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1–2 Chapter 1: Introduction
Features
Table 1–1 shows the MAX II family features.

f For more information about equivalent macrocells, refer to the MAX II Logic Element to 
Macrocell Conversion Methodology white paper.

MAX II and MAX IIG devices are available in three speed grades: –3, –4, and –5, with 
–3 being the fastest. Similarly, MAX IIZ devices are available in three speed grades: –6, 
–7, and –8, with –6 being the fastest. These speed grades represent the overall relative 
performance, not any specific timing parameter. For propagation delay timing 
numbers within each speed grade and density, refer to the DC and Switching 
Characteristics chapter in the MAX II Device Handbook.

Table 1–2 shows MAX II device speed-grade offerings.

Table 1–1. MAX II Family Features

Feature
EPM240

EPM240G 
EPM570

EPM570G
EPM1270

EPM1270G
EPM2210

EPM2210G EPM240Z EPM570Z

LEs 240 570 1,270 2,210 240 570

Typical Equivalent Macrocells 192 440 980 1,700 192 440

Equivalent Macrocell Range 128 to 240 240 to 570 570 to 1,270 1,270 to 2,210 128 to 240 240 to 570

UFM Size (bits) 8,192 8,192 8,192 8,192 8,192 8,192

Maximum User I/O pins 80 160 212 272 80 160

tPD1 (ns) (1) 4.7 5.4 6.2 7.0 7.5 9.0

fCNT (MHz) (2) 304 304 304 304 152 152

tSU (ns) 1.7 1.2 1.2 1.2 2.3 2.2

tCO (ns) 4.3 4.5 4.6 4.6 6.5 6.7

Notes to Table 1–1:

(1) tPD1 represents a pin-to-pin delay for the worst case I/O placement with a full diagonal path across the device and combinational logic 
implemented in a single LUT and LAB that is adjacent to the output pin.

(2) The maximum frequency is limited by the I/O standard on the clock input pin. The 16-bit counter critical delay will run faster than this number.

Table 1–2. MAX II Speed Grades

Device

Speed Grade

–3 –4 –5 –6 –7 –8

EPM240

EPM240G

v v v — — —

EPM570

EPM570G

v v v — — —

EPM1270

EPM1270G

v v v — — —

EPM2210

EPM2210G

v v v — — —

EPM240Z — — — v v v
EPM570Z — — — v v v
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Chapter 1: Introduction 1–5
Document Revision History
June 2005,
version 1.3

■ Updated timing numbers in Table 1-1. —

December 2004,
version 1.2

■ Updated timing numbers in Table 1-1. —

June 2004,
version 1.1

■ Updated timing numbers in Table 1-1. —

Table 1–6. Document Revision History

Date and Revision Changes Made Summary of Changes
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Chapter 2: MAX II Architecture 2–5
Logic Array Blocks
LAB Control Signals
Each LAB contains dedicated logic for driving control signals to its LEs. The control 
signals include two clocks, two clock enables, two asynchronous clears, a 
synchronous clear, an asynchronous preset/load, a synchronous load, and 
add/subtract control signals, providing a maximum of 10 control signals at a time. 
Although synchronous load and clear signals are generally used when implementing 
counters, they can also be used with other functions.

Each LAB can use two clocks and two clock enable signals. Each LAB’s clock and 
clock enable signals are linked. For example, any LE in a particular LAB using the 
labclk1 signal also uses labclkena1. If the LAB uses both the rising and falling 
edges of a clock, it also uses both LAB-wide clock signals. Deasserting the clock 
enable signal turns off the LAB-wide clock.

Each LAB can use two asynchronous clear signals and an asynchronous load/preset 
signal. By default, the Quartus II software uses a NOT gate push-back technique to 
achieve preset. If you disable the NOT gate push-back option or assign a given register 
to power-up high using the Quartus II software, the preset is then achieved using the 
asynchronous load signal with asynchronous load data input tied high.

With the LAB-wide addnsub control signal, a single LE can implement a one-bit adder 
and subtractor. This saves LE resources and improves performance for logic functions 
such as correlators and signed multipliers that alternate between addition and 
subtraction depending on data. 

