

Welcome to E-XFL.COM

Understanding <u>Embedded - CPLDs (Complex</u> <u>Programmable Logic Devices)</u>

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixedfunction ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details

Product Status	Active
Programmable Type	In System Programmable
Delay Time tpd(1) Max	5.4 ns
Voltage Supply - Internal	2.5V, 3.3V
Number of Logic Elements/Blocks	570
Number of Macrocells	440
Number of Gates	-
Number of I/O	76
Operating Temperature	-40°C ~ 100°C (TJ)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epm570t100i5n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

MAX II devices are available in space-saving FineLine BGA, Micro FineLine BGA, and thin quad flat pack (TQFP) packages (refer to Table 1–3 and Table 1–4). MAX II devices support vertical migration within the same package (for example, you can migrate between the EPM570, EPM1270, and EPM2210 devices in the 256-pin FineLine BGA package). Vertical migration means that you can migrate to devices whose dedicated pins and JTAG pins are the same and power pins are subsets or supersets for a given package across device densities. The largest density in any package has the highest number of power pins; you must lay out for the largest planned density in a package to provide the necessary power pins for migration. For I/O pin migration across densities, cross reference the available I/O pins using the device pin-outs for all planned densities of a given package type to identify which I/O pins can be migrated. The Quartus® II software can automatically cross-reference and place all pins for you when given a device migration list.

 Table 1–3.
 MAX II Packages and User I/O Pins

Device	68-Pin Micro FineLine BGA <i>(1)</i>	100-Pin Micro FineLine BGA <i>(1)</i>	100-Pin FineLine BGA	100-Pin TQFP	144-Pin TQFP	144-Pin Micro FineLine BGA <i>(1)</i>	256-Pin Micro FineLine BGA <i>(1)</i>	256-Pin FineLine BGA	324-Pin FineLine BGA
EPM240	—	80	80	80	—	_	_	—	_
EPM240G									
EPM570	—	76	76	76	116	_	160	160	
EPM570G									
EPM1270	—	_	—	—	116	_	212	212	_
EPM1270G									
EPM2210	—	—	—	—	—	—	—	204	272
EPM2210G									
EPM240Z	54	80	_	—	—	_	_	—	
EPM570Z	—	76	—	_	—	116	160	_	_

Note to Table 1-3:

(1) Packages available in lead-free versions only.

Table 1-4. MAX II TQFP, FineLine BGA, and Micro FineLine BGA Package Sizes

Package	68-Pin Micro FineLine BGA	100-Pin Micro FineLine BGA	100-Pin FineLine BGA	100-Pin TQFP	144-Pin TQFP	144-Pin Micro FineLine BGA	256-Pin Micro FineLine BGA	256-Pin FineLine BGA	324-Pin FineLine BGA
Pitch (mm)	0.5	0.5	1	0.5	0.5	0.5	0.5	1	1
Area (mm2)	25	36	121	256	484	49	121	289	361
Length × width (mm × mm)	5 × 5	6 × 6	11 × 11	16 × 16	22 × 22	7×7	11 × 11	17 × 17	19 × 19

Figure 2-4. DirectLink Connection

LAB Control Signals

Each LAB contains dedicated logic for driving control signals to its LEs. The control signals include two clocks, two clock enables, two asynchronous clears, a synchronous clear, an asynchronous preset/load, a synchronous load, and add/subtract control signals, providing a maximum of 10 control signals at a time. Although synchronous load and clear signals are generally used when implementing counters, they can also be used with other functions.

Each LAB can use two clocks and two clock enable signals. Each LAB's clock and clock enable signals are linked. For example, any LE in a particular LAB using the labclk1 signal also uses labclkena1. If the LAB uses both the rising and falling edges of a clock, it also uses both LAB-wide clock signals. Deasserting the clock enable signal turns off the LAB-wide clock.

Each LAB can use two asynchronous clear signals and an asynchronous load/preset signal. By default, the Quartus II software uses a NOT gate push-back technique to achieve preset. If you disable the NOT gate push-back option or assign a given register to power-up high using the Quartus II software, the preset is then achieved using the asynchronous load signal with asynchronous load data input tied high.

With the LAB-wide addnsub control signal, a single LE can implement a one-bit adder and subtractor. This saves LE resources and improves performance for logic functions such as correlators and signed multipliers that alternate between addition and subtraction depending on data.

The LAB column clocks [3..0], driven by the global clock network, and LAB local interconnect generate the LAB-wide control signals. The MultiTrack interconnect structure drives the LAB local interconnect for non-global control signal generation. The MultiTrack interconnect's inherent low skew allows clock and control signal distribution in addition to data. Figure 2–5 shows the LAB control signal generation circuit.

