

Welcome to E-XFL.COM

Understanding <u>Embedded - CPLDs (Complex</u> <u>Programmable Logic Devices)</u>

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixedfunction ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details

Details	
Product Status	Active
Programmable Type	In System Programmable
Delay Time tpd(1) Max	5.4 ns
Voltage Supply - Internal	2.5V, 3.3V
Number of Logic Elements/Blocks	570
Number of Macrocells	440
Number of Gates	-
Number of I/O	76
Operating Temperature	0°C ~ 85°C (TJ)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=epm570t100c3

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1. Introduction

Introduction

The MAX® II family of instant-on, non-volatile CPLDs is based on a 0.18-µm, 6-layer-metal-flash process, with densities from 240 to 2,210 logic elements (LEs) (128 to 2,210 equivalent macrocells) and non-volatile storage of 8 Kbits. MAX II devices offer high I/O counts, fast performance, and reliable fitting versus other CPLD architectures. Featuring MultiVolt core, a user flash memory (UFM) block, and enhanced in-system programmability (ISP), MAX II devices are designed to reduce cost and power while providing programmable solutions for applications such as bus bridging, I/O expansion, power-on reset (POR) and sequencing control, and device configuration control.

Features

The MAX II CPLD has the following features:

- Low-cost, low-power CPLD
- Instant-on, non-volatile architecture
- Standby current as low as 25 μA
- Provides fast propagation delay and clock-to-output times
- Provides four global clocks with two clocks available per logic array block (LAB)
- UFM block up to 8 Kbits for non-volatile storage
- MultiVolt core enabling external supply voltages to the device of either 3.3 V/2.5 V or 1.8 V
- MultiVolt I/O interface supporting 3.3-V, 2.5-V, 1.8-V, and 1.5-V logic levels
- Bus-friendly architecture including programmable slew rate, drive strength, bus-hold, and programmable pull-up resistors
- Schmitt triggers enabling noise tolerant inputs (programmable per pin)
- I/Os are fully compliant with the Peripheral Component Interconnect Special Interest Group (PCI SIG) PCI Local Bus Specification, Revision 2.2 for 3.3-V operation at 66 MHz
- Supports hot-socketing
- Built-in Joint Test Action Group (JTAG) boundary-scan test (BST) circuitry compliant with IEEE Std. 1149.1-1990
- ISP circuitry compliant with IEEE Std. 1532

Table 1–6. Document Revision History

Date and Revision	Changes Made	Summary of Changes
June 2005, version 1.3	Updated timing numbers in Table 1-1.	_
December 2004, version 1.2	 Updated timing numbers in Table 1-1. 	_
June 2004, version 1.1	 Updated timing numbers in Table 1-1. 	_

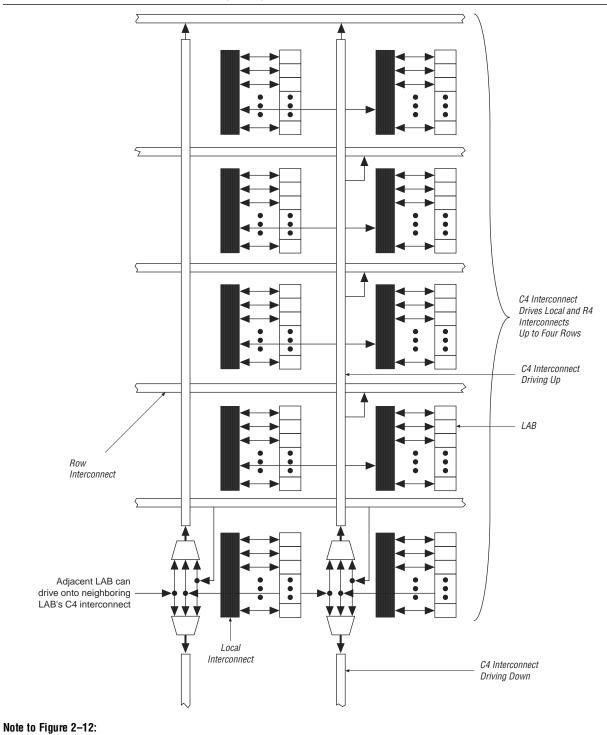
2. MAX II Architecture

Introduction

This chapter describes the architecture of the MAX II device and contains the following sections:

- "Functional Description" on page 2–1
- "Logic Array Blocks" on page 2–4
- "Logic Elements" on page 2–6
- "MultiTrack Interconnect" on page 2–12
- "Global Signals" on page 2–16
- "User Flash Memory Block" on page 2–18
- "MultiVolt Core" on page 2–22
- "I/O Structure" on page 2–23

Functional Description


MAX[®] II devices contain a two-dimensional row- and column-based architecture to implement custom logic. Row and column interconnects provide signal interconnects between the logic array blocks (LABs).

