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1. Introduction
Introduction
The MAX® II family of instant-on, non-volatile CPLDs is based on a 0.18-µm, 
6-layer-metal-flash process, with densities from 240 to 2,210 logic elements (LEs) (128 
to 2,210 equivalent macrocells) and non-volatile storage of 8 Kbits. MAX II devices 
offer high I/O counts, fast performance, and reliable fitting versus other CPLD 
architectures. Featuring MultiVolt core, a user flash memory (UFM) block, and 
enhanced in-system programmability (ISP), MAX II devices are designed to reduce 
cost and power while providing programmable solutions for applications such as bus 
bridging, I/O expansion, power-on reset (POR) and sequencing control, and device 
configuration control.

Features
The MAX II CPLD has the following features:

■ Low-cost, low-power CPLD 

■ Instant-on, non-volatile architecture

■ Standby current as low as 25 µA

■ Provides fast propagation delay and clock-to-output times

■ Provides four global clocks with two clocks available per logic array block (LAB)

■ UFM block up to 8 Kbits for non-volatile storage

■ MultiVolt core enabling external supply voltages to the device of either 
3.3 V/2.5 V or 1.8 V

■ MultiVolt I/O interface supporting 3.3-V, 2.5-V, 1.8-V, and 1.5-V logic levels

■ Bus-friendly architecture including programmable slew rate, drive strength, 
bus-hold, and programmable pull-up resistors

■ Schmitt triggers enabling noise tolerant inputs (programmable per pin)

■ I/Os are fully compliant with the Peripheral Component Interconnect Special 
Interest Group (PCI SIG) PCI Local Bus Specification, Revision 2.2 for 3.3-V 
operation at 66 MHz 

■ Supports hot-socketing

■ Built-in Joint Test Action Group (JTAG) boundary-scan test (BST) circuitry 
compliant with IEEE Std. 1149.1-1990

■ ISP circuitry compliant with IEEE Std. 1532
MAX II Device Handbook
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Chapter 1: Introduction 1–3
Features
MAX II devices are available in space-saving FineLine BGA, Micro FineLine BGA, 
and thin quad flat pack (TQFP) packages (refer to Table 1–3 and Table 1–4). MAX II 
devices support vertical migration within the same package (for example, you can 
migrate between the EPM570, EPM1270, and EPM2210 devices in the 256-pin 
FineLine BGA package). Vertical migration means that you can migrate to devices 
whose dedicated pins and JTAG pins are the same and power pins are subsets or 
supersets for a given package across device densities. The largest density in any 
package has the highest number of power pins; you must lay out for the largest 
planned density in a package to provide the necessary power pins for migration. For 
I/O pin migration across densities, cross reference the available I/O pins using the 
device pin-outs for all planned densities of a given package type to identify which 
I/O pins can be migrated. The Quartus® II software can automatically cross-reference 
and place all pins for you when given a device migration list.

 

Table 1–3. MAX II Packages and User I/O Pins

Device

68-Pin 
Micro 

FineLine 
BGA (1)

100-Pin 
Micro 

FineLine 
BGA (1)

100-Pin 
FineLine 

BGA
100-Pin 

TQFP
144-Pin 

TQFP

144-Pin 
Micro 

FineLine 
BGA (1)

256-Pin 
Micro 

FineLine 
BGA (1)

256-Pin 
FineLine 

BGA

324-Pin 
FineLine 

BGA

EPM240

EPM240G

— 80 80 80 — — — — —

EPM570

EPM570G

— 76 76 76 116 — 160 160 —

EPM1270

EPM1270G

— — — — 116 — 212 212 —

EPM2210

EPM2210G

— — — — — — — 204 272

EPM240Z 54 80 — — — — — — —

EPM570Z — 76 — — — 116 160 — —

Note to Table 1–3:

(1) Packages available in lead-free versions only.

