E·XFL

Altera - EPM570ZM100C6N Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - CPLDs (Complex</u> <u>Programmable Logic Devices)</u>

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixedfunction ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details

Product Status	Active
Programmable Type	In System Programmable
Delay Time tpd(1) Max	9 ns
Voltage Supply - Internal	1.71V ~ 1.89V
Number of Logic Elements/Blocks	570
Number of Macrocells	440
Number of Gates	-
Number of I/O	76
Operating Temperature	0°C ~ 85°C (TJ)
Mounting Type	Surface Mount
Package / Case	100-TFBGA
Supplier Device Package	100-MBGA (6x6)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=epm570zm100c6n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

MAX II devices are available in space-saving FineLine BGA, Micro FineLine BGA, and thin quad flat pack (TQFP) packages (refer to Table 1–3 and Table 1–4). MAX II devices support vertical migration within the same package (for example, you can migrate between the EPM570, EPM1270, and EPM2210 devices in the 256-pin FineLine BGA package). Vertical migration means that you can migrate to devices whose dedicated pins and JTAG pins are the same and power pins are subsets or supersets for a given package across device densities. The largest density in any package has the highest number of power pins; you must lay out for the largest planned density in a package to provide the necessary power pins for migration. For I/O pin migration across densities, cross reference the available I/O pins using the device pin-outs for all planned densities of a given package type to identify which I/O pins can be migrated. The Quartus® II software can automatically cross-reference and place all pins for you when given a device migration list.

 Table 1–3.
 MAX II Packages and User I/O Pins

Device	68-Pin Micro FineLine BGA <i>(1)</i>	100-Pin Micro FineLine BGA <i>(1)</i>	100-Pin FineLine BGA	100-Pin TQFP	144-Pin TQFP	144-Pin Micro FineLine BGA <i>(1)</i>	256-Pin Micro FineLine BGA <i>(1)</i>	256-Pin FineLine BGA	324-Pin FineLine BGA
EPM240	—	80	80	80	—	_	_	—	_
EPM240G									
EPM570	—	76	76	76	116	_	160	160	
EPM570G									
EPM1270	—	_	—	—	116	_	212	212	_
EPM1270G									
EPM2210	—	—	—	—	—	—	—	204	272
EPM2210G									
EPM240Z	54	80	_	_	—	_	_	—	
EPM570Z	—	76	—	_	—	116	160	_	_

Note to Table 1-3:

(1) Packages available in lead-free versions only.

Table 1-4. MAX II TQFP, FineLine BGA, and Micro FineLine BGA Package Sizes

Package	68-Pin Micro FineLine BGA	100-Pin Micro FineLine BGA	100-Pin FineLine BGA	100-Pin TQFP	144-Pin TQFP	144-Pin Micro FineLine BGA	256-Pin Micro FineLine BGA	256-Pin FineLine BGA	324-Pin FineLine BGA
Pitch (mm)	0.5	0.5	1	0.5	0.5	0.5	0.5	1	1
Area (mm2)	25	36	121	256	484	49	121	289	361
Length × width (mm × mm)	5 × 5	6 × 6	11 × 11	16 × 16	22 × 22	7×7	11 × 11	17 × 17	19 × 19

Table 1–6. Document Revision History

Date and Revision	Changes Made	Summary of Changes
June 2005, version 1.3	Updated timing numbers in Table 1-1.	_
December 2004, version 1.2	Updated timing numbers in Table 1-1.	_
June 2004, version 1.1	 Updated timing numbers in Table 1-1. 	

Figure 2-6. MAX II LE

Each LE's programmable register can be configured for D, T, JK, or SR operation. Each register has data, true asynchronous load data, clock, clock enable, clear, and asynchronous load/preset inputs. Global signals, general-purpose I/O pins, or any LE can drive the register's clock and clear control signals. Either general-purpose I/O pins or LEs can drive the clock enable, preset, asynchronous load, and asynchronous data. The asynchronous load data input comes from the data3 input of the LE. For combinational functions, the LUT output bypasses the register and drives directly to the LE outputs.

Each LE has three outputs that drive the local, row, and column routing resources. The LUT or register output can drive these three outputs independently. Two LE outputs drive column or row and DirectLink routing connections and one drives local interconnect resources. This allows the LUT to drive one output while the register drives another output. This register packing feature improves device utilization because the device can use the register and the LUT for unrelated functions. Another special packing mode allows the register output to feed back into the LUT of the same LE so that the register is packed with its own fan-out LUT. This provides another mechanism for improved fitting. The LE can also drive out registered and unregistered versions of the LUT output.

