)</i>										
Device	Version (4 Bits)	Part Number	Manufacturer Identity (11 Bits)	LSB (1 Bit) <i>(2)</i>	HEX IDCODE						
EPM240	0000	0010 0000 1010 0001	000 0110 1110	1	0x020A10DD						
EPM240G											
EPM570	0000	0010 0000 1010 0010	000 0110 1110	1	0x020A20DD						
EPM570G											
EPM1270	0000	0010 0000 1010 0011	000 0110 1110	1	0x020A30DD						
EPM1270G											
EPM2210	0000	0010 0000 1010 0100	000 0110 1110	1	0x020A40DD						
EPM2210G											

Make sure that the V_{CCNT} is within the recommended operating range even though SRAM download has completed.

Each I/O and clock pin has the circuitry shown in Figure 4–1.

Figure 4-1. Hot Socketing Circuit Block Diagram for MAX II Devices

The POR circuit monitors V_{CCINT} and V_{CCIO} voltage levels and keeps I/O pins tri-stated until the device has completed its flash memory configuration of the SRAM logic. The weak pull-up resistor (R) from the I/O pin to V_{CCIO} is enabled during download to keep the I/O pins from floating. The 3.3-V tolerance control circuit permits the I/O pins to be driven by 3.3 V before V_{CCIO} and/or V_{CCINT} are powered, and it prevents the I/O pins from driving out when the device is not fully powered or operational. The hot socket circuit prevents I/O pins from internally powering V_{CCIO} and V_{CCINT} when driven by external signals before the device is powered.

٠.,

For information about 5.0-V tolerance, refer to the *Using MAX II Devices in Multi-Voltage Systems* chapter in the *MAX II Device Handbook*.

Figure 4–2 shows a transistor-level cross section of the MAX II device I/O buffers. This design ensures that the output buffers do not drive when V_{CCIO} is powered before V_{CCINT} or if the I/O pad voltage is higher than V_{CCIO} . This also applies for sudden voltage spikes during hot insertion. The V_{PAD} leakage current charges the 3.3-V tolerant circuit capacitance.

5. DC and Switching Characteristics

Introduction

System designers must consider the recommended DC and switching conditions discussed in this chapter to maintain the highest possible performance and reliability of the MAX[®] II devices. This chapter contains the following sections:

- "Operating Conditions" on page 5–1
- "Power Consumption" on page 5–8
- "Timing Model and Specifications" on page 5–8

Operating Conditions

Table 5–1 through Table 5–12 provide information about absolute maximum ratings, recommended operating conditions, DC electrical characteristics, and other specifications for MAX II devices.

Absolute Maximum Ratings

Table 5-1 shows the absolute maximum ratings for the MAX II device family.

Table 5–1. MAX II Device Absolute Maximum Ratings (Note 1), (2)

Symbol	Parameter	Conditions	Minimum	Maximum	Unit
V _{CCINT}	Internal supply voltage (3)	With respect to ground	-0.5	4.6	V
V _{CCIO}	I/O supply voltage	—	-0.5	4.6	V
Vi	DC input voltage	—	-0.5	4.6	V
I _{out}	DC output current, per pin (4)	—	-25	25	mA
T _{stg}	Storage temperature	No bias	-65	150	0°
T _{AMB}	Ambient temperature	Under bias <i>(5)</i>	-65	135	0°
TJ	Junction temperature	TQFP and BGA packages under bias	_	135	J°

Notes to Table 5-1:

(1) Refer to the Operating Requirements for Altera Devices Data Sheet.

(2) Conditions beyond those listed in Table 5–1 may cause permanent damage to a device. Additionally, device operation at the absolute maximum ratings for extended periods of time may have adverse affects on the device.

(3) Maximum $V_{\mbox{\tiny CCINT}}$ for MAX II devices is 4.6 V. For MAX IIG and MAX IIZ devices, it is 2.4 V.

(4) Refer to AN 286: Implementing LED Drivers in MAX & MAX II Devices for more information about the maximum source and sink current for MAX II devices.

(5) Refer to Table 5–2 for information about "under bias" conditions.

Programming/Erasure Specifications

Table 5–3 shows the MAX II device family programming/erasure specifications.