Table 1–4. MAX II TQFP, FineLine BGA, and Micro FineLine BGA Package Sizes

Package

68-Pin 
Micro 

FineLine 
BGA

100-Pin 
Micro 

FineLine 
BGA

100-Pin 
FineLine 

BGA
100-Pin 

TQFP
144-Pin 

TQFP

144-Pin 
Micro 

FineLine 
BGA

256-Pin 
Micro 

FineLine 
BGA

256-Pin 
FineLine 

BGA

324-Pin 
FineLine 

BGA

Pitch (mm) 0.5 0.5 1 0.5 0.5 0.5 0.5 1 1

Area (mm2) 25 36 121 256 484 49 121 289 361

Length × width
(mm × mm)

5 × 5 6 × 6 11 × 11 16 × 16 22 × 22 7 × 7 11 × 11 17 × 17 19 × 19
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Chapter 2: MAX II Architecture 2–5
Logic Array Blocks
LAB Control Signals
Each LAB contains dedicated logic for driving control signals to its LEs. The control 
signals include two clocks, two clock enables, two asynchronous clears, a 
synchronous clear, an asynchronous preset/load, a synchronous load, and 
add/subtract control signals, providing a maximum of 10 control signals at a time. 
Although synchronous load and clear signals are generally used when implementing 
counters, they can also be used with other functions.

Each LAB can use two clocks and two clock enable signals. Each LAB’s clock and 
clock enable signals are linked. For example, any LE in a particular LAB using the 
labclk1 signal also uses labclkena1. If the LAB uses both the rising and falling 
edges of a clock, it also uses both LAB-wide clock signals. Deasserting the clock 
enable signal turns off the LAB-wide clock.

Each LAB can use two asynchronous clear signals and an asynchronous load/preset 
signal. By default, the Quartus II software uses a NOT gate push-back technique to 
achieve preset. If you disable the NOT gate push-back option or assign a given register 
to power-up high using the Quartus II software, the preset is then achieved using the 
asynchronous load signal with asynchronous load data input tied high.

With the LAB-wide addnsub control signal, a single LE can implement a one-bit adder 
and subtractor. This saves LE resources and improves performance for logic functions 
such as correlators and signed multipliers that alternate between addition and 
subtraction depending on data. 

The LAB column clocks [3..0], driven by the global clock network, and LAB local 
interconnect generate the LAB-wide control signals. The MultiTrack interconnect 
structure drives the LAB local interconnect for non-global control signal generation. 
The MultiTrack interconnect’s inherent low skew allows clock and control signal 
distribution in addition to data. Figure 2–5 shows the LAB control signal generation 
circuit.

Figure 2–4. DirectLink Connection
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2–8 Chapter 2: MAX II Architecture
Logic Elements
LUT Chain and Register Chain
In addition to the three general routing outputs, the LEs within an LAB have LUT 
chain and register chain outputs. LUT chain connections allow LUTs within the same 
LAB to cascade together for wide input functions. Register chain outputs allow 
registers within the same LAB to cascade together. The register chain output allows an 
LAB to use LUTs for a single combinational function and the registers to be used for 
an unrelated shift register implementation. These resources speed up connections 
between LABs while saving local interconnect resources. Refer to “MultiTrack 
Interconnect” on page 2–12 for more information about LUT chain and register chain 
connections.

addnsub Signal
The LE’s dynamic adder/subtractor feature saves logic resources by using one set of 
LEs to implement both an adder and a subtractor. This feature is controlled by the 
LAB-wide control signal addnsub. The addnsub signal sets the LAB to perform either 
A + B or A – B. The LUT computes addition; subtraction is computed by adding the 
two’s complement of the intended subtractor. The LAB-wide signal converts to two’s 
complement by inverting the B bits within the LAB and setting carry-in to 1, which 
adds one to the least significant bit (LSB). The LSB of an adder/subtractor must be 
placed in the first LE of the LAB, where the LAB-wide addnsub signal automatically 
sets the carry-in to 1. The Quartus II Compiler automatically places and uses the 
adder/subtractor feature when using adder/subtractor parameterized functions.

LE Operating Modes
The MAX II LE can operate in one of the following modes:

■ “Normal Mode”

■ “Dynamic Arithmetic Mode”

Each mode uses LE resources differently. In each mode, eight available inputs to the 
LE, the four data inputs from the LAB local interconnect, carry-in0 and carry-
in1 from the previous LE, the LAB carry-in from the previous carry-chain LAB, and 
the register chain connection are directed to different destinations to implement the 
desired logic function. LAB-wide signals provide clock, asynchronous clear, 
asynchronous preset/load, synchronous clear, synchronous load, and clock enable 
control for the register. These LAB-wide signals are available in all LE modes. The 
addnsub control signal is allowed in arithmetic mode. 