Normal Mode

The normal mode is suitable for general logic applications and combinational functions. In normal mode, four data inputs from the LAB local interconnect are inputs to a four-input LUT (see Figure 2–7). The Quartus II Compiler automatically selects the carry-in or the data3 signal as one of the inputs to the LUT. Each LE can use LUT chain connections to drive its combinational output directly to the next LE in the LAB. Asynchronous load data for the register comes from the data3 input of the LE. LEs in normal mode support packed registers.

Note to Figure 2-7:

(1) This signal is only allowed in normal mode if the LE is at the end of an adder/subtractor chain.

Dynamic Arithmetic Mode

The dynamic arithmetic mode is ideal for implementing adders, counters, accumulators, wide parity functions, and comparators. An LE in dynamic arithmetic mode uses four 2-input LUTs configurable as a dynamic adder/subtractor. The first two 2-input LUTs compute two summations based on a possible carry-in of 1 or 0; the other two LUTs generate carry outputs for the two chains of the carry-select circuitry. As shown in Figure 2–8, the LAB carry-in signal selects either the carry-in0 or carry-in1 chain. The selected chain's logic level in turn determines which parallel sum is generated as a combinational or registered output. For example, when implementing an adder, the sum output is the selection of two possible calculated sums:

```
data1 + data2 + carry in0
or
data1 + data2 + carry-in1
```

The speed advantage of the carry-select chain is in the parallel precomputation of carry chains. Since the LAB carry-in selects the precomputed carry chain, not every LE is in the critical path. Only the propagation delays between LAB carry-in generation (LE 5 and LE 10) are now part of the critical path. This feature allows the MAX II architecture to implement high-speed counters, adders, multipliers, parity functions, and comparators of arbitrary width.

Figure 2–9 shows the carry-select circuitry in an LAB for a 10-bit full adder. One portion of the LUT generates the sum of two bits using the input signals and the appropriate carry-in bit; the sum is routed to the output of the LE. The register can be bypassed for simple adders or used for accumulator functions. Another portion of the LUT generates carry-out bits. An LAB-wide carry-in bit selects which chain is used for the addition of given inputs. The carry-in signal for each chain, carry-in0 or carry-in1, selects the carry-out to carry forward to the carry-in signal of the next-higher-order bit. The final carry-out signal is routed to an LE, where it is fed to local, row, or column interconnects.

The R4 interconnects span four LABs and are used for fast row connections in a four-LAB region. Every LAB has its own set of R4 interconnects to drive either left or right. Figure 2–10 shows R4 interconnect connections from an LAB. R4 interconnects can drive and be driven by row IOEs. For LAB interfacing, a primary LAB or horizontal LAB neighbor can drive a given R4 interconnect. For R4 interconnects that drive to the right, the primary LAB and right neighbor can drive on to the interconnect. For R4 interconnects that drive to the left, the primary LAB and its left neighbor can drive on to the interconnect. R4 interconnects can drive other R4 interconnects to extend the range of LABs they can drive. R4 interconnects can also drive C4 interconnects for connections from one row to another.

Figure 2–10. R4 Interconnect Connections

Notes to Figure 2–10:

- (1) C4 interconnects can drive R4 interconnects.
- (2) This pattern is repeated for every LAB in the LAB row.

The column interconnect operates similarly to the row interconnect. Each column of LABs is served by a dedicated column interconnect, which vertically routes signals to and from LABs and row and column IOEs. These column resources include:

- LUT chain interconnects within an LAB
- Register chain interconnects within an LAB
- C4 interconnects traversing a distance of four LABs in an up and down direction

MAX II devices include an enhanced interconnect structure within LABs for routing LE output to LE input connections faster using LUT chain connections and register chain connections. The LUT chain connection allows the combinational output of an LE to directly drive the fast input of the LE right below it, bypassing the local interconnect. These resources can be used as a high-speed connection for wide fan-in

functions from LE 1 to LE 10 in the same LAB. The register chain connection allows the register output of one LE to connect directly to the register input of the next LE in the LAB for fast shift registers. The Quartus II Compiler automatically takes advantage of these resources to improve utilization and performance. Figure 2–11 shows the LUT chain and register chain interconnects.