Table 5-3. MAX II Device Programming/Erasure Specifications

Parameter	Minimum	Typical	Maximum	Unit
Erase and reprogram cycles	_	_	100 (1)	Cycles

Note to Table 5-3:

(1) This specification applies to the UFM and configuration flash memory (CFM) blocks.

DC Electrical Characteristics

Table 5-4 shows the MAX II device family DC electrical characteristics.

 Table 5-4.
 MAX II Device DC Electrical Characteristics (Note 1) (Part 1 of 2)

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit
I _I	Input pin leakage current	$V_i = V_{ccio} max to 0 V (2)$	-10	_	10	μA
I _{oz}	Tri-stated I/O pin leakage current	$V_0 = V_{cc10}$ max to 0 V (2)	-10	—	10	μA
I _{CCSTANDBY}	V _{CCINT} supply current	MAX II devices	_	12	—	mA
	(standby) <i>(3)</i>	MAX IIG devices	—	2	—	mA
		EPM240Z (Commercial grade) <i>(4)</i>	_	25	90	μA
		EPM240Z (Industrial grade) <i>(5)</i>	_	25	139	μA
		EPM570Z (Commercial grade) <i>(4)</i>	_	27	96	μA
		EPM570Z (Industrial grade) <i>(5)</i>	_	27	152	μA
V _{SCHMITT} <i>(6)</i>	Hysteresis for Schmitt	V _{ccio} = 3.3 V	—	400	—	mV
	trigger input (7)	V _{ccio} = 2.5 V	_	190	—	mV
I _{CCPOWERUP}	V _{CCINT} supply current	MAX II devices	—	55	—	mA
	during power-up <i>(8)</i>	MAX IIG and MAX IIZ devices	_	40	_	mA
R _{PULLUP}	Value of I/O pin pull-up	$V_{ccio} = 3.3 V (9)$	5	_	25	kΩ
	resistor during user	$V_{ccio} = 2.5 V (9)$	10	—	40	kΩ
	mode and in-system programming	V _{ccio} = 1.8 V (9)	25	—	60	kΩ
		$V_{ccio} = 1.5 V (9)$	45	_	95	kΩ

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit
I _{pullup}	I/O pin pull-up resistor current when I/O is unprogrammed	_			300	μA
C ₁₀	Input capacitance for user I/O pin		_	_	8	pF
C _{gclk}	Input capacitance for dual-purpose GCLK/user I/O pin	_			8	pF

 Table 5-4.
 MAX II Device DC Electrical Characteristics (Note 1) (Part 2 of 2)

Notes to Table 5-4:

- (1) Typical values are for $T_A = 25^{\circ}$ C, $V_{CCINT} = 3.3$ or 2.5 V, and $V_{CCIO} = 1.5$ V, 1.8 V, 2.5 V, or 3.3 V.
- (2) This value is specified for normal device operation. The value may vary during power-up. This applies for all V_{ccio} settings (3.3, 2.5, 1.8, and 1.5 V).
- (3) V_1 = ground, no load, no toggling inputs.
- (4) Commercial temperature ranges from 0°C to 85°C with maximum current at 85°C.
- (5) Industrial temperature ranges from -40°C to 100°C with maximum current at 100°C.
- (6) This value applies to commercial and industrial range devices. For extended temperature range devices, the V_{SCHMITT} typical value is 300 mV for V_{CCI0} = 3.3 V and 120 mV for V_{CCI0} = 2.5 V.
- (7) The TCK input is susceptible to high pulse glitches when the input signal fall time is greater than 200 ns for all I/O standards.
- (8) This is a peak current value with a maximum duration of t_{CONFIG} time.
- (9) Pin pull-up resistance values will lower if an external source drives the pin higher than V_{CCIO}.