The LAB column clocks [3..0], driven by the global clock network, and LAB local 
interconnect generate the LAB-wide control signals. The MultiTrack interconnect 
structure drives the LAB local interconnect for non-global control signal generation. 
The MultiTrack interconnect’s inherent low skew allows clock and control signal 
distribution in addition to data. Figure 2–5 shows the LAB control signal generation 
circuit.

Figure 2–4. DirectLink Connection
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2–6 Chapter 2: MAX II Architecture
Logic Elements
Logic Elements
The smallest unit of logic in the MAX II architecture, the LE, is compact and provides 
advanced features with efficient logic utilization. Each LE contains a four-input LUT, 
which is a function generator that can implement any function of four variables. In 
addition, each LE contains a programmable register and carry chain with carry-select 
capability. A single LE also supports dynamic single-bit addition or subtraction mode 
selectable by an LAB-wide control signal. Each LE drives all types of interconnects: 
local, row, column, LUT chain, register chain, and DirectLink interconnects. See 
Figure 2–6.

Figure 2–5. LAB-Wide Control Signals
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Chapter 2: MAX II Architecture 2–9
Logic Elements
Normal Mode
The normal mode is suitable for general logic applications and combinational 
functions. In normal mode, four data inputs from the LAB local interconnect are 
inputs to a four-input LUT (see Figure 2–7). The Quartus II Compiler automatically 
selects the carry-in or the data3 signal as one of the inputs to the LUT. Each LE can use 
LUT chain connections to drive its combinational output directly to the next LE in the 
LAB. Asynchronous load data for the register comes from the data3 input of the LE. 
LEs in normal mode support packed registers.

Dynamic Arithmetic Mode
The dynamic arithmetic mode is ideal for implementing adders, counters, 
accumulators, wide parity functions, and comparators. An LE in dynamic arithmetic 
mode uses four 2-input LUTs configurable as a dynamic adder/subtractor. The first 
two 2-input LUTs compute two summations based on a possible carry-in of 1 or 0; the 
other two LUTs generate carry outputs for the two chains of the carry-select circuitry. 
As shown in Figure 2–8, the LAB carry-in signal selects either the carry-in0 or 
carry-in1 chain. The selected chain’s logic level in turn determines which parallel sum 
is generated as a combinational or registered output. For example, when 
implementing an adder, the sum output is the selection of two possible calculated 
sums:

data1 + data2 + carry in0

or

data1 + data2 + carry-in1

Figure 2–7. LE in Normal Mode

Note to Figure 2–7:

(1) This signal is only allowed in normal mode if the LE is at the end of an adder/subtractor chain.

data1

4-Input
LUT

data2

data3
cin (from cout
of previous LE)

data4

addnsub (LAB Wide)

clock (LAB Wide)

ena (LAB Wide)

aclr (LAB Wide)

aload
(LAB Wide)

ALD/PRE

CLRN

D
Q

ENA

ADATA

sclear
(LAB Wide)

sload
(LAB Wide)

Register chain
connection

LUT chain
connection

Register
chain output

Row, column, and
DirectLink routing

Row, column, and
DirectLink routing

Local routing

Register Feedback

(1)
© October 2008 Altera Corporation MAX II Device Handbook

http://www.altera.com/literature/hb/max2/max2_mii5v1.pdf


Chapter 2: MAX II Architecture 2–11
Logic Elements
The speed advantage of the carry-select chain is in the parallel precomputation of 
carry chains. Since the LAB carry-in selects the precomputed carry chain, not every LE 
is in the critical path. Only the propagation delays between LAB carry-in generation 
(LE 5 and LE 10) are now part of the critical path. This feature allows the MAX II 
architecture to implement high-speed counters, adders, multipliers, parity functions, 
and comparators of arbitrary width. 

