
Intel - EPM570ZM100C7N Datasheet

Welcome to E-XFL.COM

Understanding Embedded - CPLDs (Complex
Programmable Logic Devices)

Embedded - CPLDs, or Complex Programmable Logic
Devices, are highly versatile digital logic devices used in
electronic systems. These programmable components are
designed to perform complex logical operations and can
be customized for specific applications. Unlike fixed-
function ICs, CPLDs offer the flexibility to reprogram their
configuration, making them an ideal choice for various
embedded systems. They consist of a set of logic gates and
programmable interconnects, allowing designers to
implement complex logic circuits without needing custom
hardware.

Applications of Embedded - CPLDs

The applications of Embedded - CPLDs span a wide range
of industries due to their flexibility and reprogrammability.
They are commonly used in telecommunications for signal
processing and in consumer electronics for managing
device interfaces. In industrial automation, CPLDs are
employed to control machinery and manage real-time
processes. They are also found in automotive systems,
enabling advanced features like driver assistance and
infotainment control. Additionally, CPLDs are crucial in
aerospace and defense applications, where they provide
the reliability and adaptability needed for mission-critical
systems.

Common Subcategories of Embedded -
CPLDs

Within the category of Embedded - CPLDs, there are
several common subcategories based on functionality and
application requirements. General-purpose CPLDs are
widely used for a variety of logic functions. High-density
CPLDs are designed to handle more complex logic
operations and larger designs, offering greater flexibility.
Low-power CPLDs are optimized for applications where
energy efficiency is critical, such as portable devices and
battery-operated systems. There are also automotive-
grade CPLDs, which are specifically designed to meet the
stringent requirements of automotive electronics,
providing robustness and reliability in harsh environments.

Types of Embedded - CPLDs

Embedded - CPLDs can be categorized into different types
based on their architecture and capabilities. Some CPLDs
are based on EEPROM technology, allowing for easy
reprogramming and data retention without power. Flash-
based CPLDs offer faster programming times and are
suitable for applications requiring frequent updates. SRAM-
based CPLDs provide high-speed operation and are ideal
for performance-critical applications. Each type of CPLD
offers unique advantages, making it important to select the
right type based on the specific needs of the project.

Considerations for Purchasing Embedded -

Details

Product Status Active

Programmable Type In System Programmable

Delay Time tpd(1) Max 9 ns

Voltage Supply - Internal 1.71V ~ 1.89V

Number of Logic Elements/Blocks 570

Number of Macrocells 440

Number of Gates -

Number of I/O 76

Operating Temperature 0°C ~ 85°C (TJ)

Mounting Type Surface Mount

Package / Case 100-TFBGA

Supplier Device Package 100-MBGA (6x6)

Purchase URL https://www.e-xfl.com/product-detail/intel/epm570zm100c7n

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/epm570zm100c7n-4479847
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-cplds-complex-programmable-logic-devices


Chapter 1: Introduction 1–3
Features
MAX II devices are available in space-saving FineLine BGA, Micro FineLine BGA, 
and thin quad flat pack (TQFP) packages (refer to Table 1–3 and Table 1–4). MAX II 
devices support vertical migration within the same package (for example, you can 
migrate between the EPM570, EPM1270, and EPM2210 devices in the 256-pin 
FineLine BGA package). Vertical migration means that you can migrate to devices 
whose dedicated pins and JTAG pins are the same and power pins are subsets or 
supersets for a given package across device densities. The largest density in any 
package has the highest number of power pins; you must lay out for the largest 
planned density in a package to provide the necessary power pins for migration. For 
I/O pin migration across densities, cross reference the available I/O pins using the 
device pin-outs for all planned densities of a given package type to identify which 
I/O pins can be migrated. The Quartus® II software can automatically cross-reference 
and place all pins for you when given a device migration list.

 

Table 1–3. MAX II Packages and User I/O Pins

Device

68-Pin 
Micro 

FineLine 
BGA (1)

100-Pin 
Micro 

FineLine 
BGA (1)

100-Pin 
FineLine 

BGA
100-Pin 

TQFP
144-Pin 

TQFP

144-Pin 
Micro 

FineLine 
BGA (1)

256-Pin 
Micro 

FineLine 
BGA (1)

256-Pin 
FineLine 

BGA

324-Pin 
FineLine 

BGA

EPM240

EPM240G

— 80 80 80 — — — — —

EPM570

EPM570G

— 76 76 76 116 — 160 160 —

EPM1270

EPM1270G

— — — — 116 — 212 212 —

EPM2210

EPM2210G

— — — — — — — 204 272

EPM240Z 54 80 — — — — — — —

EPM570Z — 76 — — — 116 160 — —

Note to Table 1–3:

(1) Packages available in lead-free versions only.