			N	/AX II	/ MAX II	G								
		–3 Speed Grade					Speed –6 Speed ade Grade			–7 Speed Grade			Speed rade	
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
t _{fastio}	Data output delay from adjacent LE to I/O block		159		207		254		170		348		428	ps
t _{iN}	I/O input pad and buffer delay	_	708	—	920	-	1,132	_	907	_	970	_	986	ps
t _{glob} (1)	I/O input pad and buffer delay used as global signal pin	_	1,519	_	1,974	_	2,430		2,261		2,670	_	3,322	ps
t _{ioe}	Internally generated output enable delay	_	354	_	374	_	460		530		966	_	1,410	ps
t _{dl}	Input routing delay	_	224	_	291	_	358	—	318	_	410	_	509	ps
t _{od} (2)	Output delay buffer and pad delay	_	1,064	—	1,383	-	1,702	—	1,319	—	1,526	—	1,543	ps
t _{xz} <i>(3)</i>	Output buffer disable delay	_	756	—	982	-	1,209	_	1,045	_	1,264	_	1,276	ps
t _{zx} (4)	Output buffer enable delay	—	1,003	—	1,303	—	1,604	—	1,160	—	1,325	—	1,353	ps

Table 5–16. IOE Internal Timing Microparameters

Notes to Table 5-16:

(1) Delay numbers for t_{GLOB} differ for each device density and speed grade. The delay numbers for t_{GLOB}, shown in Table 5–16, are based on an EPM240 device target.

(2) Refer to Table 5–32 and 5–24 for delay adders associated with different I/O standards, drive strengths, and slew rates.

(3) Refer to Table 5–19 and 5–14 for txz delay adders associated with different I/O standards, drive strengths, and slew rates.

(4) Refer to Table 5–17 and 5–13 for t_{zx} delay adders associated with different I/O standards, drive strengths, and slew rates.

Table 5–17 through Table 5–20 show the adder delays for t_{zx} and t_{xz} microparameters when using an I/O standard other than 3.3-V LVTTL with 16 mA drive strength.

 Table 5–17.
 t_{ZX} IOE Microparameter Adders for Fast Slew Rate
 (Part 1 of 2)

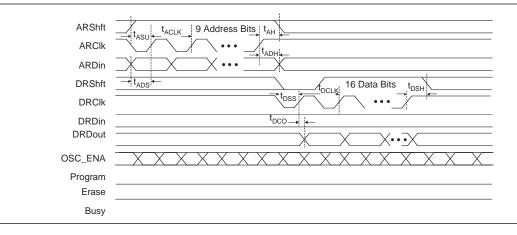
				MAX II ,	/ MAX II	G				MA	X IIZ							
			peed ade	-	Speed ade		peed ade		peed ade		peed ade		peed ade					
Standar	d	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit				
3.3-V LVTTL	16 mA	—	0	_	0		0	_	0	_	0	—	0	ps				
	8 mA	—	28	—	37	—	45	—	72	—	71		74	ps				
3.3-V LVCMOS	8 mA	—	0		0	—	0	—	0	—	0		0	ps				
	4 mA		28		37	—	45	—	72		71		74	ps				
- 2.5-4/LVTT7L/ LVCMOS	¢64 m.nSax L	c)D]6	T6	(7)1 5 x	3	2	1	1	Т	w m	60	. 6 7	6	97	' 1	1

5–12

0

)

			M	AX II /	MAX II	G		MAX IIZ						
		–3 Sj Gra		–4 S Gra	peed ade	–5 S Gra			peed ade		peed ade		peed ade	
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
t_{DDS}	Data register data in setup to data register clock	20		20	_	20		20		20		20		ns
t _{ddh}	Data register data in hold from data register clock	20		20	-	20	-	20	_	20	-	20	_	ns
t _{DP}	Program signal to data clock hold time	0		0	-	0	-	0	-	0	-	0	-	ns
t _{PB}	Maximum delay between program rising edge to UFM busy signal rising edge		960		960		960		960		960		960	ns
t _{BP}	Minimum delay allowed from UFM busy signal going low to program signal going low	20	_	20	_	20	_	20	_	20	_	20		ns
t _{ppmx}	Maximum length of busy pulse during a program		100		100		100		100	_	100		100	μs
t _{AE}	Minimum erase signal to address clock hold time	0	—	0	—	0	_	0	_	0	—	0	_	ns
t _{eb}	Maximum delay between the erase rising edge to the UFM busy signal rising edge		960		960		960		960		960		960	ns
t _{BE}	Minimum delay allowed from the UFM busy signal going low to erase signal going low	20	_	20		20	_	20		20		20		ns
t _{epmx}	Maximum length of busy pulse during an erase		500		500		500		500		500		500	ms
t_{DCO}	Delay from data register clock to data register output		5		5		5		5		5		5	ns