Figure 2–9 shows the carry-select circuitry in an LAB for a 10-bit full adder. One 
portion of the LUT generates the sum of two bits using the input signals and the 
appropriate carry-in bit; the sum is routed to the output of the LE. The register can be 
bypassed for simple adders or used for accumulator functions. Another portion of the 
LUT generates carry-out bits. An LAB-wide carry-in bit selects which chain is used for 
the addition of given inputs. The carry-in signal for each chain, carry-in0 or 
carry-in1, selects the carry-out to carry forward to the carry-in signal of the next-
higher-order bit. The final carry-out signal is routed to an LE, where it is fed to local, 
row, or column interconnects. 

Figure 2–9. Carry-Select Chain
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2–14 Chapter 2: MAX II Architecture
MultiTrack Interconnect
functions from LE 1 to LE 10 in the same LAB. The register chain connection allows 
the register output of one LE to connect directly to the register input of the next LE in 
the LAB for fast shift registers. The Quartus II Compiler automatically takes 
advantage of these resources to improve utilization and performance. Figure 2–11 
shows the LUT chain and register chain interconnects.

The C4 interconnects span four LABs up or down from a source LAB. Every LAB has 
its own set of C4 interconnects to drive either up or down. Figure 2–12 shows the C4 
interconnect connections from an LAB in a column. The C4 interconnects can drive 
and be driven by column and row IOEs. For LAB interconnection, a primary LAB or 
its vertical LAB neighbor can drive a given C4 interconnect. C4 interconnects can 
drive each other to extend their range as well as drive row interconnects for column-
to-column connections. 

Figure 2–11. LUT Chain and Register Chain Interconnects
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Chapter 2: MAX II Architecture 2–15
MultiTrack Interconnect
Figure 2–12. C4 Interconnect Connections (Note 1)

Note to Figure 2–12:

(1) Each C4 interconnect can drive either up or down four rows.
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Chapter 2: MAX II Architecture 2–17
Global Signals
The global clock network drives to individual LAB column signals, LAB column 
clocks [3..0], that span an entire LAB column from the top to the bottom of the device. 
Unused global clocks or control signals in a LAB column are turned off at the LAB 
column clock buffers shown in Figure 2–14. The LAB column clocks [3..0] are 
multiplexed down to two LAB clock signals and one LAB clear signal. Other control 
signal types route from the global clock network into the LAB local interconnect. See 
“LAB Control Signals” on page 2–5 for more information.

Figure 2–13. Global Clock Generation

Note to Figure 2–13:
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2–20 Chapter 2: MAX II Architecture
User Flash Memory Block
Internal Oscillator
As shown in Figure 2–15, the dedicated circuitry within the UFM block contains an 
oscillator. The dedicated circuitry uses this internally for its read and program 
operations. This oscillator's divide by 4 output can drive out of the UFM block as a 
logic interface clock source or for general-purpose logic clocking. The typical OSC 
output signal frequency ranges from 3.3 to 5.5 MHz, and its exact frequency of 
operation is not programmable.

Program, Erase, and Busy Signals
The UFM block’s dedicated circuitry automatically generates the necessary internal 
program and erase algorithm once the PROGRAM or ERASE input signals have been 
asserted. The PROGRAM or ERASE signal must be asserted until the busy signal 
deasserts, indicating the UFM internal program or erase operation has completed. The 
UFM block also supports JTAG as the interface for programming and/or reading. 

f For more information about programming and erasing the UFM block, refer to the 
Using User Flash Memory in MAX II Devices chapter in the MAX II Device Handbook.

Auto-Increment Addressing
The UFM block supports standard read or stream read operations. The stream read is 
supported with an auto-increment address feature. Deasserting the ARSHIFT signal 
while clocking the ARCLK signal increments the address register value to read 
consecutive locations from the UFM array.

Serial Interface
The UFM block supports a serial interface with serial address and data signals. The 
internal shift registers within the UFM block for address and data are 9 bits and 16 bits 
wide, respectively. The Quartus II software automatically generates interface logic in 
LEs for a parallel address and data interface to the UFM block. Other standard 
protocol interfaces such as SPI are also automatically generated in LE logic by the 
Quartus II software.

f For more information about the UFM interface signals and the Quartus II LE-based 
alternate interfaces, refer to the Using User Flash Memory in MAX II Devices chapter in 
the MAX II Device Handbook.