Figure 2–12. C4 Interconnect Connections (Note 1)

(1) Each C4 interconnect can drive either up or down four rows.

Table 2-4 describes the I/O standards supported by MAX II devices.

Table 2-4.	MAX II I/O	Standards
------------	------------	-----------

I/O Standard	Туре	Output Supply Voltage (VCCIO) (V)
3.3-V LVTTL/LVCMOS	Single-ended	3.3
2.5-V LVTTL/LVCMOS	Single-ended	2.5
1.8-V LVTTL/LVCMOS	Single-ended	1.8
1.5-V LVCMOS	Single-ended	1.5
3.3-V PCI (1)	Single-ended	3.3

Note to Table 2-4:

(1) The 3.3-V PCI compliant I/O is supported in Bank 3 of the EPM1270 and EPM2210 devices.

The EPM240 and EPM570 devices support two I/O banks, as shown in Figure 2–22. Each of these banks support all the LVTTL and LVCMOS standards shown in Table 2–4. PCI compliant I/O is not supported in these devices and banks.

Notes to Figure 2–22:

(1) Figure 2-22 is a top view of the silicon die.

(2) Figure 2-22 is a graphical representation only. Refer to the pin list and the Quartus II software for exact pin locations.

The EPM1270 and EPM2210 devices support four I/O banks, as shown in Figure 2–23. Each of these banks support all of the LVTTL and LVCMOS standards shown in Table 2–4. PCI compliant I/O is supported in Bank 3. Bank 3 supports the PCI clamping diode on inputs and PCI drive compliance on outputs. You must use Bank 3 for designs requiring PCI compliant I/O pins. The Quartus II software automatically places I/O pins in this bank if assigned with the PCI I/O standard.

MAX II Device Handbook

I/O Standard	IOH/IOL Current Strength Setting (mA)
3.3-V LVTTL	16
	8
3.3-V LVCMOS	8
	4
2.5-V LVTTL/LVCMOS	14
	7
1.8-V LVTTL/LVCMOS	6
	3
1.5-V LVCMOS	4
	2

Note to Table 2-6:

(1) The I_{0H} current strength numbers shown are for a condition of a V_{0UT} = V_{0H} minimum, where the V_{0H} minimum is specified by the I/O standard. The I_{0L} current strength numbers shown are for a condition of a V_{0UT} = V_{0L} maximum, where the V_{0L} maximum is specified by the I/O standard. For 2.5-V LVTTL/LVCMOS, the I_{0H} condition is V_{0UT} = 1.7 V and the I_{0L} condition is V_{0UT} = 0.7 V.

Slew-Rate Control

The output buffer for each MAX II device I/O pin has a programmable output slewrate control that can be configured for low noise or high-speed performance. A faster slew rate provides high-speed transitions for high-performance systems. However, these fast transitions may introduce noise transients into the system. A slow slew rate reduces system noise, but adds a nominal output delay to rising and falling edges. The lower the voltage standard (for example, 1.8-V LVTTL) the larger the output delay when slow slew is enabled. Each I/O pin has an individual slew-rate control, allowing the designer to specify the slew rate on a pin-by-pin basis. The slew-rate control affects both the rising and falling edges.

Open-Drain Output

MAX II devices provide an optional open-drain (equivalent to open-collector) output for each I/O pin. This open-drain output enables the device to provide system-level control signals (for example, interrupt and write enable signals) that can be asserted by any of several devices. This output can also provide an additional wired-OR plane.

Programmable Ground Pins

Each unused I/O pin on MAX II devices can be used as an additional ground pin. This programmable ground feature does not require the use of the associated LEs in the device. In the Quartus II software, unused pins can be set as programmable GND on a global default basis or they can be individually assigned. Unused pins also have the option of being set as tri-stated input pins.

Document Revision History

Table 2–8 shows the revision history for this chapter.