The Quartus II software, in conjunction with parameterized functions such as library 
of parameterized modules (LPM) functions, automatically chooses the appropriate 
mode for common functions such as counters, adders, subtractors, and arithmetic 
functions. 
MAX II Device Handbook © October 2008 Altera Corporation
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2–10 Chapter 2: MAX II Architecture
Logic Elements
The other two LUTs use the data1 and data2 signals to generate two possible carry-out 
signals: one for a carry of 1 and the other for a carry of 0. The carry-in0 signal acts 
as the carry-select for the carry-out0 output and carry-in1 acts as the carry-
select for the carry-out1 output. LEs in arithmetic mode can drive out registered 
and unregistered versions of the LUT output.

The dynamic arithmetic mode also offers clock enable, counter enable, synchronous 
up/down control, synchronous clear, synchronous load, and dynamic 
adder/subtractor options. The LAB local interconnect data inputs generate the 
counter enable and synchronous up/down control signals. The synchronous clear 
and synchronous load options are LAB-wide signals that affect all registers in the 
LAB. The Quartus II software automatically places any registers that are not used by 
the counter into other LABs. The addnsub LAB-wide signal controls whether the LE 
acts as an adder or subtractor.

Carry-Select Chain
The carry-select chain provides a very fast carry-select function between LEs in 
dynamic arithmetic mode. The carry-select chain uses the redundant carry calculation 
to increase the speed of carry functions. The LE is configured to calculate outputs for a 
possible carry-in of 0 and carry-in of 1 in parallel. The carry-in0 and carry-in1 
signals from a lower-order bit feed forward into the higher-order bit via the parallel 
carry chain and feed into both the LUT and the next portion of the carry chain. Carry-
select chains can begin in any LE within an LAB. 

Figure 2–8. LE in Dynamic Arithmetic Mode

Note to Figure 2–8:

(1) The addnsub signal is tied to the carry input for the first LE of a carry chain only.
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2–14 Chapter 2: MAX II Architecture
MultiTrack Interconnect
functions from LE 1 to LE 10 in the same LAB. The register chain connection allows 
the register output of one LE to connect directly to the register input of the next LE in 
the LAB for fast shift registers. The Quartus II Compiler automatically takes 
advantage of these resources to improve utilization and performance. Figure 2–11 
shows the LUT chain and register chain interconnects.

The C4 interconnects span four LABs up or down from a source LAB. Every LAB has 
its own set of C4 interconnects to drive either up or down. Figure 2–12 shows the C4 
interconnect connections from an LAB in a column. The C4 interconnects can drive 
and be driven by column and row IOEs. For LAB interconnection, a primary LAB or 
its vertical LAB neighbor can drive a given C4 interconnect. C4 interconnects can 
drive each other to extend their range as well as drive row interconnects for column-
to-column connections. 

Figure 2–11. LUT Chain and Register Chain Interconnects
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Chapter 2: MAX II Architecture 2–19
User Flash Memory Block
■ Auto-increment addressing

■ Serial interface to logic array with programmable interface

UFM Storage
Each device stores up to 8,192 bits of data in the UFM block. Table 2–3 shows the data 
size, sector, and address sizes for the UFM block.

There are 512 locations with 9-bit addressing ranging from 000h to 1FFh. Sector 0 
address space is 000h to 0FFh and Sector 1 address space is from 100h to 1FFh. The 
data width is up to 16 bits of data. The Quartus II software automatically creates logic 
to accommodate smaller read or program data widths. Erasure of the UFM involves 
individual sector erasing (that is, one erase of sector 0 and one erase of sector 1 is 
required to erase the entire UFM block). Since sector erase is required before a 
program or write, having two sectors enables a sector size of data to be left untouched 
while the other sector is erased and programmed with new data. 