UFM Block to Logic Array Interface
The UFM block is a small partition of the flash memory that contains the CFM block, 
as shown in Figure 2–1 and Figure 2–2. The UFM block for the EPM240 device is 
located on the left side of the device adjacent to the left most LAB column. The UFM 
block for the EPM570, EPM1270, and EPM2210 devices is located at the bottom left of 
the device. The UFM input and output signals interface to all types of interconnects 
(R4 interconnect, C4 interconnect, and DirectLink interconnect to/from adjacent LAB 
rows). The UFM signals can also be driven from global clocks, GCLK[3..0]. The 
interface region for the EPM240 device is shown in Figure 2–16. The interface regions 
for EPM570, EPM1270, and EPM2210 devices are shown in Figure 2–17.
MAX II Device Handbook © October 2008 Altera Corporation
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Chapter 2: MAX II Architecture 2–29
I/O Structure
Schmitt Trigger
The input buffer for each MAX II device I/O pin has an optional Schmitt trigger 
setting for the 3.3-V and 2.5-V standards. The Schmitt trigger allows input buffers to 
respond to slow input edge rates with a fast output edge rate. Most importantly, 
Schmitt triggers provide hysteresis on the input buffer, preventing slow-rising noisy 
input signals from ringing or oscillating on the input signal driven into the logic array. 
This provides system noise tolerance on MAX II inputs, but adds a small, nominal 
input delay.

The JTAG input pins (TMS, TCK, and TDI) have Schmitt trigger buffers that are always 
enabled.

1 The TCK input is susceptible to high pulse glitches when the input signal fall time is 
greater than 200 ns for all I/O standards.

Output Enable Signals
Each MAX II IOE output buffer supports output enable signals for tri-state control. 
The output enable signal can originate from the GCLK[3..0] global signals or from 
the MultiTrack interconnect. The MultiTrack interconnect routes output enable signals 
and allows for a unique output enable for each output or bidirectional pin.

MAX II devices also provide a chip-wide output enable pin (DEV_OE) to control the 
output enable for every output pin in the design. An option set before compilation in 
the Quartus II software controls this pin. This chip-wide output enable uses its own 
routing resources and does not use any of the four global resources. If this option is 
turned on, all outputs on the chip operate normally when DEV_OE is asserted. When 
the pin is deasserted, all outputs are tri-stated. If this option is turned off, the DEV_OE 
pin is disabled when the device operates in user mode and is available as a user I/O 
pin.

Programmable Drive Strength
The output buffer for each MAX II device I/O pin has two levels of programmable 
drive strength control for each of the LVTTL and LVCMOS I/O standards. 
Programmable drive strength provides system noise reduction control for high 
performance I/O designs. Although a separate slew-rate control feature exists, using 
the lower drive strength setting provides signal slew-rate control to reduce system 
noise and signal overshoot without the large delay adder associated with the 
slew-rate control feature. Table 2–6 shows the possible settings for the I/O standards 
with drive strength control. The Quartus II software uses the maximum current 
strength as the default setting. The PCI I/O standard is always set at 20 mA with no 
alternate setting.

Table 2–5. MAX II Devices and Speed Grades that Support 3.3-V PCI Electrical Specifications and 
Meet PCI Timing

Device 33-MHz PCI 66-MHz PCI

EPM1270 All Speed Grades –3 Speed Grade

EPM2210 All Speed Grades –3 Speed Grade
© October 2008 Altera Corporation MAX II Device Handbook
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3–2 Chapter 3: JTAG and In-System Programmability
IEEE Std. 1149.1 (JTAG) Boundary-Scan Support
w Unsupported JTAG instructions should not be issued to the MAX II device as this may 
put the device into an unknown state, requiring a power cycle to recover device 
operation.

The MAX II device instruction register length is 10 bits and the USERCODE register 
length is 32 bits. Table 3–2 and Table 3–3 show the boundary-scan register length and 
device IDCODE information for MAX II devices. 