 Table 2–8.
 Document Revision History

Date and Revision	Changes Made	Summary of Changes
October 2008,	Updated Table 2–4 and Table 2–6.	—
version 2.2	 Updated "I/O Standards and Banks" section. 	
	 Updated New Document Format. 	
March 2008, version 2.1	 Updated "Schmitt Trigger" section. 	_
December 2007,	 Updated "Clear and Preset Logic Control" section. 	Updated document with
version 2.0	 Updated "MultiVolt Core" section. 	MAX IIZ information.
	 Updated "MultiVolt I/O Interface" section. 	
	Updated Table 2–7.	
	 Added "Referenced Documents" section. 	
December 2006, version 1.7	 Minor update in "Internal Oscillator" section. Added document revision history. 	-
August 2006, version 1.6	 Updated functional description and I/O structure sections. 	-
July 2006, vervion 1.5	 Minor content and table updates. 	_
February 2006,	 Updated "LAB Control Signals" section. 	_
version 1.4	 Updated "Clear and Preset Logic Control" section. 	
	 Updated "Internal Oscillator" section. 	
	Updated Table 2–5.	
August 2005, version 1.3	 Removed Note 2 from Table 2-7. 	_
December 2004, version 1.2	 Added a paragraph to page 2-15. 	-
June 2004, version 1.1	Added CFM acronym. Corrected Figure 2-19.	-

	Binary IDCODE (32 Bits) <i>(1)</i>					
Device	Version (4 Bits)	Part Number	Manufacturer Identity (11 Bits)	LSB (1 Bit) <i>(2)</i>	HEX IDCODE	
EPM240Z	0000	0010 0000 1010 0101	000 0110 1110	1	0x020A50DD	
EPM570Z	0000	0010 0000 1010 0110	000 0110 1110	1	0x020A60DD	

Table 3-3. 32-Bit MAX II Device IDCODE (Part 2 of 2)

Notes to Table 3-2:

(1) The most significant bit (MSB) is on the left.

(2) The IDCODE's least significant bit (LSB) is always 1.

• For more information about JTAG BST, refer to the *IEEE 1149.1 (JTAG) Boundary-Scan Testing for MAX II Devices* chapter in the *MAX II Device Handbook*.

JTAG Block

The MAX II JTAG block feature allows you to access the JTAG TAP and state signals when either the USER0 or USER1 instruction is issued to the JTAG TAP. The USER0 and USER1 instructions bring the JTAG boundary-scan chain (TDI) through the user logic instead of the MAX II device's boundary-scan cells. Each USER instruction allows for one unique user-defined JTAG chain into the logic array.

Parallel Flash Loader

The JTAG block ability to interface JTAG to non-JTAG devices is ideal for generalpurpose flash memory devices (such as Intel- or Fujitsu-based devices) that require programming during in-circuit test. The flash memory devices can be used for FPGA configuration or be part of system memory. In many cases, the MAX II device is already connected to these devices as the configuration control logic between the FPGA and the flash device. Unlike ISP-capable CPLD devices, bulk flash devices do not have JTAG TAP pins or connections. For small flash devices, it is common to use the serial JTAG scan chain of a connected device to program the non-JTAG flash device. This is slow and inefficient in most cases and impractical for large parallel flash devices. Using the MAX II device's JTAG block as a parallel flash loader, with the Quartus II software, to program and verify flash contents provides a fast and costeffective means of in-circuit programming during test. Figure 3–1 shows MAX II being used as a parallel flash loader.

For JTAG AC characteristics, refer to the DC and Switching Characteristics chapter in the MAX II Device Handbook.

Table 3–4 shows the programming times for MAX II devices using in-circuit testers to execute the algorithm vectors in hardware. Software-based programming tools used with download cables are slightly slower because of data processing and transfer limitations.

Description	EPM240 EPM240G EPM240Z	EPM570 EPM570G EPM570Z	EPM1270 EPM1270G	EPM2210 EPM2210G	Unit
Erase + Program (1 MHz)	1.72	2.16	2.90	3.92	sec
Erase + Program (10 MHz)	1.65	1.99	2.58	3.40	sec
Verify (1 MHz)	0.09	0.17	0.30	0.49	sec
Verify (10 MHz)	0.01	0.02	0.03	0.05	sec
Complete Program Cycle (1 MHz)	1.81	2.33	3.20	4.41	sec
Complete Program Cycle (10 MHz)	1.66	2.01	2.61	3.45	sec

Table 3-4. MAX II Device Family Programming Times

UFM Programming

The Quartus II software, with the use of POF, Jam, or JBC files, supports programming of the user flash memory (UFM) block independent of the logic array design pattern stored in the CFM block. This allows updating or reading UFM contents through ISP without altering the current logic array design, or vice versa. By default, these programming files and methods will program the entire flash memory contents, which includes the CFM block and UFM contents. The stand-alone embedded Jam STAPL player and Jam Byte-Code Player provides action commands for programming or reading the entire flash memory (UFM and CFM together) or each independently.

For more information, refer to the *Using Jam STAPL for ISP via an Embedded Processor* chapter in the *MAX II Device Handbook*.