Table 1–4. MAX II TQFP, FineLine BGA, and Micro FineLine BGA Package Sizes

Package

68-Pin 
Micro 

FineLine 
BGA

100-Pin 
Micro 

FineLine 
BGA

100-Pin 
FineLine 

BGA
100-Pin 

TQFP
144-Pin 

TQFP

144-Pin 
Micro 

FineLine 
BGA

256-Pin 
Micro 

FineLine 
BGA

256-Pin 
FineLine 

BGA

324-Pin 
FineLine 

BGA

Pitch (mm) 0.5 0.5 1 0.5 0.5 0.5 0.5 1 1

Area (mm2) 25 36 121 256 484 49 121 289 361

Length × width
(mm × mm)

5 × 5 6 × 6 11 × 11 16 × 16 22 × 22 7 × 7 11 × 11 17 × 17 19 × 19
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2–4 Chapter 2: MAX II Architecture
Logic Array Blocks
Logic Array Blocks
Each LAB consists of 10 LEs, LE carry chains, LAB control signals, a local interconnect, 
a look-up table (LUT) chain, and register chain connection lines. There are 26 possible 
unique inputs into an LAB, with an additional 10 local feedback input lines fed by LE 
outputs in the same LAB. The local interconnect transfers signals between LEs in the 
same LAB. LUT chain connections transfer the output of one LE’s LUT to the adjacent 
LE for fast sequential LUT connections within the same LAB. Register chain 
connections transfer the output of one LE’s register to the adjacent LE’s register 
within an LAB. The Quartus® II software places associated logic within an LAB or 
adjacent LABs, allowing the use of local, LUT chain, and register chain connections 
for performance and area efficiency. Figure 2–3 shows the MAX II LAB.

LAB Interconnects
The LAB local interconnect can drive LEs within the same LAB. The LAB local 
interconnect is driven by column and row interconnects and LE outputs within the 
same LAB. Neighboring LABs, from the left and right, can also drive an LAB’s local 
interconnect through the DirectLink connection. The DirectLink connection feature 
minimizes the use of row and column interconnects, providing higher performance 
and flexibility. Each LE can drive 30 other LEs through fast local and DirectLink 
interconnects. Figure 2–4 shows the DirectLink connection.

Figure 2–3. MAX II LAB Structure

Note to Figure 2–3:
(1) Only from LABs adjacent to IOEs.
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Chapter 2: MAX II Architecture 2–7
Logic Elements
Each LE’s programmable register can be configured for D, T, JK, or SR operation. Each 
register has data, true asynchronous load data, clock, clock enable, clear, and 
asynchronous load/preset inputs. Global signals, general-purpose I/O pins, or any 
LE can drive the register’s clock and clear control signals. Either general-purpose I/O 
pins or LEs can drive the clock enable, preset, asynchronous load, and asynchronous 
data. The asynchronous load data input comes from the data3 input of the LE. For 
combinational functions, the LUT output bypasses the register and drives directly to 
the LE outputs.

Each LE has three outputs that drive the local, row, and column routing resources. The 
LUT or register output can drive these three outputs independently. Two LE outputs 
drive column or row and DirectLink routing connections and one drives local 
interconnect resources. This allows the LUT to drive one output while the register 
drives another output. This register packing feature improves device utilization 
because the device can use the register and the LUT for unrelated functions. Another 
special packing mode allows the register output to feed back into the LUT of the same 
LE so that the register is packed with its own fan-out LUT. This provides another 
mechanism for improved fitting. The LE can also drive out registered and 
unregistered versions of the LUT output.

Figure 2–6. MAX II LE
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2–10 Chapter 2: MAX II Architecture
Logic Elements
The other two LUTs use the data1 and data2 signals to generate two possible carry-out 
signals: one for a carry of 1 and the other for a carry of 0. The carry-in0 signal acts 
as the carry-select for the carry-out0 output and carry-in1 acts as the carry-
select for the carry-out1 output. LEs in arithmetic mode can drive out registered 
and unregistered versions of the LUT output.

The dynamic arithmetic mode also offers clock enable, counter enable, synchronous 
up/down control, synchronous clear, synchronous load, and dynamic 
adder/subtractor options. The LAB local interconnect data inputs generate the 
counter enable and synchronous up/down control signals. The synchronous clear 
and synchronous load options are LAB-wide signals that affect all registers in the 
LAB. The Quartus II software automatically places any registers that are not used by 
the counter into other LABs. The addnsub LAB-wide signal controls whether the LE 
acts as an adder or subtractor.

Carry-Select Chain
The carry-select chain provides a very fast carry-select function between LEs in 
dynamic arithmetic mode. The carry-select chain uses the redundant carry calculation 
to increase the speed of carry functions. The LE is configured to calculate outputs for a 
possible carry-in of 0 and carry-in of 1 in parallel. The carry-in0 and carry-in1 
signals from a lower-order bit feed forward into the higher-order bit via the parallel 
carry chain and feed into both the LUT and the next portion of the carry chain. Carry-
select chains can begin in any LE within an LAB. 

Figure 2–8. LE in Dynamic Arithmetic Mode

Note to Figure 2–8:

(1) The addnsub signal is tied to the carry input for the first LE of a carry chain only.
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2–12 Chapter 2: MAX II Architecture
MultiTrack Interconnect
The Quartus II software automatically creates carry chain logic during design 
processing, or you can create it manually during design entry. Parameterized 
functions such as LPM functions automatically take advantage of carry chains for the 
appropriate functions. The Quartus II software creates carry chains longer than 10 LEs 
by linking adjacent LABs within the same row together automatically. A carry chain 
can extend horizontally up to one full LAB row, but does not extend between LAB 
rows.

Clear and Preset Logic Control
LAB-wide signals control the logic for the register ’s clear and preset signals. The LE 
directly supports an asynchronous clear and preset function. The register preset is 
achieved through the asynchronous load of a logic high. MAX II devices support 
simultaneous preset/asynchronous load and clear signals. An asynchronous clear 
signal takes precedence if both signals are asserted simultaneously. Each LAB 
supports up to two clears and one preset signal.