The C4 interconnects span four LABs up or down from a source LAB. Every LAB has its own set of C4 interconnects to drive either up or down. Figure 2–12 shows the C4 interconnect connections from an LAB in a column. The C4 interconnects can drive and be driven by column and row IOEs. For LAB interconnection, a primary LAB or its vertical LAB neighbor can drive a given C4 interconnect. C4 interconnects can drive each other to extend their range as well as drive row interconnects for column to-column connections.

The UFM block communicates with the logic array similar to LAB-to-LAB interfaces. The UFM block connects to row and column interconnects and has local interconnect regions driven by row and column interconnects. This block also has DirectLink interconnects for fast connections to and from a neighboring LAB. For more information about the UFM interface to the logic array, see "User Flash Memory Block" on page 2–18.

Table 2–2 shows the MAX II device routing scheme.

Table 2–2. MAX II Device Routing Scheme

	Destination										
Source	LUT Chain	Register Chain	Local (1)	DirectLink <i>(1)</i>	R4 <i>(1)</i>	C4 (1)	LE	UFM Block	Column IOE	Row IOE	Fast I/0 <i>(1)</i>
LUT Chain	-		-	—			~			—	
Register Chain	_	—	_	—			\checkmark	—		_	_
Local Interconnect	-		-	_		—	\checkmark	~	~	~	_
DirectLink Interconnect	_		\checkmark	_				_		_	_
R4 Interconnect	_	—	\checkmark	—	~	~	_	—	_	—	—
C4 Interconnect	-	—	\checkmark	—	\checkmark	~		—	_	—	—
LE	\checkmark	\checkmark	\checkmark	\checkmark	~	~		—	~	\checkmark	\checkmark
UFM Block	_	—	\checkmark	\checkmark	\checkmark	~		—	—	—	—
Column IOE	_	—	_	—	—	\checkmark	—	—	—	—	—
Row IOE	-	—	-	\checkmark	\checkmark	\checkmark	—	—	_	—	—

Note to Table 2-2:

(1) These categories are interconnects.

Global Signals

Each MAX II device has four dual-purpose dedicated clock pins (GCLK[3..0], two pins on the left side and two pins on the right side) that drive the global clock network for clocking, as shown in Figure 2–13. These four pins can also be used as general-purpose I/O if they are not used to drive the global clock network.

The four global clock lines in the global clock network drive throughout the entire device. The global clock network can provide clocks for all resources within the device including LEs, LAB local interconnect, IOEs, and the UFM block. The global clock lines can also be used for global control signals, such as clock enables, synchronous or asynchronous clears, presets, output enables, or protocol control signals such as TRDY and IRDY for PCI. Internal logic can drive the global clock network for internally-generated global clocks and control signals. Figure 2–13 shows the various sources that drive the global clock network.

Figure 2–16. EPM240 UFM Block LAB Row Interface (Note 1)

Note to Figure 2–16:

(1) The UFM block inputs and outputs can drive to/from all types of interconnects, not only DirectLink interconnects from adjacent row LABs.

2–30	

I/O Standard	IOH/IOL Current Strength Setting (mA)
3.3-V LVTTL	16
	8
3.3-V LVCMOS	8
	4
2.5-V LVTTL/LVCMOS	14
	7
1.8-V LVTTL/LVCMOS	6
	3
1.5-V LVCMOS	4
	2

Table 2-6.	Programmable Dri	ve Strength	(Note 1)
------------	------------------	-------------	---------	---

Note to Table 2-6:

(1) The I_{0H} current strength numbers shown are for a condition of a V_{0UT} = V_{0H} minimum, where the V_{0H} minimum is specified by the I/O standard. The I_{0L} current strength numbers shown are for a condition of a V_{0UT} = V_{0L} maximum, where the V_{0L} maximum is specified by the I/O standard. For 2.5-V LVTTL/LVCMOS, the I_{0H} condition is V_{0UT} = 1.7 V and the I_{0L} condition is V_{0UT} = 0.7 V.

Slew-Rate Control

The output buffer for each MAX II device I/O pin has a programmable output slewrate control that can be configured for low noise or high-speed performance. A faster slew rate provides high-speed transitions for high-performance systems. However, these fast transitions may introduce noise transients into the system. A slow slew rate reduces system noise, but adds a nominal output delay to rising and falling edges. The lower the voltage standard (for example, 1.8-V LVTTL) the larger the output delay when slow slew is enabled. Each I/O pin has an individual slew-rate control, allowing the designer to specify the slew rate on a pin-by-pin basis. The slew-rate control affects both the rising and falling edges.