CLAMP (1) 00 0000 1010 Places the 1-bit bypass register between the TDI and TDO pins, 
which allows the boundary scan test data to pass synchronously 
through selected devices to adjacent devices during normal device 
operation, while holding I/O pins to a state defined by the data in the 
boundary-scan register.

USER0 00 0000 1100 This instruction allows you to define the scan chain between TDI 
and TDO in the MAX II logic array. This instruction is also used for 
custom logic and JTAG interfaces.

USER1 00 0000 1110 This instruction allows you to define the scan chain between TDI 
and TDO in the MAX II logic array. This instruction is also used for 
custom logic and JTAG interfaces.

IEEE 1532 
instructions

(2) IEEE 1532 ISC instructions used when programming a MAX II device 
via the JTAG port.

Notes to Table 3–1:

(1) HIGHZ, CLAMP, and EXTEST instructions do not disable weak pull-up resistors or bus hold features.
(2) These instructions are shown in the 1532 BSDL files, which will be posted on the Altera® website at www.altera.com when they are available.

Table 3–1. MAX II JTAG Instructions (Part 2 of 2)

JTAG Instruction Instruction Code Description

Table 3–2. MAX II Boundary-Scan Register Length

Device Boundary-Scan Register Length

EPM240 240

EPM570 480

EPM1270 636

EPM2210 816

Table 3–3. 32-Bit MAX II Device IDCODE (Part 1 of 2)

Device

Binary IDCODE (32 Bits) (1)

HEX IDCODE
Version 
(4 Bits) Part Number

Manufacturer 
Identity (11 Bits)

LSB 
(1 Bit) (2)

EPM240

EPM240G

0000 0010 0000 1010 0001 000 0110 1110 1 0x020A10DD

EPM570

EPM570G

0000 0010 0000 1010 0010 000 0110 1110 1 0x020A20DD

EPM1270

EPM1270G

0000 0010 0000 1010 0011 000 0110 1110 1 0x020A30DD

EPM2210

EPM2210G

0000 0010 0000 1010 0100 000 0110 1110 1 0x020A40DD
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3–6 Chapter 3: JTAG and In-System Programmability
In System Programmability
Table 3–4 shows the programming times for MAX II devices using in-circuit testers to 
execute the algorithm vectors in hardware. Software-based programming tools used 
with download cables are slightly slower because of data processing and transfer 
limitations.

UFM Programming
The Quartus II software, with the use of POF, Jam, or JBC files, supports 
programming of the user flash memory (UFM) block independent of the logic array 
design pattern stored in the CFM block. This allows updating or reading UFM 
contents through ISP without altering the current logic array design, or vice versa. By 
default, these programming files and methods will program the entire flash memory 
contents, which includes the CFM block and UFM contents. The stand-alone 
embedded Jam STAPL player and Jam Byte-Code Player provides action commands 
for programming or reading the entire flash memory (UFM and CFM together) or 
each independently.

f For more information, refer to the Using Jam STAPL for ISP via an Embedded Processor 
chapter in the MAX II Device Handbook.

In-System Programming Clamp
By default, the IEEE 1532 instruction used for entering ISP automatically tri-states all 
I/O pins with weak pull-up resistors for the duration of the ISP sequence. However, 
some systems may require certain pins on MAX II devices to maintain a specific DC 
logic level during an in-field update. For these systems, an optional in-system 
programming clamp instruction exists in MAX II circuitry to control I/O behavior 
during the ISP sequence. The in-system programming clamp instruction enables the 
device to sample and sustain the value on an output pin (an input pin would remain 
tri-stated if sampled) or to explicitly set a logic high, logic low, or tri-state value on 
any pin. Setting these options is controlled on an individual pin basis using the 
Quartus II software.

f For more information, refer to the Real-Time ISP and ISP Clamp for MAX II Devices 
chapter in the MAX II Device Handbook.