Figure 2–15. UFM Block and Interface Signals
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Table 2–3. UFM Array Size

Device Total Bits Sectors Address Bits Data Width

EPM240

EPM570

EPM1270

EPM2210

8,192 2 
(4,096 bits/sector)

9 16
© October 2008 Altera Corporation MAX II Device Handbook

http://www.altera.com/literature/hb/max2/max2_mii5v1.pdf


Chapter 2: MAX II Architecture 2–21
User Flash Memory Block
Figure 2–16. EPM240 UFM Block LAB Row Interface (Note 1)

Note to Figure 2–16:

(1) The UFM block inputs and outputs can drive to/from all types of interconnects, not only DirectLink interconnects from adjacent row LABs.
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2–22 Chapter 2: MAX II Architecture
MultiVolt Core
MultiVolt Core
The MAX II architecture supports the MultiVolt core feature, which allows MAX II 
devices to support multiple VCC levels on the VCCINT supply. An internal linear voltage 
regulator provides the necessary 1.8-V internal voltage supply to the device. The 
voltage regulator supports 3.3-V or 2.5-V supplies on its inputs to supply the 1.8-V 
internal voltage to the device, as shown in Figure 2–18. The voltage regulator is not 
guaranteed for voltages that are between the maximum recommended 2.5-V 
operating voltage and the minimum recommended 3.3-V operating voltage. 

The MAX IIG and MAX IIZ devices use external 1.8-V supply. The 1.8-V VCC external 
supply powers the device core directly.

Figure 2–17. EPM570, EPM1270, and EPM2210 UFM Block LAB Row Interface
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Figure 2–18. MultiVolt Core Feature in MAX II Devices
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2–30 Chapter 2: MAX II Architecture
I/O Structure
Slew-Rate Control
The output buffer for each MAX II device I/O pin has a programmable output slew-
rate control that can be configured for low noise or high-speed performance. A faster 
slew rate provides high-speed transitions for high-performance systems. However, 
these fast transitions may introduce noise transients into the system. A slow slew rate 
reduces system noise, but adds a nominal output delay to rising and falling edges. 
The lower the voltage standard (for example, 1.8-V LVTTL) the larger the output 
delay when slow slew is enabled. Each I/O pin has an individual slew-rate control, 
allowing the designer to specify the slew rate on a pin-by-pin basis. The slew-rate 
control affects both the rising and falling edges.

Open-Drain Output
MAX II devices provide an optional open-drain (equivalent to open-collector) output 
for each I/O pin. This open-drain output enables the device to provide system-level 
control signals (for example, interrupt and write enable signals) that can be asserted 
by any of several devices. This output can also provide an additional wired-OR plane. 

Programmable Ground Pins
Each unused I/O pin on MAX II devices can be used as an additional ground pin. 
This programmable ground feature does not require the use of the associated LEs in 
the device. In the Quartus II software, unused pins can be set as programmable GND 
on a global default basis or they can be individually assigned. Unused pins also have 
the option of being set as tri-stated input pins.

Table 2–6. Programmable Drive Strength (Note 1)

I/O Standard IOH/IOL Current Strength Setting (mA)

3.3-V LVTTL 16

8

3.3-V LVCMOS 8

4

2.5-V LVTTL/LVCMOS 14

7

1.8-V LVTTL/LVCMOS 6

3

1.5-V LVCMOS 4

2

Note to Table 2–6:

(1) The IOH current strength numbers shown are for a condition of a VOUT = VOH minimum, where the VOH minimum 
is specified by the I/O standard. The IOL current strength numbers shown are for a condition of a VOUT = VOL 
maximum, where the VOL maximum is specified by the I/O standard. For 2.5-V LVTTL/LVCMOS, the IOH 
condition is VOUT = 1.7 V and the IOL condition is VOUT = 0.7 V.
MAX II Device Handbook © October 2008 Altera Corporation
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3–6 Chapter 3: JTAG and In-System Programmability
In System Programmability
Table 3–4 shows the programming times for MAX II devices using in-circuit testers to 
execute the algorithm vectors in hardware. Software-based programming tools used 
with download cables are slightly slower because of data processing and transfer 
limitations.