Table 5–21. UFM Block Internal Timing Microparameters (Part 2 of 3)

			N	IAX II /	MAX I	G		MAX IIZ						
		–3 Speed Grade		–4 Speed Grade		–5 Speed Grade		–6 Speed Grade		–7 Speed Grade		–8 Speed Grade		
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
t _{oe}	Delay from data register clock to data register output	180	-	180	_	180	_	180		180		180		ns
t _{RA}	Maximum read access time		65	_	65		65	_	65	_	65	_	65	ns
t _{oscs}	Maximum delay between the OSC_ENA rising edge to the erase/program signal rising edge	250	_	250	_	250		250		250		250		ns
t _{osch}	Minimum delay allowed from the erase/program signal going low to OSC_ENA signal going low	250	_	250	_	250		250		250		250		ns

Table 5-21. UFM Block Internal Timing Microparameters (Part 3 of 3)

Figure 5–3 through Figure 5–5 show the read, program, and erase waveforms for UFM block timing parameters shown in Table 5–21.

Figure 5–3. UFM Read Waveforms

			MAX II / MAX II	G	MAX IIZ				
I/O Stand	lard	–3 Speed Grade	–4 Speed Grade	–5 Speed Grade	–6 Speed Grade	–7 Speed Grade	–8 Speed Grade		
3.3-V LVTTL	304	304	304	304	304	304	MHz		
3.3-V LVCMOS	304	304	304	304	304	304	MHz		
2.5-V LVTTL	220	220	220	220	220	220	MHz		
2.5-V LVCMOS	220	220	220	220	220	220	MHz		
1.8-V LVTTL	200	200	200	200	200	200	MHz		
1.8-V LVCMOS	200	200	200	200	200	200	MHz		
1.5-V LVCMOS	150	150	150	150	150	150	MHz		
3.3-V PCI	304	304	304	304	304	304	MHz		

JTAG Timing Specifications

Figure 5–6 shows the timing waveforms for the JTAG signals.

Figure 5–6. MAX II JTAG Timing Waveforms

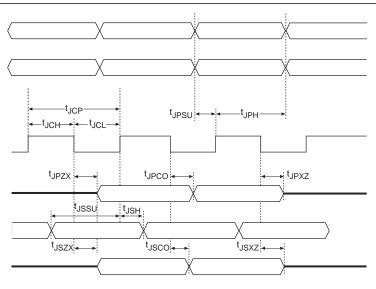


Table 5–34 shows the JTAG Timing parameters and values for MAX II devices.

Table 5-34.	MAX II J	JTAG Timin	g Parameters	(Part 1 of 2)
-------------	----------	------------	--------------	---------------

Symbol	Parameter	Min	Max	Unit
t _{JCP} (1)	TCK clock period for $V_{\text{CCIO1}} = 3.3 \text{ V}$	55.5	—	ns
	TCK clock period for $V_{\text{ccio1}} = 2.5 \text{ V}$	62.5		ns
	TCK clock period for $V_{CCIO1} = 1.8 V$	100	—	ns
	TCK clock period for $V_{\text{CCIO1}} = 1.5 \text{ V}$	143	_	ns
t _{JCH}	TCK clock high time	20		ns
t _{JCL}	TCK clock low time	20	_	ns

Symbol	Parameter	Min	Max	Unit
t _{JPSU}	JTAG port setup time (2)	8	—	ns
t _{JPH}	JTAG port hold time	10	—	ns
t _{JPCO}	JTAG port clock to output (2)	_	15	ns
t _{JPZX}	JTAG port high impedance to valid output (2)	_	15	ns
t _{JPXZ}	JTAG port valid output to high impedance (2)	_	15	ns
t _{ussu}	Capture register setup time	8	_	ns
t _{лsн}	Capture register hold time	10	—	ns
t _{JSCO}	Update register clock to output	_	25	ns
t _{JSZX}	Update register high impedance to valid output	_	25	ns
t _{JSXZ}	Update register valid output to high impedance	_	25	ns

Table 5–34. MAX II JTAG Timing Parameters (Part 2 of 2)

Notes to Table 5-34:

(1) Minimum clock period specified for 10 pF load on the TDO pin. Larger loads on TDO will degrade the maximum TCK frequency.