Table 3–4. MAX II Device Family Programming Times

Description

EPM240 
EPM240G
EPM240Z

EPM570 
EPM570G
EPM570Z

EPM1270 
EPM1270G

EPM2210 
EPM2210G Unit

Erase + Program (1 MHz) 1.72 2.16 2.90 3.92 sec

Erase + Program (10 MHz) 1.65 1.99 2.58 3.40 sec

Verify (1 MHz) 0.09 0.17 0.30 0.49 sec

Verify (10 MHz) 0.01 0.02 0.03 0.05 sec

Complete Program Cycle (1 MHz) 1.81 2.33 3.20 4.41 sec

Complete Program Cycle (10 MHz) 1.66 2.01 2.61 3.45 sec
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Chapter 3: JTAG and In-System Programmability 3–7
Referenced Documents
Real-Time ISP
For systems that require more than DC logic level control of I/O pins, the real-time 
ISP feature allows you to update the CFM block with a new design image while the 
current design continues to operate in the SRAM logic array and I/O pins. A new 
programming file is updated into the MAX II device without halting the original 
design’s operation, saving down-time costs for remote or field upgrades. The updated 
CFM block configures the new design into the SRAM upon the next power cycle. It is 
also possible to execute an immediate configuration of the SRAM without a power 
cycle by using a specific sequence of ISP commands. The configuration of SRAM 
without a power cycle takes a specific amount of time (tCONFIG). During this time, the 
I/O pins are tri-stated and weakly pulled-up to VCCIO.

Design Security
All MAX II devices contain a programmable security bit that controls access to the 
data programmed into the CFM block. When this bit is programmed, design 
programming information, stored in the CFM block, cannot be copied or retrieved. 
This feature provides a high level of design security because programmed data within 
flash memory cells is invisible. The security bit that controls this function, as well as 
all other programmed data, is reset only when the device is erased. The SRAM is also 
invisible and cannot be accessed regardless of the security bit setting. The UFM block 
data is not protected by the security bit and is accessible through JTAG or logic array 
connections.

Programming with External Hardware
MAX II devices can be programmed by downloading the information via in-circuit 
testers, embedded processors, the Altera® ByteblasterMV™, MasterBlaster™, 
ByteBlaster™ II, and USB-Blaster cables. 

BP Microsystems, System General, and other programming hardware manufacturers 
provide programming support for Altera devices. Check their websites for device 
support information.

Referenced Documents
This chapter references the following documents:

■ DC and Switching Characteristics chapter in the MAX II Device Handbook

■ IEEE 1149.1 (JTAG) Boundary-Scan Testing for MAX II Devices chapter in the MAX II 
Device Handbook

■ Real-Time ISP and ISP Clamp for MAX II Devices chapter in the MAX II Device 
Handbook

■ Using Jam STAPL for ISP via an Embedded Processor chapter in the MAX II Device 
Handbook
© October 2008 Altera Corporation MAX II Device Handbook
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5–4 Chapter 5: DC and Switching Characteristics
Operating Conditions
IPULLUP I/O pin pull-up resistor 
current when I/O is 
unprogrammed

— — — 300 µA

CIO Input capacitance for 
user I/O pin

— — — 8 pF

CGCLK Input capacitance for 
dual-purpose 
GCLK/user I/O pin

— — — 8 pF

Notes to Table 5–4:

(1) Typical values are for TA = 25°C, VCCINT = 3.3 or 2.5 V, and VCCIO  = 1.5 V, 1.8 V, 2.5 V, or 3.3 V.
(2) This value is specified for normal device operation. The value may vary during power-up. This applies for all VCCIO settings (3.3, 2.5, 

1.8, and 1.5 V).
(3) VI = ground, no load, no toggling inputs.
(4) Commercial temperature ranges from 0°C to 85°C with maximum current at 85°C.
(5) Industrial temperature ranges from –40°C to 100°C with maximum current at 100°C.
(6) This value applies to commercial and industrial range devices. For extended temperature range devices, the VSCHMITT typical value is 

300 mV for VCCIO  = 3.3 V and 120 mV for VCCIO = 2.5 V.
(7) The TCK input is susceptible to high pulse glitches when the input signal fall time is greater than 200 ns for all I/O standards. 
(8) This is a peak current value with a maximum duration of tCONFIG time.
(9) Pin pull-up resistance values will lower if an external source drives the pin higher than VCCIO.