UFM Programming
The Quartus II software, with the use of POF, Jam, or JBC files, supports 
programming of the user flash memory (UFM) block independent of the logic array 
design pattern stored in the CFM block. This allows updating or reading UFM 
contents through ISP without altering the current logic array design, or vice versa. By 
default, these programming files and methods will program the entire flash memory 
contents, which includes the CFM block and UFM contents. The stand-alone 
embedded Jam STAPL player and Jam Byte-Code Player provides action commands 
for programming or reading the entire flash memory (UFM and CFM together) or 
each independently.

f For more information, refer to the Using Jam STAPL for ISP via an Embedded Processor 
chapter in the MAX II Device Handbook.

In-System Programming Clamp
By default, the IEEE 1532 instruction used for entering ISP automatically tri-states all 
I/O pins with weak pull-up resistors for the duration of the ISP sequence. However, 
some systems may require certain pins on MAX II devices to maintain a specific DC 
logic level during an in-field update. For these systems, an optional in-system 
programming clamp instruction exists in MAX II circuitry to control I/O behavior 
during the ISP sequence. The in-system programming clamp instruction enables the 
device to sample and sustain the value on an output pin (an input pin would remain 
tri-stated if sampled) or to explicitly set a logic high, logic low, or tri-state value on 
any pin. Setting these options is controlled on an individual pin basis using the 
Quartus II software.

f For more information, refer to the Real-Time ISP and ISP Clamp for MAX II Devices 
chapter in the MAX II Device Handbook.

Table 3–4. MAX II Device Family Programming Times

Description

EPM240 
EPM240G
EPM240Z

EPM570 
EPM570G
EPM570Z

EPM1270 
EPM1270G

EPM2210 
EPM2210G Unit

Erase + Program (1 MHz) 1.72 2.16 2.90 3.92 sec

Erase + Program (10 MHz) 1.65 1.99 2.58 3.40 sec

Verify (1 MHz) 0.09 0.17 0.30 0.49 sec

Verify (10 MHz) 0.01 0.02 0.03 0.05 sec

Complete Program Cycle (1 MHz) 1.81 2.33 3.20 4.41 sec

Complete Program Cycle (10 MHz) 1.66 2.01 2.61 3.45 sec
MAX II Device Handbook © October 2008 Altera Corporation
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Chapter 4: Hot Socketing and Power-On Reset in MAX II Devices 4–7
Power-On Reset Circuitry
1 After SRAM configuration, all registers in the device are cleared and released into 
user function before I/O tri-states are released. To release clears after tri-states are 
released, use the DEV_CLRn pin option. To hold the tri-states beyond the power-up 
configuration time, use the DEV_OE pin option.

Figure 4–5. Power-Up Characteristics for MAX II, MAX IIG, and MAX IIZ Devices (Note 1), (2)

Notes to Figure 4–5:
(1) Time scale is relative.
(2) Figure 4–5 assumes all VCCIO banks power up simultaneously with the VCCINT profile shown. If not, tCONFIG stretches out until all VCCIO banks are powered.
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5–8 Chapter 5: DC and Switching Characteristics
Power Consumption
Power-Up Timing
Table 5–12 shows the power-up timing characteristics for MAX II devices.

Power Consumption
Designers can use the Altera® PowerPlay Early Power Estimator and PowerPlay 
Power Analyzer to estimate the device power. 

f For more information about these power analysis tools, refer to the Understanding and 
Evaluating Power in MAX II Devices chapter in the MAX II Device Handbook and the 
PowerPlay Power Analysis chapter in volume 3 of the Quartus II Handbook.

Timing Model and Specifications
MAX II devices timing can be analyzed with the Altera Quartus® II software, a variety 
of popular industry-standard EDA simulators and timing analyzers, or with the 
timing model shown in Figure 5–2. 

MAX II devices have predictable internal delays that enable the designer to determine 
the worst-case timing of any design. The software provides timing simulation, 
point-to-point delay prediction, and detailed timing analysis for device-wide 
performance evaluation.