In-System Programming Clamp

By default, the IEEE 1532 instruction used for entering ISP automatically tri-states all I/O pins with weak pull-up resistors for the duration of the ISP sequence. However, some systems may require certain pins on MAX II devices to maintain a specific DC logic level during an in-field update. For these systems, an optional in-system programming clamp instruction exists in MAX II circuitry to control I/O behavior during the ISP sequence. The in-system programming clamp instruction enables the device to sample and sustain the value on an output pin (an input pin would remain tri-stated if sampled) or to explicitly set a logic high, logic low, or tri-state value on any pin. Setting these options is controlled on an individual pin basis using the Quartus II software.

•••

• For more information, refer to the *Real-Time ISP and ISP Clamp for MAX II Devices* chapter in the *MAX II Device Handbook*.

Document Revision History

Table 3–5 shows the revision history for this chapter.

Table 3–5	Document	Revision	History
Ianic J-J.	DOCUMENT	1101131011	THELOTY

Date and Revision	Changes Made	Summary of Changes
October 2008, version 1.6	 Updated New Document Format. 	—
December 2007,	 Added warning note after Table 3–1. 	_
version 1.5	 Updated Table 3–3 and Table 3–4. 	
	 Added "Referenced Documents" section. 	
December 2006, version 1.4	 Added document revision history. 	—
June 2005, version 1.3	 Added text and Table 3-4. 	—
June 2005, version 1.3	 Updated text on pages 3-5 to 3-8. 	—
June 2004, version 1.1	 Corrected Figure 3-1. Added CFM acronym. 	_

I/O Pins Remain Tri-Stated during Power-Up

A device that does not support hot-socketing may interrupt system operation or cause contention by driving out before or during power-up. In a hot socketing situation, the MAX II device's output buffers are turned off during system power-up. MAX II devices do not drive out until the device attains proper operating conditions and is fully configured. Refer to "Power-On Reset Circuitry" on page 4–5 for information about turn-on voltages.

Signal Pins Do Not Drive the V_{cco} or V_{ccont} Power Supplies

MAX II devices do not have a current path from I/O pins or GCLK[3..0] pins to the V_{CCIO} or V_{CCINT} pins before or during power-up. A MAX II device may be inserted into (or removed from) a system board that was powered up without damaging or interfering with system-board operation. When hot socketing, MAX II devices may have a minimal effect on the signal integrity of the backplane.

AC and DC Specifications

You can power up or power down the V_{CCIO} and V_{CCINT} pins in any sequence. During hot socketing, the I/O pin capacitance is less than 8 pF. MAX II devices meet the following hot socketing specifications:

- The hot socketing DC specification is: $|I_{IOPIN}| < 300 \,\mu\text{A}$.
- The hot socketing AC specification is: | I_{IOPIN} | < 8 mA for 10 ns or less.

MAX II devices are immune to latch-up when hot socketing. If the TCK JTAG input pin is driven high during hot socketing, the current on that pin might exceed the specifications above.

 I_{IOPIN} is the current at any user I/O pin on the device. The AC specification applies when the device is being powered up or powered down. This specification takes into account the pin capacitance but not board trace and external loading capacitance. Additional capacitance for trace, connector, and loading must be taken into consideration separately. The peak current duration due to power-up transients is 10 ns or less.

The DC specification applies when all V_{cc} supplies to the device are stable in the powered-up or powered-down conditions.

Hot Socketing Feature Implementation in MAX II Devices

The hot socketing feature turns off (tri-states) the output buffer during the power-up event (either V_{CCINT} or V_{CCIO} supplies) or power-down event. The hot-socket circuit generates an internal HOTSCKT signal when either V_{CCINT} or V_{CCIO} is below the threshold voltage during power-up or power-down. The HOTSCKT signal cuts off the output buffer to make sure that no DC current (except for weak pull-up leaking) leaks through the pin. When V_{CC} ramps up very slowly during power-up, V_{CC} may still be relatively low even after the power-on reset (POR) signal is released and device configuration is complete.

Recommended Operating Conditions

Table 5–2 shows the MAX II device family recommended operating conditions.