In addition to the clear and preset ports, MAX II devices provide a chip-wide reset pin 
(DEV_CLRn) that resets all registers in the device. An option set before compilation in 
the Quartus II software controls this pin. This chip-wide reset overrides all other 
control signals and uses its own dedicated routing resources (that is, it does not use 
any of the four global resources). Driving this signal low before or during power-up 
prevents user mode from releasing clears within the design. This allows you to control 
when clear is released on a device that has just been powered-up. If not set for its chip-
wide reset function, the DEV_CLRn pin is a regular I/O pin.

By default, all registers in MAX II devices are set to power-up low. However, this 
power-up state can be set to high on individual registers during design entry using 
the Quartus II software.

MultiTrack Interconnect
In the MAX II architecture, connections between LEs, the UFM, and device I/O pins 
are provided by the MultiTrack interconnect structure. The MultiTrack interconnect 
consists of continuous, performance-optimized routing lines used for inter- and intra-
design block connectivity. The Quartus II Compiler automatically places critical 
design paths on faster interconnects to improve design performance.

The MultiTrack interconnect consists of row and column interconnects that span fixed 
distances. A routing structure with fixed length resources for all devices allows 
predictable and short delays between logic levels instead of large delays associated 
with global or long routing lines. Dedicated row interconnects route signals to and 
from LABs within the same row. These row resources include:

■ DirectLink interconnects between LABs 

■ R4 interconnects traversing four LABs to the right or left

The DirectLink interconnect allows an LAB to drive into the local interconnect of its 
left and right neighbors. The DirectLink interconnect provides fast communication 
between adjacent LABs and/or blocks without using row interconnect resources.
MAX II Device Handbook © October 2008 Altera Corporation
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Global Signals

 

The UFM block communicates with the logic array similar to LAB-to-LAB interfaces. 
The UFM block connects to row and column interconnects and has local interconnect 
regions driven by row and column interconnects. This block also has DirectLink 
interconnects for fast connections to and from a neighboring LAB. For more 
information about the UFM interface to the logic array, see “User Flash Memory 
Block” on page 2–18.

Table 2–2 shows the MAX II device routing scheme.

Global Signals
Each MAX II device has four dual-purpose dedicated clock pins (GCLK[3..0], two 
pins on the left side and two pins on the right side) that drive the global clock network 
for clocking, as shown in Figure 2–13. These four pins can also be used as general-
purpose I/O if they are not used to drive the global clock network. 

The four global clock lines in the global clock network drive throughout the entire 
device. The global clock network can provide clocks for all resources within the 
device including LEs, LAB local interconnect, IOEs, and the UFM block. The global 
clock lines can also be used for global control signals, such as clock enables, 
synchronous or asynchronous clears, presets, output enables, or protocol control 
signals such as TRDY and IRDY for PCI. Internal logic can drive the global clock 
network for internally-generated global clocks and control signals. Figure 2–13 shows 
the various sources that drive the global clock network.

Table 2–2. MAX II Device Routing Scheme

Source

Destination

LUT 
Chain

Register 
Chain

Local 
(1)

DirectLink 
(1) R4 (1) C4 (1) LE

UFM 
Block

Column 
IOE

Row 
IOE

Fast I/O
(1)

LUT Chain — — — — — — v — — — —

Register Chain — — — — — — v — — — —

Local 
Interconnect

— — — — — — v v v v —

DirectLink 
Interconnect

— — v — — — — — — — —

R4 Interconnect — — v — v v — — — — —

C4 Interconnect — — v — v v — — — — —

LE v v v v v v — — v v v
UFM Block — — v v v v — — — — —

Column IOE — — — — — v — — — — —

Row IOE — — — v v v — — — — —

Note to Table 2–2:

(1) These categories are interconnects.
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Chapter 2: MAX II Architecture 2–17
Global Signals
The global clock network drives to individual LAB column signals, LAB column 
clocks [3..0], that span an entire LAB column from the top to the bottom of the device. 
Unused global clocks or control signals in a LAB column are turned off at the LAB 
column clock buffers shown in Figure 2–14. The LAB column clocks [3..0] are 
multiplexed down to two LAB clock signals and one LAB clear signal. Other control 
signal types route from the global clock network into the LAB local interconnect. See 
“LAB Control Signals” on page 2–5 for more information.

Figure 2–13. Global Clock Generation

Note to Figure 2–13:
(1) Any I/O pin can use a MultiTrack interconnect to route as a logic array-generated global clock signal.
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I/O Structure
I/O Structure
IOEs support many features, including:

■ LVTTL and LVCMOS I/O standards

■ 3.3-V, 32-bit, 66-MHz PCI compliance

■ Joint Test Action Group (JTAG) boundary-scan test (BST) support

■ Programmable drive strength control

■ Weak pull-up resistors during power-up and in system programming

■ Slew-rate control

■ Tri-state buffers with individual output enable control

■ Bus-hold circuitry

■ Programmable pull-up resistors in user mode

■ Unique output enable per pin

■ Open-drain outputs

■ Schmitt trigger inputs

■ Fast I/O connection

■ Programmable input delay

MAX II device IOEs contain a bidirectional I/O buffer. Figure 2–19 shows the MAX II 
IOE structure. Registers from adjacent LABs can drive to or be driven from the IOE’s 
bidirectional I/O buffers. The Quartus II software automatically attempts to place 
registers in the adjacent LAB with fast I/O connection to achieve the fastest possible 
clock-to-output and registered output enable timing. For input registers, the 
Quartus II software automatically routes the register to guarantee zero hold time.   
You can set timing assignments in the Quartus II software to achieve desired I/O 
timing. 