The logic array consists of LABs, with 10 logic elements (LEs) in each LAB. An LE is a small unit of logic providing efficient implementation of user logic functions. LABs are grouped into rows and columns across the device. The MultiTrack interconnect provides fast granular timing delays between LABs. The fast routing between LEs provides minimum timing delay for added levels of logic versus globally routed interconnect structures.

The MAX II device I/O pins are fed by I/O elements (IOE) located at the ends of LAB rows and columns around the periphery of the device. Each IOE contains a bidirectional I/O buffer with several advanced features. I/O pins support Schmitt trigger inputs and various single-ended standards, such as 66-MHz, 32-bit PCI, and LVTTL.

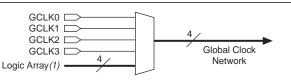
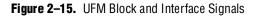
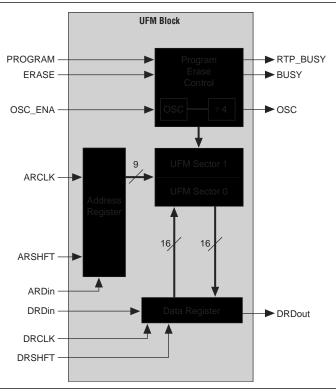

MAX II devices provide a global clock network. The global clock network consists of four global clock lines that drive throughout the entire device, providing clocks for all resources within the device. The global clock lines can also be used for control signals such as clear, preset, or output enable.

Figure 2–12. C4 Interconnect Connections (Note 1)

(1) Each C4 interconnect can drive either up or down four rows.




Note to Figure 2-13:

(1) Any I/O pin can use a MultiTrack interconnect to route as a logic array-generated global clock signal.

The global clock network drives to individual LAB column signals, LAB column clocks [3..0], that span an entire LAB column from the top to the bottom of the device. Unused global clocks or control signals in a LAB column are turned off at the LAB column clock buffers shown in Figure 2–14. The LAB column clocks [3..0] are multiplexed down to two LAB clock signals and one LAB clear signal. Other control signal types route from the global clock network into the LAB local interconnect. See "LAB Control Signals" on page 2–5 for more information.

- Auto-increment addressing
- Serial interface to logic array with programmable interface

UFM Storage

Each device stores up to 8,192 bits of data in the UFM block. Table 2–3 shows the data size, sector, and address sizes for the UFM block.

 Table 2–3.
 UFM Array Size

Device	Total Bits	Sectors	Address Bits	Data Width
EPM240	8,192	2	9	16
EPM570		(4,096 bits/sector)		
EPM1270				
EPM2210				

There are 512 locations with 9-bit addressing ranging from 000h to 1FFh. Sector 0 address space is 000h to 0FFh and Sector 1 address space is from 100h to 1FFh. The data width is up to 16 bits of data. The Quartus II software automatically creates logic to accommodate smaller read or program data widths. Erasure of the UFM involves individual sector erasing (that is, one erase of sector 0 and one erase of sector 1 is required to erase the entire UFM block). Since sector erase is required before a program or write, having two sectors enables a sector size of data to be left untouched while the other sector is erased and programmed with new data.

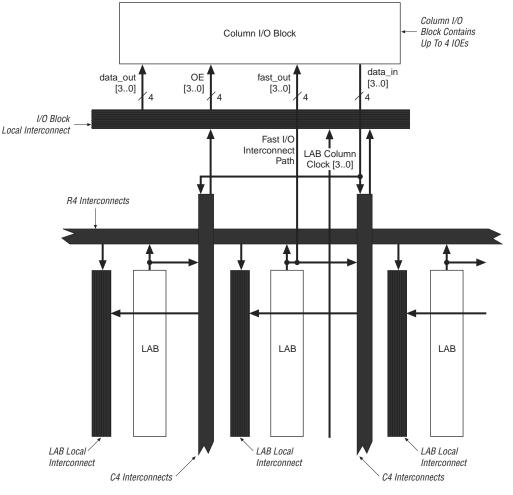


Figure 2–21 shows how a column I/O block connects to the logic array.