Table 5–12. MAX II Power-Up Timing

Symbol Parameter Device Min Typ Max Unit

tCONFIG (1) The amount of time from when 
minimum VCCINT is reached until 
the device enters user mode (2)

EPM240 — — 200 µs

EPM570 — — 300 µs

EPM1270 — — 300 µs

EPM2210 — — 450 µs

Notes to Table 5–12:

(1) Table 5–12 values apply to commercial and industrial range devices. For extended temperature range devices, the tCONFIG  maximum values are 
as follows:
Device Maximum
EPM240 300 µs
EPM570 400 µs
EPM1270 400 µs
EPM2210 500 µs

(2) For more information about POR trigger voltage, refer to the Hot Socketing and Power-On Reset in MAX II Devices chapter in the MAX II Device 
Handbook.
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Chapter 5: DC and Switching Characteristics 5–9
Timing Model and Specifications
The timing characteristics of any signal path can be derived from the timing model 
and parameters of a particular device. External timing parameters, which represent 
pin-to-pin timing delays, can be calculated as the sum of internal parameters.

f Refer to the Understanding Timing in MAX II Devices chapter in the MAX II Device 
Handbook for more information. 

This section describes and specifies the performance, internal, external, and UFM 
timing specifications. All specifications are representative of the worst-case supply 
voltage and junction temperature conditions.

Preliminary and Final Timing
Timing models can have either preliminary or final status. The Quartus II software 
issues an informational message during the design compilation if the timing models 
are preliminary. Table 5–13 shows the status of the MAX II device timing models.

Preliminary status means the timing model is subject to change. Initially, timing 
numbers are created using simulation results, process data, and other known 
parameters. These tests are used to make the preliminary numbers as close to the 
actual timing parameters as possible.

Final timing numbers are based on actual device operation and testing. These 
numbers reflect the actual performance of the device under the worst-case voltage 
and junction temperature conditions.

Figure 5–2. MAX II Device Timing Model

I/O PinI/O Input Delay
tIN

INPUT

Global Input Delay

t
C4

tR4

Output
Delay
tOD
tXZ
tZXt LO

C
A
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tGLOB

Logic Element

I/O Pin

tFASTIO

Output Routing
Delay

User
Flash

Memory

From Adjacent LE

To Adjacent LE

Input Routing
Delay

tDL

tLUT

tC

LUT Delay

Register Control
 Delay

Register Delays

tCO
tSU
tH

tPRE
tCLR

Data-In/LUT Chain

Data-Out

tIODR

Output and Output Enable 
Data Delay

tIOE

tCOMB

Combinational Path Delay

Table 5–13. MAX II Device Timing Model Status (Part 1 of 2)

Device Preliminary Final

EPM240 — v
EPM240Z (1) — v
EPM570 — v
EPM570Z (1) — v
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Performance
Table 5–14 shows the MAX II device performance for some common designs. All 
performance values were obtained with the Quartus II software compilation of 
megafunctions. Performance values for –3, –4, and –5 speed grades are based on an 
EPM1270 device target, while –6, –7, and –8 speed grades are based on an EPM570Z 
device target.

EPM1270 — v
EPM2210 — v
Note to Table 5–13:

(1) The MAX IIZ device timing models are only available in the Quartus II software 
version 8.0 and later.

Table 5–13. MAX II Device Timing Model Status (Part 2 of 2)

Device Preliminary Final

Table 5–14. MAX II Device Performance

Resource 
Used

Design Size and 
Function

Resources Used

Performance

Unit

MAX II / MAX IIG MAX IIZ

Mode LEs
UFM 

Blocks

–3 
Speed 
Grade

–4 
Speed 
Grade

–5 
Speed 
Grade

–6 
Speed 
Grade

–7 
Speed 
Grade

–8 
Speed 
Grade

LE 16-bit counter (1) — 16 0 304.0 247.5 201.1 184.1 123.5 118.3 MHz

64-bit counter (1) — 64 0 201.5 154.8 125.8 83.2 83.2 80.5 MHz

16-to-1 multiplexer — 11 0 6.0 8.0 9.3 17.4 17.3 20.4 ns

32-to-1 multiplexer — 24 0 7.1 9.0 11.4 12.5 22.8 25.3 ns

16-bit XOR function — 5 0 5.1 6.6 8.2 9.0 15.0 16.1 ns

16-bit decoder with 
single address line

— 5 0 5.2 6.6 8.2 9.2 15.0 16.1 ns

UFM 512 × 16 None 3 1 10.0 10.0 10.0 10.0 10.0 10.0 MHz

512 × 16 SPI (2) 37 1 8.0 8.0 8.0 9.7 9.7 9.7 MHz

512 × 8 Parallel 
(3)