Fast I/O Connection
A dedicated fast I/O connection from the adjacent LAB to the IOEs within an I/O 
block provides faster output delays for clock-to-output and tPD propagation delays. 
This connection exists for data output signals, not output enable signals or input 
signals. Figure 2–20, Figure 2–21, and Figure 2–22 illustrate the fast I/O connection.
© October 2008 Altera Corporation MAX II Device Handbook
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I/O Structure
I/O Blocks
The IOEs are located in I/O blocks around the periphery of the MAX II device. There 
are up to seven IOEs per row I/O block (5 maximum in the EPM240 device) and up to 
four IOEs per column I/O block. Each column or row I/O block interfaces with its 
adjacent LAB and MultiTrack interconnect to distribute signals throughout the device. 
The row I/O blocks drive row, column, or DirectLink interconnects. The column I/O 
blocks drive column interconnects. 

Figure 2–19. MAX II IOE Structure

Note to Figure 2–19:
(1) Available in EPM1270 and EPM2210 devices only.
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MII51003-1.6
3. JTAG and In-System Programmability
Introduction
This chapter discusses how to use the IEEE Standard 1149.1 Boundary-Scan Test (BST) 
circuitry in MAX II devices and includes the following sections:

■ “IEEE Std. 1149.1 (JTAG) Boundary-Scan Support” on page 3–1

■ “In System Programmability” on page 3–4

IEEE Std. 1149.1 (JTAG) Boundary-Scan Support
All MAX® II devices provide Joint Test Action Group (JTAG) boundary-scan test (BST) 
circuitry that complies with the IEEE Std. 1149.1-2001 specification. JTAG boundary-
scan testing can only be performed at any time after VCCINT and all VCCIO banks have 
been fully powered and a tCONFIG amount of time has passed. MAX II devices can also 
use the JTAG port for in-system programming together with either the Quartus® II 
software or hardware using Programming Object Files (.pof), JamTM Standard Test 
and Programming Language (STAPL) Files (.jam), or Jam Byte-Code Files (.jbc).

The JTAG pins support 1.5-V, 1.8-V, 2.5-V, or 3.3-V I/O standards. The supported 
voltage level and standard are determined by the VCCIO of the bank where it resides. 
The dedicated JTAG pins reside in Bank 1 of all MAX II devices.

MAX II devices support the JTAG instructions shown in Table 3–1. 

Table 3–1. MAX II JTAG Instructions (Part 1 of 2)

JTAG Instruction Instruction Code Description

SAMPLE/PRELOAD 00 0000 0101 Allows a snapshot of signals at the device pins to be captured and 
examined during normal device operation, and permits an initial data 
pattern to be output at the device pins.

EXTEST (1) 00 0000 1111 Allows the external circuitry and board-level interconnects to be 
tested by forcing a test pattern at the output pins and capturing test 
results at the input pins.

BYPASS 11 1111 1111 Places the 1-bit bypass register between the TDI and TDO pins, 
which allows the BST data to pass synchronously through selected 
devices to adjacent devices during normal device operation.

USERCODE 00 0000 0111 Selects the 32-bit USERCODE register and places it between the 
TDI and TDO pins, allowing the USERCODE to be serially shifted 
out of TDO. This register defaults to all 1’s if not specified in the 
Quartus II software.

IDCODE 00 0000 0110 Selects the IDCODE register and places it between TDI and TDO, 
allowing the IDCODE to be serially shifted out of TDO.

HIGHZ (1) 00 0000 1011 Places the 1-bit bypass register between the TDI and TDO pins, 
which allows the boundary scan test data to pass synchronously 
through selected devices to adjacent devices during normal device 
operation, while tri-stating all of the I/O pins.
MAX II Device Handbook
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3–2 Chapter 3: JTAG and In-System Programmability
IEEE Std. 1149.1 (JTAG) Boundary-Scan Support
w Unsupported JTAG instructions should not be issued to the MAX II device as this may 
put the device into an unknown state, requiring a power cycle to recover device 
operation.

The MAX II device instruction register length is 10 bits and the USERCODE register 
length is 32 bits. Table 3–2 and Table 3–3 show the boundary-scan register length and 
device IDCODE information for MAX II devices. 

CLAMP (1) 00 0000 1010 Places the 1-bit bypass register between the TDI and TDO pins, 
which allows the boundary scan test data to pass synchronously 
through selected devices to adjacent devices during normal device 
operation, while holding I/O pins to a state defined by the data in the 
boundary-scan register.

USER0 00 0000 1100 This instruction allows you to define the scan chain between TDI 
and TDO in the MAX II logic array. This instruction is also used for 
custom logic and JTAG interfaces.

USER1 00 0000 1110 This instruction allows you to define the scan chain between TDI 
and TDO in the MAX II logic array. This instruction is also used for 
custom logic and JTAG interfaces.

IEEE 1532 
instructions

(2) IEEE 1532 ISC instructions used when programming a MAX II device 
via the JTAG port.

Notes to Table 3–1:

(1) HIGHZ, CLAMP, and EXTEST instructions do not disable weak pull-up resistors or bus hold features.
(2) These instructions are shown in the 1532 BSDL files, which will be posted on the Altera® website at www.altera.com when they are available.