Table 5-2. MAX II Device Recommended Operating Conditions

Symbol	Parameter	Conditions	Minimum	Maximum	Unit
V _{CCINT} (1)	3.3-V supply voltage for internal logic and ISP	MAX II devices	3.00	3.60	V
	2.5-V supply voltage for internal logic and ISP	MAX II devices	2.375	2.625	V
	1.8-V supply voltage for internal logic and ISP	MAX IIG and MAX IIZ devices	1.71	1.89	V
V _{ccio} (1)	Supply voltage for I/O buffers, 3.3-V operation	_	3.00	3.60	V
	Supply voltage for I/O buffers, 2.5-V operation	_	2.375	2.625	V
	Supply voltage for I/O buffers, 1.8-V operation	_	1.71	1.89	V
	Supply voltage for I/O buffers, 1.5-V operation	_	1.425	1.575	V
V	Input voltage	(2), (3), (4)	-0.5	4.0	V
Vo	Output voltage	_	0	Vccio	V
TJ	Operating junction temperature	Commercial range	0	85	°C
		Industrial range	-40	100	°C
		Extended range (5)	-40	125	°C

Notes to Table 5-2:

(1) MAX II device in-system programming and/or user flash memory (UFM) programming via JTAG or logic array is not guaranteed outside the recommended operating conditions (for example, if brown-out occurs in the system during a potential write/program sequence to the UFM, users are recommended to read back UFM contents and verify against the intended write data).

(2) Minimum DC input is -0.5 V. During transitions, the inputs may undershoot to -2.0 V for input currents less than 100 mA and periods shorter than 20 ns.

(3) During transitions, the inputs may overshoot to the voltages shown in the following table based upon input duty cycle. The DC case is equivalent to 100% duty cycle. For more information about 5.0-V tolerance, refer to the Using MAX II Devices in Multi-Voltage Systems chapter in the MAX II Device Handbook.

- Max. Duty Cycle V_ℕ 4.0 V
- 100% (DC)
- 4.1 90%
- 4.2 50%
- 4.3 30%
- 17% 4.4
- 4.5 10%

(4) All pins, including clock, I/O, and JTAG pins, may be driven before V_{CCINT} and V_{CCIO} are powered.

(5) For the extended temperature range of 100 to 125° C, MAX II UFM programming (erase/write) is only supported via the JTAG interface. UFM programming via the logic array interface is not guaranteed in this range.

Output Drive Characteristics

Figure 5–1 shows the typical drive strength characteristics of MAX II devices.

Note to Figure 5–1:

(1) The DC output current per pin is subject to the absolute maximum rating of Table 5-1.

I/O Standard Specifications

Table 5–5 through Table 5–10 show the MAX II device family I/O standard specifications.

Table 5–5.	3.3-V LVTTL	Specifications
------------	-------------	----------------

Symbol	Parameter	Conditions	Minimum	Maximum	Unit
V _{CCIO}	I/O supply voltage	—	3.0	3.6	V
V _{IH}	High-level input voltage	_	1.7	4.0	V
VIL	Low-level input voltage	_	-0.5	0.8	V
V _{OH}	High-level output voltage	IOH = -4 mA (1)	2.4		V
V _{OL}	Low-level output voltage	IOL = 4 mA (1)		0.45	V

Table 5–6. 3.3-V LVCMOS Specifications (Part 1 of 2)

Symbol	Parameter	Conditions	Minimum	Maximum	Unit
V _{CCIO}	I/O supply voltage	—	3.0	3.6	V
V _{IH}	High-level input voltage		1.7	4.0	V
V _{IL}	Low-level input voltage		-0.5	0.8	V

Symbol	Parameter	Conditions	Minimum	Maximum	Unit
V _{OH}	High-level output voltage	$V_{ccio} = 3.0,$ IOH = -0.1 mA (1)	$V_{\text{ccio}} - 0.2$	—	V
V _{OL}	Low-level output voltage	V _{ccio} = 3.0, IOL = 0.1 mA <i>(1)</i>	_	0.2	V

Table 5-6. 3.3-V LVCMOS Specifications (Part 2 of 2)

Table 5-7. 2.5-V I/O Specifications

Symbol	Parameter	Conditions	Minimum	Maximum	Unit
V _{CCIO}	I/O supply voltage	—	2.375	2.625	V
VIH	High-level input voltage	—	1.7	4.0	V
VIL	Low-level input voltage		-0.5	0.7	V
V _{OH}	High-level output voltage	IOH = -0.1 mA (1)	2.1		V
		IOH = -1 mA (1)	2.0		V
		IOH = -2 mA (1)	1.7		V
V _{ol}	Low-level output voltage	IOL = 0.1 mA (1)		0.2	V
		IOL = 1 mA (1)		0.4	V
		IOL = 2 mA (1)	_	0.7	V