Note to Figure 2–21:

```
(1) Each of the four IOEs in the column I/O block can have one data_out or fast_out output, one OE output, and one data_in input.
```

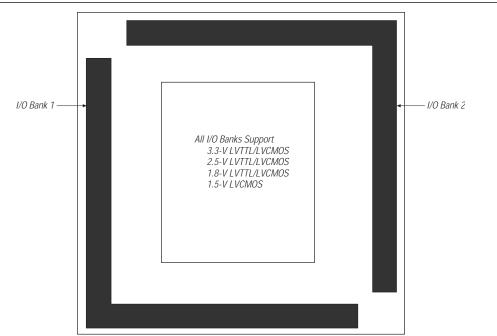
I/O Standards and Banks

MAX II device IOEs support the following I/O standards:

- 3.3-V LVTTL/LVCMOS
- 2.5-V LVTTL/LVCMOS
- 1.8-V LVTTL/LVCMOS
- 1.5-V LVCMOS
- 3.3-V PCI

Table 2–4 describes the I/O standards supported by MAX II devices.

Table 2-4.	MAX II I/O	Standards
------------	------------	-----------


I/O Standard	Туре	Output Supply Voltage (VCCIO) (V)
3.3-V LVTTL/LVCMOS	Single-ended	3.3
2.5-V LVTTL/LVCMOS	Single-ended	2.5
1.8-V LVTTL/LVCMOS	Single-ended	1.8
1.5-V LVCMOS	Single-ended	1.5
3.3-V PCI (1)	Single-ended	3.3

Note to Table 2-4:

(1) The 3.3-V PCI compliant I/O is supported in Bank 3 of the EPM1270 and EPM2210 devices.

The EPM240 and EPM570 devices support two I/O banks, as shown in Figure 2–22. Each of these banks support all the LVTTL and LVCMOS standards shown in Table 2–4. PCI compliant I/O is not supported in these devices and banks.

Notes to Figure 2–22:

(1) Figure 2-22 is a top view of the silicon die.

(2) Figure 2-22 is a graphical representation only. Refer to the pin list and the Quartus II software for exact pin locations.

The EPM1270 and EPM2210 devices support four I/O banks, as shown in Figure 2–23. Each of these banks support all of the LVTTL and LVCMOS standards shown in Table 2–4. PCI compliant I/O is supported in Bank 3. Bank 3 supports the PCI clamping diode on inputs and PCI drive compliance on outputs. You must use Bank 3 for designs requiring PCI compliant I/O pins. The Quartus II software automatically places I/O pins in this bank if assigned with the PCI I/O standard.

Connect VCCIO pins to either a 1.5-V, 1.8 V, 2.5-V, or 3.3-V power supply, depending on the output requirements. The output levels are compatible with systems of the same voltage as the power supply (that is, when VCCIO pins are connected to a 1.5-V power supply, the output levels are compatible with 1.5-V systems). When VCCIO pins are connected to a 3.3-V power supply, the output high is 3.3 V and is compatible with 3.3-V or 5.0-V systems. Table 2–7 summarizes MAX II MultiVolt I/O support.

Table 2–7. MAX II MultiVolt I/O Support (Note 1)

			Input Signa	I		Output Signal				
VCCIO (V)	1.5 V 1.8 V 2.5 V 3.3 V 5.0 V					1.5 V	1.8 V 2.5 V		3.3 V 5.0 V	
1.5	\checkmark	\checkmark	\checkmark	\checkmark	—	\checkmark	_		_	—
1.8	\checkmark	\checkmark	\checkmark	\checkmark	_	✓ (2)	\checkmark	_	_	—
2.5	_	_	\checkmark	\checkmark	_	✓ (3)	✓ (3)	\checkmark	_	_
3.3	_	—	✓ (4)	\checkmark	✓ (5)	✓ (6)	✓ (6)	✓ (6)	\checkmark	✓ (7)

Notes to Table 2-7:

(1) To drive inputs higher than V_{CGIO} but less than 4.0 V including the overshoot, disable the I/O clamp diode. However, to drive 5.0-V inputs to the device, enable the I/O clamp diode to prevent V₁ from rising above 4.0 V.

- (2) When $V_{CCIO} = 1.8$ V, a MAX II device can drive a 1.5-V device with 1.8-V tolerant inputs.
- (3) When $V_{CCIO} = 2.5$ V, a MAX II device can drive a 1.5-V or 1.8-V device with 2.5-V tolerant inputs.
- (4) When V_{CCI0} = 3.3 V and a 2.5-V input signal feeds an input pin, the VCCI0 supply current will be slightly larger than expected.
- (5) MAX II devices can be 5.0-V tolerant with the use of an external resistor and the internal I/O clamp diode on the EPM1270 and EPM2210 devices.
- (6) When $V_{CCIO} = 3.3$ V, a MAX II device can drive a 1.5-V, 1.8-V, or 2.5-V device with 3.3-V tolerant inputs.
- (7) When V_{CCI0} = 3.3 V, a MAX II device can drive a device with 5.0-V TTL inputs but not 5.0-V CMOS inputs. In the case of 5.0-V CMOS, opendrain setting with internal I/O clamp diode (available only on EPM1270 and EPM2210 devices) and external resistor is required.