Table 3–1. MAX II JTAG Instructions (Part 2 of 2)

JTAG Instruction Instruction Code Description

Table 3–2. MAX II Boundary-Scan Register Length

Device Boundary-Scan Register Length

EPM240 240

EPM570 480

EPM1270 636

EPM2210 816

Table 3–3. 32-Bit MAX II Device IDCODE (Part 1 of 2)

Device

Binary IDCODE (32 Bits) (1)

HEX IDCODE
Version 
(4 Bits) Part Number

Manufacturer 
Identity (11 Bits)

LSB 
(1 Bit) (2)

EPM240

EPM240G

0000 0010 0000 1010 0001 000 0110 1110 1 0x020A10DD

EPM570

EPM570G

0000 0010 0000 1010 0010 000 0110 1110 1 0x020A20DD

EPM1270

EPM1270G

0000 0010 0000 1010 0011 000 0110 1110 1 0x020A30DD

EPM2210

EPM2210G

0000 0010 0000 1010 0100 000 0110 1110 1 0x020A40DD
MAX II Device Handbook © October 2008 Altera Corporation
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Chapter 3: JTAG and In-System Programmability 3–5
In System Programmability
IEEE 1532 Support
The JTAG circuitry and ISP instruction set in MAX II devices is compliant to the IEEE 
1532-2002 programming specification. This provides industry-standard hardware and 
software for in-system programming among multiple vendor programmable logic 
devices (PLDs) in a JTAG chain.   

The MAX II 1532 BSDL files will be released on the Altera website when available.

Jam Standard Test and Programming Language (STAPL)
The Jam STAPL JEDEC standard, JESD71, can be used to program MAX II devices 
with in-circuit testers, PCs, or embedded processors. The Jam byte code is also 
supported for MAX II devices. These software programming protocols provide a 
compact embedded solution for programming MAX II devices.

f For more information, refer to the Using Jam STAPL for ISP via an Embedded Processor 
chapter in the MAX II Device Handbook.

Programming Sequence
During in-system programming, 1532 instructions, addresses, and data are shifted 
into the MAX II device through the TDI input pin. Data is shifted out through the TDO 
output pin and compared against the expected data. Programming a pattern into the 
device requires the following six ISP steps. A stand-alone verification of a 
programmed pattern involves only stages 1, 2, 5, and 6. These steps are automatically 
executed by third-party programmers, the Quartus II software, or the Jam STAPL and 
Jam Byte-Code Players.   

1. Enter ISP—The enter ISP stage ensures that the I/O pins transition smoothly from 
user mode to ISP mode.

2. Check ID—Before any program or verify process, the silicon ID is checked. The 
time required to read this silicon ID is relatively small compared to the overall 
programming time.

3. Sector Erase—Erasing the device in-system involves shifting in the instruction to 
erase the device and applying an erase pulse(s). The erase pulse is automatically 
generated internally by waiting in the run/test/idle state for the specified erase 
pulse time of 500 ms for the CFM block and 500 ms for each sector of the UFM 
block.

4. Program—Programming the device in-system involves shifting in the address, 
data, and program instruction and generating the program pulse to program the 
flash cells. The program pulse is automatically generated internally by waiting in 
the run/test/idle state for the specified program pulse time of 75 µs. This process 
is repeated for each address in the CFM and UFM blocks.

5. Verify—Verifying a MAX II device in-system involves shifting in addresses, 
applying the verify instruction to generate the read pulse, and shifting out the data 
for comparison. This process is repeated for each CFM and UFM address.

6. Exit ISP—An exit ISP stage ensures that the I/O pins transition smoothly from ISP 
mode to user mode. 
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Referenced Documents
Real-Time ISP
For systems that require more than DC logic level control of I/O pins, the real-time 
ISP feature allows you to update the CFM block with a new design image while the 
current design continues to operate in the SRAM logic array and I/O pins. A new 
programming file is updated into the MAX II device without halting the original 
design’s operation, saving down-time costs for remote or field upgrades. The updated 
CFM block configures the new design into the SRAM upon the next power cycle. It is 
also possible to execute an immediate configuration of the SRAM without a power 
cycle by using a specific sequence of ISP commands. The configuration of SRAM 
without a power cycle takes a specific amount of time (tCONFIG). During this time, the 
I/O pins are tri-stated and weakly pulled-up to VCCIO.

Design Security
All MAX II devices contain a programmable security bit that controls access to the 
data programmed into the CFM block. When this bit is programmed, design 
programming information, stored in the CFM block, cannot be copied or retrieved. 
This feature provides a high level of design security because programmed data within 
flash memory cells is invisible. The security bit that controls this function, as well as 
all other programmed data, is reset only when the device is erased. The SRAM is also 
invisible and cannot be accessed regardless of the security bit setting. The UFM block 
data is not protected by the security bit and is accessible through JTAG or logic array 
connections.

Programming with External Hardware
MAX II devices can be programmed by downloading the information via in-circuit 
testers, embedded processors, the Altera® ByteblasterMV™, MasterBlaster™, 
ByteBlaster™ II, and USB-Blaster cables. 

BP Microsystems, System General, and other programming hardware manufacturers 
provide programming support for Altera devices. Check their websites for device 
support information.

Referenced Documents
This chapter references the following documents:

■ DC and Switching Characteristics chapter in the MAX II Device Handbook

■ IEEE 1149.1 (JTAG) Boundary-Scan Testing for MAX II Devices chapter in the MAX II 
Device Handbook

■ Real-Time ISP and ISP Clamp for MAX II Devices chapter in the MAX II Device 
Handbook

■ Using Jam STAPL for ISP via an Embedded Processor chapter in the MAX II Device 
Handbook
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Chapter 5: DC and Switching Characteristics 5–3
Operating Conditions
Programming/Erasure Specifications
Table 5–3 shows the MAX II device family programming/erasure specifications. 