(2) This specification is shown for 3.3-V LVTTL/LVCMOS and 2.5-V LVTTL/LVCMOS operation of the JTAG pins. For 1.8-V LVTTL/LVCMOS and 1.5-V LVCMOS, the t_{JPSU} minimum is 6 ns and t_{JPC0}, t_{JPZX}, and t_{JPXZ} are maximum values at 35 ns.

Referenced Documents

This chapter references the following documents:

- *I/O Structure* section in the *MAX II Architecture* chapter in the *MAX II Device Handbook*
- Hot Socketing and Power-On Reset in MAX II Devices chapter in the MAX II Device Handbook
- Operating Requirements for Altera Devices Data Sheet
- PowerPlay Power Analysis chapter in volume 3 of the Quartus II Handbook
- Understanding and Evaluating Power in MAX II Devices chapter in the MAX II Device Handbook
- Understanding Timing in MAX II Devices chapter in the MAX II Device Handbook
- Using MAX II Devices in Multi-Voltage Systems chapter in the MAX II Device Handbook

Document Revision History

Table 5–35 shows the revision history for this chapter.

Table 5-35. Document Revision History (Part 1 of 2)

Date and Revision	Changes Made	Summary of Changes
August 2009,	Added Table 5–28, Table 5–29, and Table 5–30.	Added information for
version 2.5	■ Updated Table 5–2, Table 5–4, Table 5–14, Table 5–15, Table 5–16, Table 5–17, Table 5–18, Table 5–19, Table 5–20, Table 5–21, Table 5–22, Table 5–23, Table 5–24, Table 5–27, Table 5–31, Table 5–32, and Table 5–33.	speed grade –8
November 2008,	■ Updated Table 5–2.	—
version 2.4	 Updated "Internal Timing Parameters" section. 	
October 2008,	 Updated New Document Format. 	_
version 2.3	 Updated Figure 5-1. 	
July 2008, version 2.2	■ Updated Table 5–14 , Table 5–23 , and Table 5–24.	_
March 2008, version 2.1	Added (Note 5) to Table 5–4.	_
December 2007,	■ Updated (Note 3) and (4) to Table 5–1.	Updated document with
version 2.0	■ Updated Table 5–2 and added (Note 5).	MAX IIZ information.
	 Updated ICCSTANDBY and ICCPOWERUP information and added IPULLUP information in Table 5–4. 	
	■ Added (Note 1) to Table 5–10.	
	■ Updated Figure 5–2.	
	Added (Note 1) to Table 5–13.	
	 Updated Table 5–13 through Table 5–24, and Table 5–27 through Table 5–30. 	
	 Added tCOMB information to Table 5–15. 	
	■ Updated Figure 5–6.	
	 Added "Referenced Documents" section. 	
December 2006,	■ Added note to Table 5–1.	
version 1.8	 Added document revision history. 	
July 2006, version 1.7	Minor content and table updates.	_
February 2006, version 1.6	 Updated "External Timing I/O Delay Adders" section. 	—
	■ Updated Table 5–29.	
	■ Updated Table 5–30.	
November 2005, version 1.5	■ Updated Tables 5-2, 5-4, and 5-12.	—
August 2005,	■ Updated Figure 5-1.	_
version 1.4	■ Updated Tables 5-13, 5-16, and 5-26.	
	Removed Note 1 from Table 5-12.	

Referenced Documents

This chapter references the following document:

■ *Package Information* chapter in the MAX II Device Handbook

Document Revision History

Table 6–1 shows the revision history for this chapter.

Date and Revision	Changes Made	Summary of Changes
August 2009, version 1.6	■ Updated Figure 6–1.	Added information for speed grade –8
October 2008, version 1.5	 Updated New Document Format. 	_
December 2007,	Added "Referenced Documents" section.	Updated document with
version 1.4	■ Updated Figure 6–1.	MAX IIZ information.
December 2006, version 1.3	 Added document revision history. 	_
October 2006, version 1.2	■ Updated Figure 6-1.	_
June 2005, version 1.1	 Removed Dual Marking section. 	-

 Table 6–1.
 Document Revision History