• For information about output pin source and sink current guidelines, refer to the *AN* 428: *MAX II CPLD Design Guidelines*.

Referenced Documents

This chapter referenced the following documents:

- AN 428: MAX II CPLD Design Guidelines
- DC and Switching Characteristics chapter in the MAX II Device Handbook
- *Hot Socketing and Power-On Reset in MAX II Devices* chapter in the *MAX II Device Handbook*
- Using User Flash Memory in MAX II Devices chapter in the MAX II Device Handbook

3. JTAG and In-System Programmability

Introduction

This chapter discusses how to use the IEEE Standard 1149.1 Boundary-Scan Test (BST) circuitry in MAX II devices and includes the following sections:

- "IEEE Std. 1149.1 (JTAG) Boundary-Scan Support" on page 3–1
- "In System Programmability" on page 3–4

IEEE Std. 1149.1 (JTAG) Boundary-Scan Support

All MAX[®] II devices provide Joint Test Action Group (JTAG) boundary-scan test (BST) circuitry that complies with the IEEE Std. 1149.1-2001 specification. JTAG boundary-scan testing can only be performed at any time after V_{CCINT} and all V_{CCIO} banks have been fully powered and a t_{CONFIG} amount of time has passed. MAX II devices can also use the JTAG port for in-system programming together with either the Quartus[®] II software or hardware using Programming Object Files (**.pof**), JamTM Standard Test and Programming Language (STAPL) Files (**.jam**), or Jam Byte-Code Files (**.jbc**).

The JTAG pins support 1.5-V, 1.8-V, 2.5-V, or 3.3-V I/O standards. The supported voltage level and standard are determined by the V_{cCIO} of the bank where it resides. The dedicated JTAG pins reside in Bank 1 of all MAX II devices.

MAX II devices support the JTAG instructions shown in Table 3–1.

JTAG Instruction	Instruction Code	Description
SAMPLE/PRELOAD	00 0000 0101	Allows a snapshot of signals at the device pins to be captured and examined during normal device operation, and permits an initial data pattern to be output at the device pins.
extest (1)	00 0000 1111	Allows the external circuitry and board-level interconnects to be tested by forcing a test pattern at the output pins and capturing test results at the input pins.
BYPASS	11 1111 1111	Places the 1-bit bypass register between the TDI and TDO pins, which allows the BST data to pass synchronously through selected devices to adjacent devices during normal device operation.
USERCODE	00 0000 0111	Selects the 32-bit USERCODE register and places it between the TDI and TDO pins, allowing the USERCODE to be serially shifted out of TDO. This register defaults to all 1's if not specified in the Quartus II software.
IDCODE	00 0000 0110	Selects the IDCODE register and places it between TDI and TDO, allowing the IDCODE to be serially shifted out of TDO.
HIGHZ (1)	00 0000 1011	Places the 1-bit bypass register between the TDI and TDO pins, which allows the boundary scan test data to pass synchronously through selected devices to adjacent devices during normal device operation, while tri-stating all of the I/O pins.

Table 3–1. MAX II JTAG Instructions (Part 1 of 2)

Device	Version (4 Bits)	Part Number	ManufacturerLSBPart NumberIdentity (11 Bits)(1 Bit) (2)		HEX IDCODE
EPM240Z	0000	0010 0000 1010 0101	000 0110 1110	1	0x020A50DD
EPM570Z	0000	0010 0000 1010 0110	000 0110 1110	1	0x020A60DD

Table 3-3. 32-Bit MAX II Device IDCODE (Part 2 of 2)

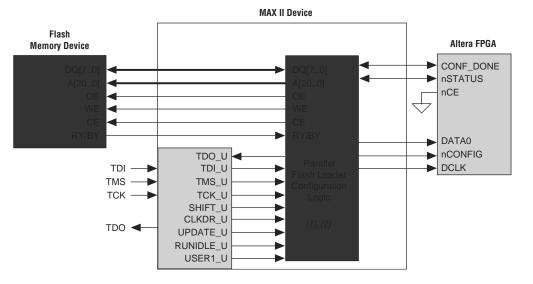
Notes to Table 3-2:

(1) The most significant bit (MSB) is on the left.