Open-Drain Output

MAX II devices provide an optional open-drain (equivalent to open-collector) output for each I/O pin. This open-drain output enables the device to provide system-level control signals (for example, interrupt and write enable signals) that can be asserted by any of several devices. This output can also provide an additional wired-OR plane.

Programmable Ground Pins

Each unused I/O pin on MAX II devices can be used as an additional ground pin. This programmable ground feature does not require the use of the associated LEs in the device. In the Quartus II software, unused pins can be set as programmable GND on a global default basis or they can be individually assigned. Unused pins also have the option of being set as tri-stated input pins.

4. Hot Socketing and Power-On Reset in MAX II Devices

MII51004-2.1

Introduction

MAX[®] II devices offer hot socketing, also known as hot plug-in or hot swap, and power sequencing support. Designers can insert or remove a MAX II board in a system during operation without undesirable effects to the system bus. The hot socketing feature removes some of the difficulties designers face when using components on printed circuit boards (PCBs) that contain a mixture of 3.3-, 2.5-, 1.8-, and 1.5-V devices.

The MAX II device hot socketing feature provides:

- Board or device insertion and removal
- Support for any power-up sequence
- Non-intrusive I/O buffers to system buses during hot insertion

This chapter contains the following sections:

- "MAX II Hot-Socketing Specifications" on page 4–1
- "Power-On Reset Circuitry" on page 4–5

MAX II Hot-Socketing Specifications

MAX II devices offer all three of the features required for the hot-socketing capability listed above without any external components or special design requirements. The following are hot-socketing specifications:

- The device can be driven before and during power-up or power-down without any damage to the device itself.
- I/O pins remain tri-stated during power-up. The device does not drive out before or during power-up, thereby affecting other buses in operation.
- Signal pins do not drive the V_{CCIO} or V_{CCINT} power supplies. External input signals to device I/O pins do not power the device V_{CCIO} or V_{CCINT} power supplies via internal paths. This is true if the V_{CCINT} and the V_{CCIO} supplies are held at GND.

Devices Can Be Driven before Power-Up

Signals can be driven into the MAX II device I/O pins and GCLK[3..0] pins before or during power-up or power-down without damaging the device. MAX II devices support any power-up or power-down sequence (V_{CCIO1} , V_{CCIO2} , V_{CCIO3} , V_{CCIO4} , V_{CCINT}), simplifying the system-level design.

Recommended Operating Conditions

Table 5–2 shows the MAX II device family recommended operating conditions.

Table 5-2. MAX II Device Recommended Operating Conditions

Symbol	Parameter	Conditions	Minimum	Maximum	Unit
V _{CCINT} (1)	3.3-V supply voltage for internal logic and ISP	MAX II devices	3.00	3.60	V
	2.5-V supply voltage for internal logic and ISP	MAX II devices	2.375	2.625	V
	1.8-V supply voltage for internal logic and ISP	MAX IIG and MAX IIZ devices	1.71	1.89	V
V _{ccio} (1)	Supply voltage for I/O buffers, 3.3-V operation	_	3.00	3.60	V
	Supply voltage for I/O buffers, 2.5-V operation	_	2.375	2.625	V
	Supply voltage for I/O buffers, 1.8-V operation	_	1.71	1.89	V
	Supply voltage for I/O buffers, 1.5-V operation	_	1.425	1.575	V
V	Input voltage	(2), (3), (4)	-0.5	4.0	V
Vo	Output voltage	_	0	Vccio	V
TJ	Operating junction temperature	Commercial range	0	85	°C
		Industrial range	-40	100	°C
		Extended range (5)	-40	125	°C

Notes to Table 5-2:

(1) MAX II device in-system programming and/or user flash memory (UFM) programming via JTAG or logic array is not guaranteed outside the recommended operating conditions (for example, if brown-out occurs in the system during a potential write/program sequence to the UFM, users are recommended to read back UFM contents and verify against the intended write data).

(2) Minimum DC input is -0.5 V. During transitions, the inputs may undershoot to -2.0 V for input currents less than 100 mA and periods shorter than 20 ns.

(3) During transitions, the inputs may overshoot to the voltages shown in the following table based upon input duty cycle. The DC case is equivalent to 100% duty cycle. For more information about 5.0-V tolerance, refer to the Using MAX II Devices in Multi-Voltage Systems chapter in the MAX II Device Handbook.