73 1 (4) (4) (4) (4) (4) (4) MHz

512 × 16 I2C (3) 142 1 100 
(5)

100 
(5)

100 
(5)

100 
(5)

100 
(5)

100 
(5)

kHz

Notes to Table 5–14:

(1) This design is a binary loadable up counter. 
(2) This design is configured for read-only operation in Extended mode. Read and write ability increases the number of LEs used.
(3) This design is configured for read-only operation. Read and write ability increases the number of LEs used.
(4) This design is asynchronous.
(5) The I2C megafunction is verified in hardware up to 100-kHz serial clock line (SCL) rate.
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1 The default slew rate setting for MAX II devices in the Quartus II design software is 
“fast”.

Table 5–20. tXZ IOE Microparameter Adders for Slow Slew Rate

Standard

MAX II / MAX IIG MAX IIZ

Unit

–3 Speed 
Grade

–4 Speed 
Grade

–5 Speed 
Grade

–6 Speed 
Grade

–7 Speed 
Grade

–8 Speed 
Grade

Min Max Min Max Min Max Min Max Min Max Min Max

3.3-V LVTTL 16 mA — 206 — –20 — –247 — 1,433 — 1,446 — 1,454 ps

8 mA — 891 — 665 — 438 — 1,332 — 1,345 — 1,348 ps

3.3-V LVCMOS 8 mA — 206 — –20 — –247 — 1,433 — 1,446 — 1,454 ps

4 mA — 891 — 665 — 438 — 1,332 — 1,345 — 1,348 ps

2.5-V LVTTL / 
LVCMOS

14 mA — 222 — –4 — –231 — 213 — 208 — 213 ps

7 mA — 943 — 717 — 490 — 166 — 161 — 166 ps

3.3-V PCI 20 mA — 161 — 210 — 258 — 1,332 — 1,345 — 1,348 ps

Table 5–21. UFM Block Internal Timing Microparameters (Part 1 of 3)

Symbol Parameter

MAX II / MAX IIG MAX IIZ

Unit

–3 Speed 
Grade

–4 Speed 
Grade

–5 Speed 
Grade

–6 Speed 
Grade

–7 Speed 
Grade

–8 Speed 
Grade

Min Max Min Max Min Max Min Max Min Max Min Max

tACLK Address register clock 
period

100 — 100 — 100 — 100 — 100 — 100 — ns

tASU Address register shift 
signal setup to 
address register clock

20 — 20 — 20 — 20 — 20 — 20 — ns

tAH Address register shift 
signal hold to address 
register clock

20 — 20 — 20 — 20 — 20 — 20 — ns

tADS Address register data 
in setup to address 
register clock

20 — 20 — 20 — 20 — 20 — 20 — ns

tADH Address register data 
in hold from address 
register clock

20 — 20 — 20 — 20 — 20 — 20 — ns

tDCLK Data register clock 
period

100 — 100 — 100 — 100 — 100 — 100 — ns

tDSS Data register shift 
signal setup to data 
register clock

60 — 60 — 60 — 60 — 60 — 60 — ns

tDSH Data register shift 
signal hold from data 
register clock

20 — 20 — 20 — 20 — 20 — 20 — ns
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Figure 5–3 through Figure 5–5 show the read, program, and erase waveforms for 
UFM block timing parameters shown in Table 5–21.

tOE Delay from data 
register clock to data 
register output

180 — 180 — 180 — 180 — 180 — 180 — ns

tRA Maximum read 
access time

— 65 — 65 — 65 — 65 — 65 — 65 ns

tOSCS Maximum delay 
between the 
OSC_ENA rising 
edge to the 
erase/program signal 
rising edge

250 — 250 — 250 — 250 — 250 — 250 — ns

tOSCH Minimum delay 
allowed from the 
erase/program signal 
going low to 
OSC_ENA signal 
going low