(2) The IDCODE's least significant bit (LSB) is always 1.

JTAG Block

The MAX II JTAG block feature allows you to access the JTAG TAP and state signals when either the USER0 or USER1 instruction is issued to the JTAG TAP. The USER0 and USER1 instructions bring the JTAG boundary-scan chain (TDI) through the user logic instead of the MAX II device's boundary-scan cells. Each USER instruction allows for one unique user-defined JTAG chain into the logic array.


Parallel Flash Loader

The JTAG block ability to interface JTAG to non-JTAG devices is ideal for generalpurpose flash memory devices (such as Intel- or Fujitsu-based devices) that require programming during in-circuit test. The flash memory devices can be used for FPGA configuration or be part of system memory. In many cases, the MAX II device is already connected to these devices as the configuration control logic between the FPGA and the flash device. Unlike ISP-capable CPLD devices, bulk flash devices do not have JTAG TAP pins or connections. For small flash devices, it is common to use the serial JTAG scan chain of a connected device to program the non-JTAG flash device. This is slow and inefficient in most cases and impractical for large parallel flash devices. Using the MAX II device's JTAG block as a parallel flash loader, with the Quartus II software, to program and verify flash contents provides a fast and costeffective means of in-circuit programming during test. Figure 3–1 shows MAX II being used as a parallel flash loader.

[•] For JTAG AC characteristics, refer to the *DC* and *Switching Characteristics* chapter in the *MAX II Device Handbook*.

For more information about JTAG BST, refer to the *IEEE 1149.1 (JTAG) Boundary-Scan Testing for MAX II Devices* chapter in the *MAX II Device Handbook*.

Figure 3-1. MAX II Parallel Flash Loader

Notes to Figure 3-1:

(1) This block is implemented in LEs.

(2) This function is supported in the Quartus II software.

In System Programmability

MAX II devices can be programmed in-system via the industry standard 4-pin IEEE Std. 1149.1 (JTAG) interface. In-system programmability (ISP) offers quick, efficient iterations during design development and debugging cycles. The logic, circuitry, and interconnects in the MAX II architecture are configured with flash-based SRAM configuration elements. These SRAM elements require configuration data to be loaded each time the device is powered. The process of loading the SRAM data is called configuration. The on-chip configuration flash memory (CFM) block stores the SRAM element's configuration data. The CFM block stores the design's configuration pattern in a reprogrammable flash array. During ISP, the MAX II JTAG and ISP circuitry programs the design pattern into the CFM block's non-volatile flash array.

The MAX II JTAG and ISP controller internally generate the high programming voltages required to program the CFM cells, allowing in-system programming with any of the recommended operating external voltage supplies (that is, 3.3 V/2.5 V or 1.8 V for the MAX IIG and MAX IIZ devices). ISP can be performed anytime after V_{CCINT} and all V_{CCIO} banks have been fully powered and the device has completed the configuration power-up time. By default, during in-system programming, the I/O pins are tri-stated and weakly pulled-up to V_{CCIO} to eliminate board conflicts. The insystem programming clamp and real-time ISP feature allow user control of I/O state or behavior during ISP.

For more information, refer to "In-System Programming Clamp" on page 3–6 and "Real-Time ISP" on page 3–7.

These devices also offer an ISP_DONE bit that provides safe operation when insystem programming is interrupted. This ISP_DONE bit, which is the last bit programmed, prevents all I/O pins from driving until the bit is programmed.

IEEE 1532 Support

The JTAG circuitry and ISP instruction set in MAX II devices is compliant to the IEEE 1532-2002 programming specification. This provides industry-standard hardware and software for in-system programming among multiple vendor programmable logic devices (PLDs) in a JTAG chain.

The MAX II 1532 BSDL files will be released on the Altera website when available.

Jam Standard Test and Programming Language (STAPL)

The Jam STAPL JEDEC standard, JESD71, can be used to program MAX II devices with in-circuit testers, PCs, or embedded processors. The Jam byte code is also supported for MAX II devices. These software programming protocols provide a compact embedded solution for programming MAX II devices.

Programming Sequence

During in-system programming, 1532 instructions, addresses, and data are shifted into the MAX II device through the TDI input pin. Data is shifted out through the TDO output pin and compared against the expected data. Programming a pattern into the device requires the following six ISP steps. A stand-alone verification of a programmed pattern involves only stages 1, 2, 5, and 6. These steps are automatically executed by third-party programmers, the Quartus II software, or the Jam STAPL and Jam Byte-Code Players.