DC Electrical Characteristics
Table 5–4 shows the MAX II device family DC electrical characteristics. 

Table 5–3. MAX II Device Programming/Erasure Specifications 

Parameter Minimum Typical Maximum Unit

Erase and reprogram cycles — — 100 (1) Cycles

Note to Table 5–3:

(1) This specification applies to the UFM and configuration flash memory (CFM) blocks. 

Table 5–4. MAX II Device DC Electrical Characteristics (Note 1) (Part 1 of 2)

Symbol Parameter Conditions Minimum Typical Maximum Unit

II Input pin leakage 
current

VI = VCCIOmax to 0 V (2) –10 — 10  µA

IOZ Tri-stated I/O pin 
leakage current

VO = VCCIOmax to 0 V (2) –10 — 10  µA

ICCSTANDBY VCCINT supply current 
(standby) (3)

MAX II devices — 12 — mA

MAX IIG devices — 2 — mA

EPM240Z (Commercial 
grade) (4)

— 25 90 µA

EPM240Z (Industrial 
grade) (5)

— 25 139 µA

EPM570Z (Commercial 
grade) (4)

— 27 96 µA

EPM570Z (Industrial 
grade) (5)

— 27 152 µA

VSCHMITT (6) Hysteresis for Schmitt 
trigger input (7)

VCCIO = 3.3 V — 400 — mV

VCCIO = 2.5 V — 190 — mV

ICCPOWERUP VCCINT supply current 
during power-up (8)

MAX II devices — 55 — mA

MAX IIG and MAX IIZ 
devices

— 40 — mA

RPULLUP Value of I/O pin pull-up 
resistor during user 
mode and in-system 
programming

VCCIO = 3.3 V (9) 5 — 25 k

VCCIO = 2.5 V (9) 10 — 40 k

VCCIO = 1.8 V (9) 25 — 60 k

VCCIO = 1.5 V (9) 45 — 95 k
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Chapter 5: DC and Switching Characteristics 5–5
Operating Conditions
Output Drive Characteristics
Figure 5–1 shows the typical drive strength characteristics of MAX II devices.

I/O Standard Specifications
Table 5–5 through Table 5–10 show the MAX II device family I/O standard 
specifications. 

Figure 5–1. Output Drive Characteristics of MAX II Devices

Note to Figure 5–1:
(1) The DC output current per pin is subject to the absolute maximum rating of Table 5–1.
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(Minimum Drive Strength)
MAX II Output Drive IOL Characteristics

Table 5–5. 3.3-V LVTTL Specifications

Symbol Parameter Conditions Minimum Maximum Unit

VCCIO I/O supply voltage — 3.0 3.6 V

VIH High-level input voltage — 1.7 4.0 V

VIL Low-level input voltage — –0.5 0.8 V

VOH High-level output voltage IOH = –4 mA (1) 2.4 — V

VOL Low-level output voltage IOL = 4 mA (1) — 0.45 V

Table 5–6. 3.3-V LVCMOS Specifications (Part 1 of 2)

Symbol Parameter Conditions Minimum Maximum Unit

VCCIO I/O supply voltage — 3.0 3.6 V

VIH High-level input voltage — 1.7 4.0 V

VIL Low-level input voltage — –0.5 0.8 V
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Chapter 5: DC and Switching Characteristics 5–9
Timing Model and Specifications
The timing characteristics of any signal path can be derived from the timing model 
and parameters of a particular device. External timing parameters, which represent 
pin-to-pin timing delays, can be calculated as the sum of internal parameters.

f Refer to the Understanding Timing in MAX II Devices chapter in the MAX II Device 
Handbook for more information. 

This section describes and specifies the performance, internal, external, and UFM 
timing specifications. All specifications are representative of the worst-case supply 
voltage and junction temperature conditions.

Preliminary and Final Timing
Timing models can have either preliminary or final status. The Quartus II software 
issues an informational message during the design compilation if the timing models 
are preliminary. Table 5–13 shows the status of the MAX II device timing models.

Preliminary status means the timing model is subject to change. Initially, timing 
numbers are created using simulation results, process data, and other known 
parameters. These tests are used to make the preliminary numbers as close to the 
actual timing parameters as possible.

Final timing numbers are based on actual device operation and testing. These 
numbers reflect the actual performance of the device under the worst-case voltage 
and junction temperature conditions.

Figure 5–2. MAX II Device Timing Model

I/O PinI/O Input Delay
tIN

INPUT

Global Input Delay

t
C4

tR4

Output
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tZXt LO
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tPRE
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Data-In/LUT Chain

Data-Out
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Output and Output Enable 
Data Delay

tIOE

tCOMB

Combinational Path Delay

Table 5–13. MAX II Device Timing Model Status (Part 1 of 2)

Device Preliminary Final

EPM240 — v
EPM240Z (1) — v
EPM570 — v
EPM570Z (1) — v
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Timing Model and Specifications
1.5-V LVCMOS 4 mA  — 1,118  — 1,454  — 1,789  — 580  — 588  — 588 ps