Table 5-8. 1.8-V I/O Specifications

Symbol	Parameter	Conditions	Minimum	Maximum	Unit
Vccio	I/O supply voltage	—	1.71	1.89	V
V _{IH}	High-level input voltage		$0.65 \times V_{\text{CCIO}}$	2.25 <i>(2)</i>	V
VIL	Low-level input voltage		-0.3	$0.35 \times V_{ccio}$	V
V _{OH}	High-level output voltage	IOH = -2 mA (1)	$V_{\text{ccio}} - 0.45$		V
V _{ol}	Low-level output voltage	IOL = 2 mA (1)		0.45	V

Table 5-9. 1.5-V I/O Specifications

Symbol	Parameter	Conditions	Minimum	Maximum	Unit
V _{ccio}	I/O supply voltage	_	1.425	1.575	V
VIH	High-level input voltage	_	$0.65 \times V_{ccio}$	V _{ccio} + 0.3 <i>(2)</i>	V
VIL	Low-level input voltage	—	-0.3	$0.35 \times V_{ccio}$	V
V _{OH}	High-level output voltage	IOH = -2 mA (1)	$0.75 \times V_{ccio}$		V
Vol	Low-level output voltage	IOL = 2 mA (1)		$0.25 \times V_{ccio}$	V

Notes to Table 5-5 through Table 5-9:

(1) This specification is supported across all the programmable drive strength settings available for this I/O standard, as shown in the MAX II Architecture chapter (I/O Structure section) in the MAX II Device Handbook.

(2) This maximum V_{IH} reflects the JEDEC specification. The MAX II input buffer can tolerate a V_{IH} maximum of 4.0, as specified by the V_{I} parameter in Table 5–2.

			MAX II / MAX IIG						MAX IIZ					
		-3 \$ Gi	Speed rade	-4 G	Speed rade	–5 S Gr	peed ade	-6 9 Gi	Speed rade	-7 G	Speed rade	8 Gi	Speed rade	
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
t _{fastio}	Data output delay from adjacent LE to I/O block	_	159	-	207	_	254		170		348	_	428	ps
t _{in}	I/O input pad and buffer delay	-	708	-	920	_	1,132	_	907	_	970	_	986	ps
t _{glob} (1)	I/O input pad and buffer delay used as global signal pin	_	1,519	_	1,974	_	2,430		2,261		2,670		3,322	ps
t _{ioe}	Internally generated output enable delay	_	354	-	374	_	460		530		966	_	1,410	ps
t _{DL}	Input routing delay	—	224	—	291	—	358	_	318		410	_	509	ps
t _{od} (2)	Output delay buffer and pad delay	-	1,064	-	1,383	_	1,702	—	1,319	_	1,526	—	1,543	ps
t _{xz} (3)	Output buffer disable delay	_	756		982		1,209		1,045	_	1,264	_	1,276	ps
t _{zx} (4)	Output buffer enable delay	_	1,003	_	1,303		1,604	_	1,160		1,325	_	1,353	ps

Table 5–16. IOE Internal Timing Microparameters

Notes to Table 5-16:

(1) Delay numbers for t_{GLOB} differ for each device density and speed grade. The delay numbers for t_{GLOB}, shown in Table 5–16, are based on an EPM240 device target.

(2) Refer to Table 5–32 and 5–24 for delay adders associated with different I/O standards, drive strengths, and slew rates.

(3) Refer to Table 5–19 and 5–14 for txz delay adders associated with different I/O standards, drive strengths, and slew rates.

(4) Refer to Table 5–17 and 5–13 for t_{zx} delay adders associated with different I/O standards, drive strengths, and slew rates.

Table 5–17 through Table 5–20 show the adder delays for t_{zx} and t_{xz} microparameters when using an I/O standard other than 3.3-V LVTTL with 16 mA drive strength.

 Table 5–17.
 t_{ZX} IOE Microparameter Adders for Fast Slew Rate
 (Part 1 of 2)

MAX II / MAX IIG							MAX IIZ							
	–3 Speed Grade		peed ade	–4 Speed Grade		-5 : G	–5 Speed Grade		–6 Speed Grade		–7 Speed Grade		–8 Speed Grade	
Standard	d	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
3.3-V LVTTL	16 mA	—	0	—	0	—	0	—	0	—	0	—	0	ps
	8 mA	_	28	_	37		45	—	72	—	71	_	74	ps
3.3-V LVCMOS	8 mA	—	0	—	0	_	0	_	0	—	0	_	0	ps
	4 mA	_	28	—	37		45	_	72	—	71	_	74	ps
2.5-V LVTTL /	14 mA	—	14	—	19	_	23	_	75	—	87	_	90	ps
LVCMOS	7 mA	_	314	—	409		503		162	—	174		177	ps
1.8-V LVTTL /	6 mA	_	450	_	585		720		279	_	289	_	291	ps
LVCMOS	3 mA	_	1,443	_	1,876	_	2,309	_	499	_	508	—	512	ps