- 1. *Enter ISP*—The enter ISP stage ensures that the I/O pins transition smoothly from user mode to ISP mode.
- 2. *Check ID*—Before any program or verify process, the silicon ID is checked. The time required to read this silicon ID is relatively small compared to the overall programming time.
- 3. *Sector Erase*—Erasing the device in-system involves shifting in the instruction to erase the device and applying an erase pulse(s). The erase pulse is automatically generated internally by waiting in the run/test/idle state for the specified erase pulse time of 500 ms for the CFM block and 500 ms for each sector of the UFM block.
- 4. *Program*—Programming the device in-system involves shifting in the address, data, and program instruction and generating the program pulse to program the flash cells. The program pulse is automatically generated internally by waiting in the run/test/idle state for the specified program pulse time of 75 µs. This process is repeated for each address in the CFM and UFM blocks.
- 5. *Verify*—Verifying a MAX II device in-system involves shifting in addresses, applying the verify instruction to generate the read pulse, and shifting out the data for comparison. This process is repeated for each CFM and UFM address.
- 6. *Exit ISP*—An exit ISP stage ensures that the I/O pins transition smoothly from ISP mode to user mode.

[•] For more information, refer to the Using Jam STAPL for ISP via an Embedded Processor chapter in the MAX II Device Handbook.

4. Hot Socketing and Power-On Reset in MAX II Devices

MII51004-2.1

Introduction

MAX[®] II devices offer hot socketing, also known as hot plug-in or hot swap, and power sequencing support. Designers can insert or remove a MAX II board in a system during operation without undesirable effects to the system bus. The hot socketing feature removes some of the difficulties designers face when using components on printed circuit boards (PCBs) that contain a mixture of 3.3-, 2.5-, 1.8-, and 1.5-V devices.

The MAX II device hot socketing feature provides:

- Board or device insertion and removal
- Support for any power-up sequence
- Non-intrusive I/O buffers to system buses during hot insertion

This chapter contains the following sections:

- "MAX II Hot-Socketing Specifications" on page 4–1
- "Power-On Reset Circuitry" on page 4–5

MAX II Hot-Socketing Specifications

MAX II devices offer all three of the features required for the hot-socketing capability listed above without any external components or special design requirements. The following are hot-socketing specifications:

- The device can be driven before and during power-up or power-down without any damage to the device itself.
- I/O pins remain tri-stated during power-up. The device does not drive out before or during power-up, thereby affecting other buses in operation.
- Signal pins do not drive the V_{CCIO} or V_{CCINT} power supplies. External input signals to device I/O pins do not power the device V_{CCIO} or V_{CCINT} power supplies via internal paths. This is true if the V_{CCINT} and the V_{CCIO} supplies are held at GND.

Devices Can Be Driven before Power-Up

Signals can be driven into the MAX II device I/O pins and GCLK[3..0] pins before or during power-up or power-down without damaging the device. MAX II devices support any power-up or power-down sequence (V_{CCIO1} , V_{CCIO2} , V_{CCIO3} , V_{CCIO4} , V_{CCINT}), simplifying the system-level design.

I/O Pins Remain Tri-Stated during Power-Up

A device that does not support hot-socketing may interrupt system operation or cause contention by driving out before or during power-up. In a hot socketing situation, the MAX II device's output buffers are turned off during system power-up. MAX II devices do not drive out until the device attains proper operating conditions and is fully configured. Refer to "Power-On Reset Circuitry" on page 4–5 for information about turn-on voltages.

Signal Pins Do Not Drive the V_{cco} or V_{ccont} Power Supplies

MAX II devices do not have a current path from I/O pins or GCLK[3..0] pins to the V_{CCIO} or V_{CCINT} pins before or during power-up. A MAX II device may be inserted into (or removed from) a system board that was powered up without damaging or interfering with system-board operation. When hot socketing, MAX II devices may have a minimal effect on the signal integrity of the backplane.

AC and DC Specifications

You can power up or power down the V_{CCIO} and V_{CCINT} pins in any sequence. During hot socketing, the I/O pin capacitance is less than 8 pF. MAX II devices meet the following hot socketing specifications:

- The hot socketing DC specification is: $|I_{IOPIN}| < 300 \,\mu\text{A}$.
- The hot socketing AC specification is: | I_{IOPIN} | < 8 mA for 10 ns or less.
- MAX II devices are immune to latch-up when hot socketing. If the TCK JTAG input pin is driven high during hot socketing, the current on that pin might exceed the specifications above.