2 mA  — 2,410  — 3,133  — 3,856  — 915  — 923  — 923 ps

3.3-V PCI 20 mA  — 19  — 25  — 31  — 72  — 71  — 74 ps

Table 5–18. tZX IOE Microparameter Adders for Slow Slew Rate

Standard

MAX II / MAX IIG MAX IIZ

Unit

–3 Speed 
Grade

–4 Speed 
Grade

–5 Speed 
Grade

–6 Speed 
Grade

–7 Speed 
Grade

–8 Speed 
Grade

Min Max Min Max Min Max Min Max Min Max Min Max

3.3-V LVTTL 16 mA  — 6,350  — 6,050  — 5,749  — 5,951  — 5,952  — 6,063 ps

8 mA  — 9,383  — 9,083  — 8,782  — 6,534  — 6,533  — 6,662 ps

3.3-V LVCMOS 8 mA  — 6,350  — 6,050  — 5,749  — 5,951  — 5,952  — 6,063 ps

4 mA  — 9,383  — 9,083  — 8,782  — 6,534  — 6,533  — 6,662 ps

2.5-V LVTTL / 
LVCMOS

14 mA  — 10,412  — 10,112  — 9,811  — 9,110  — 9,105  — 9,237 ps

7 mA  — 13,613  — 13,313  — 13,012  — 9,830  — 9,835  — 9,977 ps

3.3-V PCI 20 mA  — –75  — –97  — –120  — 6,534  — 6,533  — 6,662 ps

Table 5–19. tXZ IOE Microparameter Adders for Fast Slew Rate

Standard

MAX II / MAX IIG MAX IIZ

Unit

–3 Speed 
Grade

–4 Speed 
Grade

–5 Speed 
Grade

–6 Speed 
Grade

–7 Speed 
Grade

–8 Speed 
Grade

Min Max Min Max Min Max Min Max Min Max Min Max

3.3-V LVTTL 16 mA — 0 — 0 — 0 — 0 — 0 — 0 ps

8 mA — –56 — –72 — –89 — –69 — –69 — –69 ps

3.3-V LVCMOS 8 mA — 0 — 0 — 0 — 0 — 0 — 0 ps

4 mA — –56 — –72 — –89 — –69 — –69 — –69 ps

2.5-V LVTTL / 
LVCMOS

14 mA — –3 — –4 — –5 — –7 — –11 — –11 ps

7 mA — –47 — –61 — –75 — –66 — –70 — –70 ps

1.8-V LVTTL / 
LVCMOS

6 mA — 119 — 155 — 191 — 45 — 34 — 37 ps

3 mA — 207 — 269 — 331 — 34 — 22 — 25 ps

1.5-V LVCMOS 4 mA — 606 — 788 — 970 — 166 — 154 — 155 ps

2 mA — 673 — 875 — 1,077 — 190 — 177 — 179 ps

3.3-V PCI 20 mA — 71 — 93 — 114 — –69 — –69 — –69 ps

Table 5–17. tZX IOE Microparameter Adders for Fast Slew Rate (Part 2 of 2)

Standard

MAX II / MAX IIG MAX IIZ

Unit

–3 Speed 
Grade

–4 Speed 
Grade

–5 Speed 
Grade

–6 Speed 
Grade

–7 Speed 
Grade

–8 Speed 
Grade

Min Max Min Max Min Max Min Max Min Max Min Max
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Timing Model and Specifications
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Table 5–24 shows the external I/O timing parameters for EPM570 devices.

fCNT Maximum 
global clock 
frequency for 
16-bit 
counter

— — 304.0 
(1)

— 247.5 — 201.1 — 184.1 — 123.5 — 118.3 MH

Note to Table 5–23:

(1) The maximum frequency is limited by the I/O standard on the clock input pin. The 16-bit counter critical delay performs faster than this global cloc
input pin maximum frequency.

Table 5–23. EPM240 Global Clock External I/O Timing Parameters (Part 2 of 2)

Symbol Parameter Condition

MAX II / MAX IIG MAX IIZ

Un

–3 Speed 
Grade

–4 Speed 
Grade

–5 Speed 
Grade

–6 Speed 
Grade

–7 Speed 
Grade

–8 Speed 
Grade

Min Max Min Max Min Max Min Max Min Max Min Max

Table 5–24. EPM570 Global Clock External I/O Timing Parameters (Part 1 of 2)

Symbol Parameter Condition

MAX II / MAX IIG MAX IIZ

–3 Speed 
Grade

–4 Speed 
Grade

–5 Speed 
Grade

–6 Speed 
Grade

–7 Speed 
Grade

–8 Speed 
Grade

Min Max Min Max Min Max Min Max Min Max Min Max

tPD1 Worst case pin-
to-pin delay 
through 1 look-
up table (LUT)

10 pF — 5.4 — 7.0 — 8.7 — 9.5 — 15.1 — 17.7

tPD2 Best case pin-
to-pin delay 
through 1 LUT

10 pF — 3.7 — 4.8 — 5.9 — 5.7 — 7.7 — 8.5

tSU Global clock 
setup time

— 1.2 — 1.5 — 1.9 — 2.2 — 3.9 — 4.4 —

tH Global clock 
hold time

— 0 — 0 — 0 — 0 — 0 — 0 —

tCO Global clock to 
output delay

10 pF 2.0 4.5 2.0 5.8 2.0 7.1 2.0 6.7 2.0 8.2 2.0 8.7

tCH Global clock 
high time

— 166 — 216 — 266 — 253 — 335 — 339 —

tCL Global clock 
low time

— 166 — 216 — 266 — 253 — 335 — 339 —

tCNT Minimum 
global clock 
period for 
16-bit counter

— 3.3 — 4.0 — 5.0 — 5.4 — 8.1 — 8.4 —
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Table 5–29. External Timing Output Delay and tOD Adders for Fast Slew Rate