- V_ℕ 4.0 V Max. Duty Cycle
- 100% (DC)
- 4.1 90%
- 4.2 50%
- 4.3 30%
- 17% 4.4
- 4.5 10%

(4) All pins, including clock, I/O, and JTAG pins, may be driven before V_{CCINT} and V_{CCIO} are powered.

(5) For the extended temperature range of 100 to 125° C, MAX II UFM programming (erase/write) is only supported via the JTAG interface. UFM programming via the logic array interface is not guaranteed in this range.

Programming/Erasure Specifications

Table 5–3 shows the MAX II device family programming/erasure specifications.

Table 5-3. MAX II Device Programming/Erasure Specifications

Parameter	Minimum	Typical	Maximum	Unit
Erase and reprogram cycles	—	_	100 (1)	Cycles

Note to Table 5-3:

(1) This specification applies to the UFM and configuration flash memory (CFM) blocks.

DC Electrical Characteristics

Table 5-4 shows the MAX II device family DC electrical characteristics.

 Table 5-4.
 MAX II Device DC Electrical Characteristics (Note 1) (Part 1 of 2)

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit
I,	Input pin leakage current	$V_1 = V_{CC10}$ max to 0 V (2)	-10		10	μA
I _{oz}	Tri-stated I/O pin leakage current	$V_0 = V_{CCI0}$ max to 0 V (2)	-10		10	μA
I _{CCSTANDBY}	V _{CCINT} supply current	MAX II devices	_	12	_	mA
	(standby) <i>(3)</i>	MAX IIG devices	_	2	_	mA
		EPM240Z (Commercial grade) <i>(4)</i>	-	25	90	μA
		EPM240Z (Industrial grade) <i>(5)</i>	_	25	139	μA
		EPM570Z (Commercial grade) <i>(4)</i>	-	27	96	μA
		EPM570Z (Industrial grade) <i>(5)</i>	_	27	152	μA
V _{SCHMITT} <i>(6)</i>	Hysteresis for Schmitt	$V_{cci0} = 3.3 V$	_	400	_	mV
	trigger input (7)	$V_{ccio} = 2.5 V$	_	190	_	mV
ICCPOWERUP	V _{CCINT} supply current	MAX II devices	_	55	_	mA
	during power-up <i>(8)</i>	MAX IIG and MAX IIZ devices	-	40		mA
R _{PULLUP}	Value of I/O pin pull-up	$V_{ccio} = 3.3 V (9)$	5	_	25	kΩ
	resistor during user	$V_{ccio} = 2.5 V (9)$	10	_	40	kΩ
	programming	$V_{ccio} = 1.8 V (9)$	25	—	60	kΩ
	programming	$V_{ccio} = 1.5 V (9)$	45	_	95	kΩ

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit
I _{PULLUP}	I/O pin pull-up resistor current when I/O is unprogrammed	_	_	_	300	μA
C ₁₀	Input capacitance for user I/O pin	—	_	_	8	pF
C _{gclk}	Input capacitance for dual-purpose GCLK/user I/O pin	_			8	pF

 Table 5-4.
 MAX II Device DC Electrical Characteristics (Note 1) (Part 2 of 2)

Notes to Table 5-4:

- (1) Typical values are for $T_A = 25^{\circ}$ C, $V_{CCINT} = 3.3$ or 2.5 V, and $V_{CCIO} = 1.5$ V, 1.8 V, 2.5 V, or 3.3 V.
- (2) This value is specified for normal device operation. The value may vary during power-up. This applies for all V_{ccio} settings (3.3, 2.5, 1.8, and 1.5 V).
- (3) V_1 = ground, no load, no toggling inputs.
- (4) Commercial temperature ranges from 0°C to 85°C with maximum current at 85°C.
- (5) Industrial temperature ranges from -40°C to 100°C with maximum current at 100°C.
- (6) This value applies to commercial and industrial range devices. For extended temperature range devices, the V_{SCHMITT} typical value is 300 mV for V_{CCI0} = 3.3 V and 120 mV for V_{CCI0} = 2.5 V.
- (7) The TCK input is susceptible to high pulse glitches when the input signal fall time is greater than 200 ns for all I/O standards.
- (8) This is a peak current value with a maximum duration of t_{CONFIG} time.
- (9) Pin pull-up resistance values will lower if an external source drives the pin higher than V_{CCIO}.