 I_{IOPIN} is the current at any user I/O pin on the device. The AC specification applies when the device is being powered up or powered down. This specification takes into account the pin capacitance but not board trace and external loading capacitance. Additional capacitance for trace, connector, and loading must be taken into consideration separately. The peak current duration due to power-up transients is 10 ns or less.

The DC specification applies when all V_{cc} supplies to the device are stable in the powered-up or powered-down conditions.

Hot Socketing Feature Implementation in MAX II Devices

The hot socketing feature turns off (tri-states) the output buffer during the power-up event (either V_{CCINT} or V_{CCIO} supplies) or power-down event. The hot-socket circuit generates an internal HOTSCKT signal when either V_{CCINT} or V_{CCIO} is below the threshold voltage during power-up or power-down. The HOTSCKT signal cuts off the output buffer to make sure that no DC current (except for weak pull-up leaking) leaks through the pin. When V_{CC} ramps up very slowly during power-up, V_{CC} may still be relatively low even after the power-on reset (POR) signal is released and device configuration is complete.

Referenced Documents

This chapter refereces the following documents:

- *DC and Switching Characteristics* chapter in the *MAX II Device Handbook*
- Using MAX II Devices in Multi-Voltage Systems chapter in the MAX II Device Handbook

Document Revision History

Table 4–1 shows the revision history for this chapter.

Table 4-1	Document Revision History
	Document newslon matery

Date and Revision	Changes Made	Summary of Changes
October 2008,	 Updated "MAX II Hot-Socketing Specifications" and "Power-On Reset Circuitry" sections. 	—
version2.1	 Updated New Document Format. 	
December 2007, version 2.0	 Updated "Hot Socketing Feature Implementation in MAX II Devices" section. 	Updated document with MAX IIZ information.
	 Updated "Power-On Reset Circuitry" section. 	
	■ Updated Figure 4–5.	
	Added "Referenced Documents" section.	
December 2006, version 1.5	 Added document revision history. 	-
February 2006,	Updated "MAX II Hot-Socketing Specifications" section.	_
version 1.4	 Updated "AC and DC Specifications" section. 	
	 Updated "Power-On Reset Circuitry" section. 	
June 2005, version 1.3	Updated AC and DC specifications on page 4-2.	_
December 2004,	Added content to Power-Up Characteristics section.	_
version 1.2	■ Updated Figure 4-5.	
June 2004, version 1.1	Corrected Figure 4-2.	_

5. DC and Switching Characteristics

Introduction

System designers must consider the recommended DC and switching conditions discussed in this chapter to maintain the highest possible performance and reliability of the MAX[®] II devices. This chapter contains the following sections:

- "Operating Conditions" on page 5–1
- "Power Consumption" on page 5–8
- "Timing Model and Specifications" on page 5–8

Operating Conditions

Table 5–1 through Table 5–12 provide information about absolute maximum ratings, recommended operating conditions, DC electrical characteristics, and other specifications for MAX II devices.

Absolute Maximum Ratings

Table 5-1 shows the absolute maximum ratings for the MAX II device family.

Table 5–1. MAX II Device Absolute Maximum Ratings (Note 1), (2)

Symbol	Parameter	Conditions	Minimum	Maximum	Unit
V _{CCINT}	Internal supply voltage (3)	With respect to ground	-0.5	4.6	V
V _{CCIO}	I/O supply voltage —		-0.5	4.6	V
Vi	DC input voltage	—	-0.5	4.6	V
I _{OUT}	DC output current, per pin (4)	—	-25	25	mA
T _{stg}	Storage temperature	re No bias		150	0°
T _{AMB}	Ambient temperature	Under bias <i>(5)</i>	-65	135	0°
TJ	Junction temperature	TQFP and BGA packages under bias	_	135	J°

Notes to Table 5-1:

(1) Refer to the Operating Requirements for Altera Devices Data Sheet.

(2) Conditions beyond those listed in Table 5–1 may cause permanent damage to a device. Additionally, device operation at the absolute maximum ratings for extended periods of time may have adverse affects on the device.

(3) Maximum $V_{\mbox{\tiny CCINT}}$ for MAX II devices is 4.6 V. For MAX IIG and MAX IIZ devices, it is 2.4 V.

(4) Refer to AN 286: Implementing LED Drivers in MAX & MAX II Devices for more information about the maximum source and sink current for MAX II devices.

(5) Refer to Table 5–2 for information about "under bias" conditions.

Internal Timing Parameters

Internal timing parameters are specified on a speed grade basis independent of device density. Table 5–15 through Table 5–22 describe the MAX II device internal timing microparameters for logic elements (LEs), input/output elements (IOEs), UFM blocks, and MultiTrack interconnects. The timing values for –3, –4, and –5 speed grades shown in Table 5–15 through Table 5–22 are based on an EPM1270 device target, while –6, –7, and –8 speed grade values are based on an EPM570Z device target.