I/O Standard

MAX II / MAX IIG MAX IIZ

Unit

–3 Speed 
Grade

–4 Speed 
Grade

–5 Speed 
Grade

–6 Speed 
Grade

–7 Speed 
Grade

–8 Speed 
Grade

Min Max Min Max Min Max Min Max Min Max Min Max

3.3-V LVTTL 16 mA — 0 — 0 — 0 — 0 — 0 — 0 ps

8 mA — 65 — 84 — 104 — –6 — –2 — –3 ps

3.3-V LVCMOS 8 mA — 0 — 0 — 0 — 0 — 0 — 0 ps

4 mA — 65 — 84 — 104 — –6 — –2 — –3 ps

2.5-V LVTTL / 
LVCMOS

14 mA — 122 — 158 — 195 — –63 — –71 — –88 ps

7 mA — 193 — 251 — 309 — 10 — –1 — 1 ps

1.8-V LVTTL / 
LVCMOS

6 mA — 568 — 738 — 909 — 128 — 118 — 118 ps

3 mA — 654 — 850 — 1,046 — 352 — 327 — 332 ps

1.5-V LVCMOS 4 mA — 1,059 — 1,376 — 1,694 — 421 — 400 — 400 ps

2 mA — 1,167 — 1,517 — 1,867 — 757 — 743 — 743 ps

3.3-V PCI 20 mA — 3 — 4 — 5 — –6 — –2 — –3 ps

Table 5–30. External Timing Output Delay and tOD Adders for Slow Slew Rate

I/O Standard

MAX II / MAX IIG MAX IIZ

Unit

–3 Speed 
Grade

–4 Speed 
Grade

–5 Speed 
Grade

–6 Speed 
Grade

–7 Speed 
Grade

–8 Speed 
Grade

Min Max Min Max Min Max Min Max Min Max Min Max

3.3-V LVTTL 16 mA — 7,064 — 6,745 — 6,426 — 5,966 — 5,992 — 6,118 ps

8 mA — 7,946 — 7,627 — 7,308 — 6,541 — 6,570 — 6,720 ps

3.3-V LVCMOS 8 mA — 7,064 — 6,745 — 6,426 — 5,966 — 5,992 — 6,118 ps

4 mA — 7,946 — 7,627 — 7,308 — 6,541 — 6,570 — 6,720 ps

2.5-V LVTTL / 
LVCMOS

14 mA — 10,434 — 10,115 — 9,796 — 9,141 — 9,154 — 9,297 ps

7 mA — 11,548 — 11,229 — 10,910 — 9,861 — 9,874 — 10,037 ps

1.8-V LVTTL / 
LVCMOS

6 mA — 22,927 — 22,608 — 22,289 — 21,811 — 21,854 — 21,857 ps

3 mA — 24,731 — 24,412 — 24,093 — 23,081 — 23,034 — 23,107 ps

1.5-V LVCMOS 4 mA — 38,723 — 38,404 — 38,085 — 39,121 — 39,124 — 39,124 ps

2 mA — 41,330 — 41,011 — 40,692 — 40,631 — 40,634 — 40,634 ps

3.3-V PCI 20 mA — 261 — 339 — 418 — 6,644 — 6,627 — 6,914 ps
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Document Revision History
Table 5–35 shows the revision history for this chapter.

Table 5–35. Document Revision History (Part 1 of 2)

Date and Revision Changes Made Summary of Changes

August 2009, 
version 2.5

■ Added Table 5–28, Table 5–29, and Table 5–30.

■ Updated Table 5–2, Table 5–4, Table 5–14, Table 5–15, Table 5–16, 
Table 5–17, Table 5–18, Table 5–19, Table 5–20, Table 5–21, 
Table 5–22, Table 5–23, Table 5–24, Table 5–27, Table 5–31, 
Table 5–32, and Table 5–33.

Added information for 
speed grade –8

November 2008, 
version 2.4

■ Updated Table 5–2.

■ Updated “Internal Timing Parameters” section.

—

October 2008,
version 2.3

■ Updated New Document Format.

■ Updated Figure 5–1.

—

July 2008,
version 2.2

■ Updated Table 5–14 , Table 5–23 , and Table 5–24. —

March 2008,
version 2.1

■ Added (Note 5) to Table 5–4. —

December 2007,
version 2.0

■ Updated (Note 3) and (4) to Table 5–1.

■ Updated Table 5–2 and added (Note 5).

■ Updated ICCSTANDBY and ICCPOWERUP information and added 
IPULLUP information in Table 5–4.

■ Added (Note 1) to Table 5–10.

■ Updated Figure 5–2.

■ Added (Note 1) to Table 5–13.

■ Updated Table 5–13 through Table 5–24, and Table 5–27 through 
Table 5–30.

■ Added tCOMB information to Table 5–15.

■ Updated Figure 5–6.

■ Added “Referenced Documents” section.

Updated document with 
MAX IIZ information.

December 2006, 
version 1.8

■ Added note to Table 5–1. 

■ Added document revision history.

—

July 2006,
version 1.7

■ Minor content and table updates. —

February 2006, 
version 1.6

■ Updated “External Timing I/O Delay Adders” section.

■ Updated Table 5–29.

■ Updated Table 5–30.

—

November 2005, 
version 1.5

■ Updated Tables 5-2, 5-4, and 5-12. —

August 2005, 
version 1.4

■ Updated Figure 5-1.

■ Updated Tables 5-13, 5-16, and 5-26.

■ Removed Note 1 from Table 5-12.

—
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