250 — 250 — 250 — 250 — 250 — 250 — ns

Table 5–21. UFM Block Internal Timing Microparameters (Part 3 of 3)

Symbol Parameter

MAX II / MAX IIG MAX IIZ

Unit

–3 Speed 
Grade

–4 Speed 
Grade

–5 Speed 
Grade

–6 Speed 
Grade

–7 Speed 
Grade

–8 Speed 
Grade

Min Max Min Max Min Max Min Max Min Max Min Max

Figure 5–3. UFM Read Waveforms
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Hz

nput 

Unit
Table 5–25 shows the external I/O timing parameters for EPM1270 devices.

fCNT Maximum 
global clock 
frequency for 
16-bit counter

— — 304.0 
(1)

— 247.5 — 201.1 — 184.1 — 123.5 — 118.3 M

Note to Table 5–24:

(1) The maximum frequency is limited by the I/O standard on the clock input pin. The 16-bit counter critical delay performs faster than this global clock i
pin maximum frequency.

Table 5–24. EPM570 Global Clock External I/O Timing Parameters (Part 2 of 2)

Symbol Parameter Condition

MAX II / MAX IIG MAX IIZ

–3 Speed 
Grade

–4 Speed 
Grade

–5 Speed 
Grade

–6 Speed 
Grade

–7 Speed 
Grade

–8 Speed 
Grade

Min Max Min Max Min Max Min Max Min Max Min Max

Table 5–25. EPM1270 Global Clock External I/O Timing Parameters

Symbol Parameter Condition

MAX II / MAX IIG

Unit

–3 Speed Grade –4 Speed Grade –5 Speed Grade

Min Max Min Max Min Max

tPD1 Worst case pin-to-pin 
delay through 1 look-up 
table (LUT)

10 pF — 6.2 — 8.1 — 10.0 ns

tPD2 Best case pin-to-pin 
delay through 1 LUT

10 pF — 3.7 — 4.8 — 5.9 ns

tSU Global clock setup time — 1.2 — 1.5 — 1.9 — ns

tH Global clock hold time — 0 — 0 — 0 — ns

tCO Global clock to output 
delay

10 pF 2.0 4.6 2.0 5.9 2.0 7.3 ns

tCH Global clock high time — 166 — 216 — 266 — ps

tCL Global clock low time — 166 — 216 — 266 — ps

tCNT Minimum global clock 
period for 
16-bit counter

— 3.3 — 4.0 — 5.0 — ns

fCNT Maximum global clock 
frequency for 16-bit 
counter

— — 304.0 (1) — 247.5 — 201.1 MHz

Note to Table 5–25:

(1) The maximum frequency is limited by the I/O standard on the clock input pin. The 16-bit counter critical delay performs faster than this global 
clock input pin maximum frequency.
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Document Revision History
June 2005,
version 1.3

■ Updated the RPULLUP parameter in Table 5-4.

■ Added Note 2 to Tables 5-8 and 5-9.

■ Updated Table 5-13.

■ Added “Output Drive Characteristics” section.

■ Added I2C mode and Notes 5 and 6 to Table 5-14.

■ Updated timing values to Tables 5-14 through 5-33.

—

December 2004, 
version 1.2

■ Updated timing Tables 5-2, 5-4, 5-12, and Tables 15-14 through 5-34.

■ Table 5-31 is new.

—

June 2004,
version 1.1

■ Updated timing Tables 5-15 through 5-32. —
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Referenced Documents
This chapter references the following document:

■ Package Information chapter in the MAX II Device Handbook

Document Revision History
Table 6–1 shows the revision history for this chapter.

Table 6–1. Document Revision History

Date and Revision Changes Made Summary of Changes

August 2009, 
version 1.6

■ Updated Figure 6–1. Added information for speed 
grade –8

October 2008, 
version 1.5

■ Updated New Document Format. —

December 2007, 
version 1.4

■ Added “Referenced Documents” section.

■ Updated Figure 6–1.

Updated document with 
MAX IIZ information.

December 2006, 
version 1.3

■ Added document revision history. —

October 2006, 
version 1.2

■ Updated Figure 6-1. —

June 2005, 
version 1.1

■ Removed Dual Marking section. —
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