5–6	

Symbol	Parameter	Conditions	Minimum	Maximum	Unit
V _{OH}	High-level output voltage	$V_{ccio} = 3.0,$ IOH = -0.1 mA (1)	$V_{\text{ccio}} - 0.2$	—	V
V _{OL}	Low-level output voltage	$V_{ccio} = 3.0,$ IOL = 0.1 mA (1)	_	0.2	V

Table 5-6. 3.3-V LVCMOS Specifications (Part 2 of 2)

Table 5-7. 2.5-V I/O Specifications

Symbol	Parameter	Conditions	Minimum	Maximum	Unit
V _{CCIO}	I/O supply voltage	—	2.375	2.625	V
VIH	High-level input voltage	—	1.7	4.0	V
VIL	Low-level input voltage	_	-0.5	0.7	V
V _{OH}	High-level output voltage	IOH = -0.1 mA (1)	2.1		V
		IOH = -1 mA (1)	2.0	_	V
		IOH = -2 mA (1)	1.7	—	V
Vol	Low-level output voltage	IOL = 0.1 mA (1)		0.2	V
		IOL = 1 mA (1)		0.4	V
		IOL = 2 mA (1)		0.7	V

Table 5-8. 1.8-V I/O Specifications

Symbol	Parameter	Conditions	Minimum	Maximum	Unit
V _{ccio}	I/O supply voltage	—	1.71	1.89	V
V _{IH}	High-level input voltage		$0.65 \times V_{cc10}$	2.25 <i>(2)</i>	V
VIL	Low-level input voltage		-0.3	$0.35 \times V_{ccio}$	V
V _{OH}	High-level output voltage	IOH = -2 mA (1)	$V_{\text{ccio}} - 0.45$		V
VOL	Low-level output voltage	IOL = 2 mA (1)		0.45	V

Table 5-9. 1.5-V I/O Specifications

Symbol	Parameter	Conditions	Minimum	Maximum	Unit
V _{ccio}	I/O supply voltage	—	1.425	1.575	V
VIH	High-level input voltage		$0.65 \times V_{ccio}$	V _{ccio} + 0.3 <i>(2)</i>	V
VIL	Low-level input voltage		-0.3	$0.35 \times V_{ccio}$	V
V _{OH}	High-level output voltage	IOH = -2 mA (1)	$0.75 \times V_{ccio}$		V
VOL	Low-level output voltage	IOL = 2 mA <i>(1)</i>	—	$0.25 \times V_{ccio}$	V

Notes to Table 5–5 through Table 5–9:

(1) This specification is supported across all the programmable drive strength settings available for this I/O standard, as shown in the MAX II Architecture chapter (I/O Structure section) in the MAX II Device Handbook.

(2) This maximum V_{IH} reflects the JEDEC specification. The MAX II input buffer can tolerate a V_{IH} maximum of 4.0, as specified by the V_{I} parameter in Table 5–2.

Figure 5-2. MAX II Device Timing Model

The timing characteristics of any signal path can be derived from the timing model and parameters of a particular device. External timing parameters, which represent pin-to-pin timing delays, can be calculated as the sum of internal parameters.

•••

Refer to the *Understanding Timing in MAX II Devices* chapter in the *MAX II Device Handbook* for more information.

This section describes and specifies the performance, internal, external, and UFM timing specifications. All specifications are representative of the worst-case supply voltage and junction temperature conditions.

Preliminary and Final Timing

Timing models can have either preliminary or final status. The Quartus II software issues an informational message during the design compilation if the timing models are preliminary. Table 5–13 shows the status of the MAX II device timing models.

Preliminary status means the timing model is subject to change. Initially, timing numbers are created using simulation results, process data, and other known parameters. These tests are used to make the preliminary numbers as close to the actual timing parameters as possible.

Final timing numbers are based on actual device operation and testing. These numbers reflect the actual performance of the device under the worst-case voltage and junction temperature conditions.

Device	Preliminary	Final
EPM240	—	\checkmark
EPM240Z (1)	—	\checkmark
EPM570		\checkmark
EPM570Z (1)		\checkmark

Table 5-13. MAX II Device Timing Model Status (Part 1 of 2)

Internal Timing Parameters

Internal timing parameters are specified on a speed grade basis independent of device density. Table 5–15 through Table 5–22 describe the MAX II device internal timing microparameters for logic elements (LEs), input/output elements (IOEs), UFM blocks, and MultiTrack interconnects. The timing values for –3, –4, and –5 speed grades shown in Table 5–15 through Table 5–22 are based on an EPM1270 device target, while –6, –7, and –8 speed grade values are based on an EPM570Z device target.