			N	IAX II /	MAX II	G		MAX IIZ						
		–3 S Gr	-3 Speed -4 Speed -5 Speed Grade Grade Grade				–6 Speed –7 Speed Grade Grade				–8 Speed Grade			
Standard	I	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
3.3-V LVTTL	16 mA	—	206	—	-20		-247	—	1,433	_	1,446	—	1,454	ps
	8 mA	—	891	_	665	_	438	—	1,332	_	1,345	—	1,348	ps
3.3-V LVCMOS	8 mA	_	206	_	-20	_	-247	—	1,433		1,446	—	1,454	ps
	4 mA	—	891	_	665	_	438	—	1,332	_	1,345	_	1,348	ps
2.5-V LVTTL /	14 mA	—	222	_	-4		-231	—	213	_	208	—	213	ps
LVCMOS	7 mA	_	943	_	717	_	490	—	166		161	_	166	ps
3.3-V PCI	20 mA	_	161	_	210		258	—	1,332	_	1,345	_	1,348	ps

Table 5–20. t_{XZ} IOE Microparameter Adders for Slow Slew Rate

The default slew rate setting for MAX II devices in the Quartus II design software is "fast".

Table 5–21. UFM	1 Block Internal	Timing Microparam	neters (Part 1 of 3)
-----------------	------------------	-------------------	----------------------

		MAX II / MAX IIG			MAX IIZ									
		–3 Sp Gra	de de	–4 S Gra	peed ade	–5 Sj Gra	peed Ide	–6 S Gra	peed ide	–7 S Gra	peed ade	–8 S Gra	peed ade	
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
t _{aclk}	Address register clock period	100	_	100	-	100	_	100	_	100	_	100	_	ns
t _{asu}	Address register shift signal setup to address register clock	20	_	20	_	20	-	20	_	20	_	20		ns
t _{AH}	Address register shift signal hold to address register clock	20	_	20	_	20	-	20	_	20	_	20		ns
t _{ADS}	Address register data in setup to address register clock	20	_	20	_	20	-	20	_	20	_	20		ns
t _{adh}	Address register data in hold from address register clock	20	_	20	—	20	-	20	_	20	_	20		ns
t _{dclk}	Data register clock period	100	-	100	-	100	-	100	_	100	—	100	_	ns
t _{DSS}	Data register shift signal setup to data register clock	60	_	60	_	60	-	60	_	60	_	60	_	ns
t _{dsh}	Data register shift signal hold from data register clock	20	-	20	_	20	-	20	—	20	—	20	_	ns

Table 5–26 shows the external I/O timing parameters for EPM2210 devices.

			MAX II / MAX IIG						
			–3 Spee	–3 Speed Grade		–4 Speed Grade		–5 Speed Grade	
Symbol	Parameter	Condition	Min	Max	Min	Max	Min	Max	Unit
t _{PD1}	Worst case pin-to-pin delay through 1 look-up table (LUT)	10 pF		7.0		9.1		11.2	ns
t _{PD2}	Best case pin-to-pin delay through 1 LUT	10 pF	_	3.7		4.8	_	5.9	ns
t _{su}	Global clock setup time	—	1.2		1.5		1.9	—	ns
t _H	Global clock hold time	—	0	—	0		0	—	ns
t _{co}	Global clock to output delay	10 pF	2.0	4.6	2.0	6.0	2.0	7.4	ns
t _{ch}	Global clock high time	—	166	_	216	—	266	—	ps
t _{cL}	Global clock low time	—	166	—	216	—	266	—	ps
t _{cnt}	Minimum global clock period for 16-bit counter	_	3.3	_	4.0		5.0	_	ns
f _{cnt}	Maximum global clock frequency for 16-bit counter	_	_	304.0 <i>(1)</i>	_	247.5	_	201.1	MHz

Table 5-26.	FPM2210	Global Clock	External I/O	Timina	Parameters
				rinning	

Note to Table 5-26:

(1) The maximum frequency is limited by the I/O standard on the clock input pin. The 16-bit counter critical delay performs faster than this global clock input pin maximum frequency.

External Timing I/O Delay Adders

The I/O delay timing parameters for I/O standard input and output adders, and input delays are specified by speed grade independent of device density.