•••

• For more explanations and descriptions about each internal timing microparameters symbol, refer to the *Understanding Timing in MAX II Devices* chapter in the *MAX II Device Handbook*.

Table 5–15. LE Internal Timing Microparameters

		MAX II / MAX IIG					MAX IIZ							
			–3 Speed Grade		–4 Speed Grade		•		–6 Speed Grade		–7 Speed Grade		–8 Speed Grade	
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
t _{lut}	LE combinational LUT delay	_	571		742	—	914	-	1,215	—	2,247	—	2,247	ps
t _{сомв}	Combinational path delay	—	147	_	192	_	236	-	243	—	305	-	309	ps
t _{clr}	LE register clear delay	238	_	309	_	381		401	_	541	_	545		ps
t _{PRE}	LE register preset delay	238	_	309	_	381		401	_	541	_	545		ps
t _{su}	LE register setup time before clock	208	_	271	_	333		260	_	319	_	321		ps
t _H	LE register hold time after clock	0	—	0	_	0		0	_	0	_	0		ps
t _{co}	LE register clock- to-output delay	_	235	_	305	_	376	_	380	_	489	-	494	ps
t _{clkhl}	Minimum clock high or low time	166	-	216	_	266		253	_	335	_	339	_	ps
tc	Register control delay	—	857		1,114		1,372	_	1,356		1,722	—	1,741	ps

			MAX II / MAX IIG						MAX IIZ						
				Speed rade		Speed ade		Speed ade	–6 Speed Grade		–7 Speed Grade		–8 Speed Grade		
Symbol	Parameter	Condition	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
f _{cnt}	Maximum global clock frequency for 16-bit counter		_	304.0 <i>(1)</i>		247.5		201.1		184.1		123.5		118.3	MHz

Table 5–23. EPM240 Global Clock External I/O Timing Parameters (Part 2 of 2)

Note to Table 5-23:

(1) The maximum frequency is limited by the I/O standard on the clock input pin. The 16-bit counter critical delay performs faster than this global clock input pin maximum frequency.

Table 5–24 shows the external I/O timing parameters for EPM570 devices.

			MAX II / MAX IIG						MAX IIZ						
			–3 Speed Grade		–4 Speed Grade		–5 Speed Grade		–6 Speed Grade		–7 Speed Grade		–8 Speed Grade		
Symbol	Parameter	Condition	Min	Max	Min	Max	Unit								
t _{PD1}	Worst case pin- to-pin delay through 1 look- up table (LUT)	10 pF	_	5.4	-	7.0	_	8.7		9.5		15.1	_	17.7	ns
t _{PD2}	Best case pin- to-pin delay through 1 LUT	10 pF	_	3.7	-	4.8	_	5.9	_	5.7	—	7.7	-	8.5	ns
t _{su}	Global clock setup time	_	1.2	_	1.5	_	1.9	_	2.2	_	3.9	_	4.4	_	ns
t _⊬	Global clock hold time		0	—	0		0	_	0		0		0	_	ns
t _{co}	Global clock to output delay	10 pF	2.0	4.5	2.0	5.8	2.0	7.1	2.0	6.7	2.0	8.2	2.0	8.7	ns
t _{ch}	Global clock high time		166	_	216		266	_	253		335		339	_	ps
tc∟	Global clock low time		166	_	216		266	_	253		335		339	_	ps
t _{ont}	Minimum global clock period for 16-bit counter	_	3.3		4.0		5.0		5.4		8.1		8.4		ns

 Table 5–24.
 EPM570 Global Clock External I/O Timing Parameters
 (Part 1 of 2)

Date and Revision	Changes Made	Summary of Changes
June 2005,	 Updated the R_{PULLUP} parameter in Table 5-4. 	
version 1.3	 Added Note 2 to Tables 5-8 and 5-9. 	
	■ Updated Table 5-13.	
	 Added "Output Drive Characteristics" section. 	
	 Added I²C mode and Notes 5 and 6 to Table 5-14. 	
	 Updated timing values to Tables 5-14 through 5-33. 	
December 2004,	■ Updated timing Tables 5-2, 5-4, 5-12, and Tables 15-14 through 5-34.	—
version 1.2	■ Table 5-31 is new.	
June 2004, version 1.1	 Updated timing Tables 5-15 through 5-32. 	

Table 5-35. Document Revision History (Part 2 of 2)