•••

• For more explanations and descriptions about each internal timing microparameters symbol, refer to the *Understanding Timing in MAX II Devices* chapter in the *MAX II Device Handbook*.

Table 5–15. LE Internal Timing Microparameters

				MAX II	/ MAX I	IG				M	X IIZ			
		–3 S Gra	peed ade	–4 Speed Grade		–5 Speed Grade		–6 Speed Grade		–7 Speed Grade		-8 Speed Grade		
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
t _{lut}	LE combinational LUT delay	_	571	-	742	_	914	-	1,215		2,247	_	2,247	ps
t _{сомв}	Combinational path delay	-	147	-	192	_	236	-	243	—	305	—	309	ps
t _{clr}	LE register clear delay	238	_	309	—	381	_	401	—	541	_	545		ps
t _{PRE}	LE register preset delay	238	_	309	—	381	_	401	—	541	_	545		ps
t _{su}	LE register setup time before clock	208	_	271	—	333	_	260	—	319	_	321		ps
t _H	LE register hold time after clock	0	-	0	_	0	_	0	_	0		0		ps
t _{co}	LE register clock- to-output delay	-	235	-	305	_	376	-	380	—	489	_	494	ps
t _{clkhl}	Minimum clock high or low time	166	-	216	—	266	_	253	—	335		339	_	ps
t _c	Register control delay	—	857	—	1,114	_	1,372	—	1,356		1,722	_	1,741	ps

			Γ	MAX II ,	/ Max II	G		MAX IIZ						
		–3 S Gr	peed ade	–4 9 Gr	Speed ade	-5 : G	Speed rade	–6 S Gr	peed ade	–7 S Gr	peed ade	–8 Speed Grade		
Standar	d	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	ax Min Max		Unit
1.5-V LVCMOS	4 mA	—	1,118	—	1,454	—	1,789	—	580		588	—	588	ps
	2 mA	—	2,410	_	3,133	_	3,856	_	915	_	923	—	923	ps
3.3-V PCI	20 mA	—	19	_	25	_	31	_	72	_	71	_	74	ps

 Table 5–17.
 t_{ZX} IOE Microparameter Adders for Fast Slew Rate
 (Part 2 of 2)

Table 5–18.	 t_{ZX} IOE Microparameter Adders for Slow Slew Ra 	ite
-------------	---	-----

			ľ	II XAN	/ MAX IIG			MAX IIZ							
		–3 Speed Grade		–3 Speed –4 Speed Grade Grade		–5 Speed Grade		–6 Speed Grade		–7 Speed Grade		–8 Speed Grade			
Standard		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit	
3.3-V LVTTL	16 mA		6,350	—	6,050	—	5,749	—	5,951	—	5,952	—	6,063	ps	
	8 mA		9,383	—	9,083		8,782	—	6,534	—	6,533	—	6,662	ps	
3.3-V LVCMOS	8 mA	_	6,350	—	6,050	—	5,749	—	5,951	_	5,952	—	6,063	ps	
	4 mA	_	9,383	—	9,083	_	8,782	_	6,534	—	6,533	—	6,662	ps	
2.5-V LVTTL /	14 mA	_	10,412	—	10,112	—	9,811	—	9,110	—	9,105	—	9,237	ps	
LVCMOS	7 mA	_	13,613	—	13,313	_	13,012	—	9,830	—	9,835	—	9,977	ps	
3.3-V PCI	20 mA	_	-75	_	-97	_	-120	_	6,534	_	6,533	-	6,662	ps	

Table 5–19. t_{XZ} IOE Microparameter Adders for Fast Slew Rate

			Ν	/AX II /	MAX II	G								
		–3 S Gra	peed ade	–4 S Gr	Speed ade	-5 S Gr	Speed ade	leed –6 Speed de Grade		–7 Speed Grade		–8 Speed Grade		
Standard		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
3.3-V LVTTL	16 mA	—	0	—	0	—	0	_	0	—	0	—	0	ps
	8 mA	—	-56	—	-72	—	-89		-69	_	-69	_	-69	ps
3.3-V LVCMOS	8 mA	_	0	—	0	—	0	_	0	_	0	_	0	ps
	4 mA	—	-56	—	-72	—	-89	_	-69	_	-69	_	-69	ps
2.5-V LVTTL /	14 mA	—	-3	—	-4	—	-5	_	-7	_	-11	_	-11	ps
LVCMOS	7 mA	—	-47	—	-61	—	-75	_	-66	—	-70	—	-70	ps
1.8-V LVTTL /	6 mA	—	119	—	155	—	191	_	45	_	34	_	37	ps
LVCMOS	3 mA	—	207	—	269	—	331	_	34	—	22	—	25	ps
1.5-V LVCMOS	4 mA	—	606	—	788	—	970	_	166	—	154	—	155	ps
	2 mA	—	673	—	875	—	1,077	_	190	_	177	_	179	ps
3.3-V PCI	20 mA	_	71	_	93	_	114	_	-69	_	-69	_	-69	ps