Table 5–4. MAX II Device DC Electrical Characteristics (Note 1) (Part 2 of 2)

Symbol Parameter Conditions Minimum Typical Maximum Unit
MAX II Device Handbook © August 2009 Altera Corporation

http://www.altera.com/literature/hb/max2/max2_mii5v1.pdf


5–6 Chapter 5: DC and Switching Characteristics
Operating Conditions
VOH High-level output voltage VCCIO = 3.0, 
IOH = –0.1 mA (1)

VCCIO – 0.2 — V

VOL Low-level output voltage VCCIO = 3.0,
IOL = 0.1 mA (1)

— 0.2 V

Table 5–7. 2.5-V I/O Specifications

Symbol Parameter Conditions Minimum Maximum Unit

VCCIO I/O supply voltage — 2.375 2.625 V

VIH High-level input voltage — 1.7 4.0 V

VIL Low-level input voltage — –0.5 0.7 V

VOH High-level output voltage IOH = –0.1 mA (1) 2.1 — V

IOH = –1 mA (1) 2.0 — V

IOH = –2 mA (1) 1.7 — V

VOL Low-level output voltage IOL = 0.1 mA (1) — 0.2 V

IOL = 1 mA (1) — 0.4 V

IOL = 2 mA (1) — 0.7 V

Table 5–8. 1.8-V I/O Specifications

Symbol Parameter Conditions Minimum Maximum Unit

VCCIO I/O supply voltage — 1.71 1.89 V

VIH High-level input voltage — 0.65 × VCCIO 2.25 (2) V

VIL Low-level input voltage — –0.3 0.35 × VCCIO V

VOH High-level output voltage IOH = –2 mA (1) VCCIO – 0.45 — V

VOL Low-level output voltage IOL = 2 mA (1) — 0.45 V

Table 5–9. 1.5-V I/O Specifications

Symbol Parameter Conditions Minimum Maximum Unit

VCCIO I/O supply voltage — 1.425 1.575 V

VIH High-level input voltage — 0.65 × VCCIO VCCIO + 0.3 (2) V

VIL Low-level input voltage — –0.3 0.35 × VCCIO V

VOH High-level output voltage IOH = –2 mA (1) 0.75 × VCCIO — V

VOL Low-level output voltage IOL = 2 mA (1) — 0.25 × VCCIO V

Notes to Table 5–5 through Table 5–9:

(1) This specification is supported across all the programmable drive strength settings available for this I/O standard, as shown 
in the MAX II Architecture chapter (I/O Structure section) in the MAX II Device Handbook.

(2) This maximum VIH reflects the JEDEC specification. The MAX II input buffer can tolerate a VIH maximum of 4.0, as specified 
by the VI parameter in Table 5–2.

Table 5–6. 3.3-V LVCMOS Specifications (Part 2 of 2)

Symbol Parameter Conditions Minimum Maximum Unit
MAX II Device Handbook © August 2009 Altera Corporation
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5–8 Chapter 5: DC and Switching Characteristics
Power Consumption
Power-Up Timing
Table 5–12 shows the power-up timing characteristics for MAX II devices.

Power Consumption
Designers can use the Altera® PowerPlay Early Power Estimator and PowerPlay 
Power Analyzer to estimate the device power. 

f For more information about these power analysis tools, refer to the Understanding and 
Evaluating Power in MAX II Devices chapter in the MAX II Device Handbook and the 
PowerPlay Power Analysis chapter in volume 3 of the Quartus II Handbook.

Timing Model and Specifications
MAX II devices timing can be analyzed with the Altera Quartus® II software, a variety 
of popular industry-standard EDA simulators and timing analyzers, or with the 
timing model shown in Figure 5–2. 

MAX II devices have predictable internal delays that enable the designer to determine 
the worst-case timing of any design. The software provides timing simulation, 
point-to-point delay prediction, and detailed timing analysis for device-wide 
performance evaluation.