Table 5–27 through Table 5–31 show the adder delays associated with I/O pins for all packages. The delay numbers for –3, –4, and –5 speed grades shown in Table 5–27 through Table 5–33 are based on an EPM1270 device target, while –6, –7, and –8 speed grade values are based on an EPM570Z device target. If an I/O standard other than 3.3-V LVTTL is selected, add the input delay adder to the external t_{su} timing parameters shown in Table 5–23 through Table 5–26. If an I/O standard other than 3.3-V LVTTL with 16 mA drive strength and fast slew rate is selected, add the output delay adder to the external t_{co} and t_{PD} shown in Table 5–23 through Table 5–26.

Table 5–27. External Timing Input	ut Delay Adders	(Part 1	of 2)
-----------------------------------	-----------------	---------	-------

			N	MAX II / MAX IIG				MAX IIZ						
		–3 S Gr	-3 Speed -4 Speed Grade Grade		–5 Speed –6 S Grade Gra		-6 Speed -7 Spe Grade Grade		peed ade	–8 Speed Grade				
I/O Standard		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
3.3-V LVTTL	Without Schmitt Trigger	—	0	—	0	—	0	—	0	—	0	—	0	ps
	With Schmitt Trigger	-	334	-	434	_	535	—	387	_	434	_	442	ps

	MAXI			G			
I/O Stand	lard	–3 Speed Grade	–4 Speed Grade	–5 Speed Grade	–6 Speed Grade	–7 Speed Grade	–8 Speed Grade
3.3-V LVTTL	304	304	304	304	304	304	MHz
3.3-V LVCMOS	304	304	304	304	304	304	MHz
2.5-V LVTTL	220	220	220	220	220	220	MHz
2.5-V LVCMOS	220	220	220	220	220	220	MHz
1.8-V LVTTL	200	200	200	200	200	200	MHz
1.8-V LVCMOS	200	200	200	200	200	200	MHz
1.5-V LVCMOS	150	150	150	150	150	150	MHz
3.3-V PCI	304	304	304	304	304	304	MHz

	Table 5–33.	MAX II	Maximum	Output	Clock	Rate	for	I/0
--	-------------	--------	---------	--------	-------	------	-----	-----

JTAG Timing Specifications

Figure 5–6 shows the timing waveforms for the JTAG signals.

Table 5-34 shows the JTAG Timing parameters and values for MAX II devices.

Table 5-34. MAX II JTAG Timing Parameters (Part 1 of 2)

Symbol	Parameter	Min	Max	Unit
t _{JCP} (1)	TCK clock period for $V_{\mbox{\tiny CCI01}}$ = 3.3 V	55.5		ns
	TCK clock period for $V_{ccio1} = 2.5 V$	62.5		ns
	TCK clock period for $V_{CCIO1} = 1.8 V$	100		ns
	TCK clock period for $V_{\text{ccio1}} = 1.5 \text{ V}$	143		ns
t _{JCH}	TCK clock high time	20	_	ns
t _{JCL}	TCK clock low time	20	_	ns

Date and Revision	Changes Made	Summary of Changes
June 2005,	 Updated the R_{PULLUP} parameter in Table 5-4. 	—
version 1.3	Added Note 2 to Tables 5-8 and 5-9.	
	 Updated Table 5-13. 	
	 Added "Output Drive Characteristics" section. 	
	Added I ² C mode and Notes 5 and 6 to Table 5-14.	
	 Updated timing values to Tables 5-14 through 5-33. 	
December 2004,	Updated timing Tables 5-2, 5-4, 5-12, and Tables 15-14 through 5-34.	—
version 1.2	■ Table 5-31 is new.	
June 2004, version 1.1	 Updated timing Tables 5-15 through 5-32. 	_

Table 5-35.	Docume	nt Revision	History	(Part 2 of 2)

6. Reference and Ordering Information

MII51006-1.6

Software

MAX® II devices are supported by the Altera® Quartus® II design software with new, optional MAX+PLUS[®] II look and feel, which provides HDL and schematic design entry, compilation and logic synthesis, full simulation and advanced timing analysis, and device programming. Refer to the Design Software Selector Guide for more details about the Quartus II software features.

The Quartus II software supports the Windows XP/2000/NT, Sun Solaris, Linux Red Hat v8.0, and HP-UX operating systems. It also supports seamless integration with industry-leading EDA tools through the NativeLink interface.

Device Pin-Outs

Printed device pin-outs for MAX II devices are available on the Altera website (www.altera.com).

Ordering Information

Figure 6–1 describes the ordering codes for MAX II devices. For more information about a specific package, refer to the Package Information chapter in the MAX II Device Handbook.

T: Thin quad flat pack (TQFP)

F. FineLine BGA M: Micro FineLine BGA

Number of pins for a particular package

Pin Count