			Μ	AX II /	MAX IIG	i				MA	X IIZ			
		–3 S Gr	peed ade	d –4 Speed –5 Speed Grade Grade		Speed ade	–6 Speed Grade		–7 S Gr	peed ade	–8 Speed Grade			
I/O Standard		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
3.3-V LVTTL	16 mA	—	0	—	0	_	0		0	_	0	_	0	ps
	8 mA	—	65	—	84	—	104	_	-6	—	-2	—	-3	ps
3.3-V LVCMOS	8 mA	—	0	_	0	—	0	_	0	_	0	—	0	ps
	4 mA	_	65	_	84	—	104		-6		-2		-3	ps
2.5-V LVTTL /	14 mA	—	122	—	158	—	195	_	-63	—	-71	—	-88	ps
LVCMOS	7 mA	—	193	_	251	—	309	_	10	_	-1	_	1	ps
1.8-V LVTTL /	6 mA	—	568	—	738	—	909	_	128	_	118	_	118	ps
LVCMOS	3 mA	—	654	—	850	—	1,046	_	352	—	327	—	332	ps
1.5-V LVCMOS	4 mA	—	1,059	_	1,376	—	1,694	_	421	_	400	_	400	ps
	2 mA	—	1,167	—	1,517	_	1,867	—	757	_	743	—	743	ps
3.3-V PCI	20 mA	—	3	—	4	—	5		-6	—	-2		-3	ps

Table 5–29. External Timing Output Delay and $t_{\mbox{\tiny OD}}$ Adders for Fast Slew Rate

		MAX II / MAX IIG						MAX IIZ						
		–3 Speed Grade		-4 Speed Grade		–5 Speed Grade		–6 Speed Grade		–7 Speed Grade		–8 Speed Grade		
I/O Standard		Min	Max	Unit										
3.3-V LVTTL	16 mA	—	7,064		6,745	—	6,426	_	5,966	—	5,992	—	6,118	ps
	8 mA	_	7,946		7,627		7,308	_	6,541	—	6,570	_	6,720	ps
3.3-V LVCMOS	8 mA	—	7,064		6,745		6,426	_	5,966	—	5,992	—	6,118	ps
	4 mA	—	7,946		7,627		7,308	_	6,541	—	6,570	—	6,720	ps
2.5-V LVTTL / LVCMOS	14 mA	—	10,434		10,115		9,796	_	9,141	—	9,154	—	9,297	ps
	7 mA	—	11,548		11,229		10,910	_	9,861	—	9,874	—	10,037	ps
1.8-V LVTTL / LVCMOS	6 mA	—	22,927		22,608		22,289	_	21,811	—	21,854	—	21,857	ps
	3 mA	—	24,731		24,412		24,093	_	23,081	—	23,034	—	23,107	ps
1.5-V LVCMOS	4 mA	—	38,723		38,404		38,085	_	39,121	—	39,124	—	39,124	ps
	2 mA	—	41,330		41,011		40,692	_	40,631	—	40,634	—	40,634	ps
3.3-V PCI	20 mA	—	261		339	_	418	_	6,644	-	6,627	—	6,914	ps

Referenced Documents

This chapter references the following document:

■ *Package Information* chapter in the MAX II Device Handbook

Document Revision History

Table 6–1 shows the revision history for this chapter.

Date and Revision	Changes Made	Summary of Changes
August 2009, version 1.6	■ Updated Figure 6–1.	Added information for speed grade –8
October 2008, version 1.5	 Updated New Document Format. 	_
December 2007,	 Added "Referenced Documents" section. 	Updated document with
version 1.4	■ Updated Figure 6–1.	MAX IIZ information.
December 2006, version 1.3	 Added document revision history. 	_
October 2006, version 1.2	■ Updated Figure 6-1.	_
June 2005, version 1.1	 Removed Dual Marking section. 	

 Table 6–1.
 Document Revision History