Table 5–12. MAX II Power-Up Timing

Symbol Parameter Device Min Typ Max Unit

tCONFIG (1) The amount of time from when 
minimum VCCINT is reached until 
the device enters user mode (2)

EPM240 — — 200 µs

EPM570 — — 300 µs

EPM1270 — — 300 µs

EPM2210 — — 450 µs

Notes to Table 5–12:

(1) Table 5–12 values apply to commercial and industrial range devices. For extended temperature range devices, the tCONFIG  maximum values are 
as follows:
Device Maximum
EPM240 300 µs
EPM570 400 µs
EPM1270 400 µs
EPM2210 500 µs

(2) For more information about POR trigger voltage, refer to the Hot Socketing and Power-On Reset in MAX II Devices chapter in the MAX II Device 
Handbook.
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5–10 Chapter 5: DC and Switching Characteristics
Timing Model and Specifications
Performance
Table 5–14 shows the MAX II device performance for some common designs. All 
performance values were obtained with the Quartus II software compilation of 
megafunctions. Performance values for –3, –4, and –5 speed grades are based on an 
EPM1270 device target, while –6, –7, and –8 speed grades are based on an EPM570Z 
device target.

EPM1270 — v
EPM2210 — v
Note to Table 5–13:

(1) The MAX IIZ device timing models are only available in the Quartus II software 
version 8.0 and later.

Table 5–13. MAX II Device Timing Model Status (Part 2 of 2)

Device Preliminary Final

Table 5–14. MAX II Device Performance

Resource 
Used

Design Size and 
Function

Resources Used

Performance

Unit

MAX II / MAX IIG MAX IIZ

Mode LEs
UFM 

Blocks

–3 
Speed 
Grade

–4 
Speed 
Grade

–5 
Speed 
Grade

–6 
Speed 
Grade

–7 
Speed 
Grade

–8 
Speed 
Grade

LE 16-bit counter (1) — 16 0 304.0 247.5 201.1 184.1 123.5 118.3 MHz

64-bit counter (1) — 64 0 201.5 154.8 125.8 83.2 83.2 80.5 MHz

16-to-1 multiplexer — 11 0 6.0 8.0 9.3 17.4 17.3 20.4 ns

32-to-1 multiplexer — 24 0 7.1 9.0 11.4 12.5 22.8 25.3 ns

16-bit XOR function — 5 0 5.1 6.6 8.2 9.0 15.0 16.1 ns

16-bit decoder with 
single address line

— 5 0 5.2 6.6 8.2 9.2 15.0 16.1 ns

UFM 512 × 16 None 3 1 10.0 10.0 10.0 10.0 10.0 10.0 MHz

512 × 16 SPI (2) 37 1 8.0 8.0 8.0 9.7 9.7 9.7 MHz

512 × 8 Parallel 
(3)

73 1 (4) (4) (4) (4) (4) (4) MHz

512 × 16 I2C (3) 142 1 100 
(5)

100 
(5)

100 
(5)

100 
(5)

100 
(5)

100 
(5)

kHz

Notes to Table 5–14:

(1) This design is a binary loadable up counter. 
(2) This design is configured for read-only operation in Extended mode. Read and write ability increases the number of LEs used.
(3) This design is configured for read-only operation. Read and write ability increases the number of LEs used.
(4) This design is asynchronous.
(5) The I2C megafunction is verified in hardware up to 100-kHz serial clock line (SCL) rate.
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6–2 Chapter 6: Reference and Ordering Information
Referenced Documents
Referenced Documents
This chapter references the following document:

■ Package Information chapter in the MAX II Device Handbook

Document Revision History
Table 6–1 shows the revision history for this chapter.

Table 6–1. Document Revision History

Date and Revision Changes Made Summary of Changes

August 2009, 
version 1.6

■ Updated Figure 6–1. Added information for speed 
grade –8

October 2008, 
version 1.5

■ Updated New Document Format. —

December 2007, 
version 1.4

■ Added “Referenced Documents” section.

■ Updated Figure 6–1.

Updated document with 
MAX IIZ information.

December 2006, 
version 1.3

■ Added document revision history. —

October 2006, 
version 1.2

■ Updated Figure 6-1. —

June 2005, 
version 1.1

■ Removed Dual Marking section. —
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