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2–8 Chapter 2: MAX II Architecture
Logic Elements
LUT Chain and Register Chain
In addition to the three general routing outputs, the LEs within an LAB have LUT 
chain and register chain outputs. LUT chain connections allow LUTs within the same 
LAB to cascade together for wide input functions. Register chain outputs allow 
registers within the same LAB to cascade together. The register chain output allows an 
LAB to use LUTs for a single combinational function and the registers to be used for 
an unrelated shift register implementation. These resources speed up connections 
between LABs while saving local interconnect resources. Refer to “MultiTrack 
Interconnect” on page 2–12 for more information about LUT chain and register chain 
connections.

addnsub Signal
The LE’s dynamic adder/subtractor feature saves logic resources by using one set of 
LEs to implement both an adder and a subtractor. This feature is controlled by the 
LAB-wide control signal addnsub. The addnsub signal sets the LAB to perform either 
A + B or A – B. The LUT computes addition; subtraction is computed by adding the 
two’s complement of the intended subtractor. The LAB-wide signal converts to two’s 
complement by inverting the B bits within the LAB and setting carry-in to 1, which 
adds one to the least significant bit (LSB). The LSB of an adder/subtractor must be 
placed in the first LE of the LAB, where the LAB-wide addnsub signal automatically 
sets the carry-in to 1. The Quartus II Compiler automatically places and uses the 
adder/subtractor feature when using adder/subtractor parameterized functions.

LE Operating Modes
The MAX II LE can operate in one of the following modes:

■ “Normal Mode”

■ “Dynamic Arithmetic Mode”

Each mode uses LE resources differently. In each mode, eight available inputs to the 
LE, the four data inputs from the LAB local interconnect, carry-in0 and carry-
in1 from the previous LE, the LAB carry-in from the previous carry-chain LAB, and 
the register chain connection are directed to different destinations to implement the 
desired logic function. LAB-wide signals provide clock, asynchronous clear, 
asynchronous preset/load, synchronous clear, synchronous load, and clock enable 
control for the register. These LAB-wide signals are available in all LE modes. The 
addnsub control signal is allowed in arithmetic mode. 

The Quartus II software, in conjunction with parameterized functions such as library 
of parameterized modules (LPM) functions, automatically chooses the appropriate 
mode for common functions such as counters, adders, subtractors, and arithmetic 
functions. 
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Chapter 2: MAX II Architecture 2–9
Logic Elements
Normal Mode
The normal mode is suitable for general logic applications and combinational 
functions. In normal mode, four data inputs from the LAB local interconnect are 
inputs to a four-input LUT (see Figure 2–7). The Quartus II Compiler automatically 
selects the carry-in or the data3 signal as one of the inputs to the LUT. Each LE can use 
LUT chain connections to drive its combinational output directly to the next LE in the 
LAB. Asynchronous load data for the register comes from the data3 input of the LE. 
LEs in normal mode support packed registers.

Dynamic Arithmetic Mode
The dynamic arithmetic mode is ideal for implementing adders, counters, 
accumulators, wide parity functions, and comparators. An LE in dynamic arithmetic 
mode uses four 2-input LUTs configurable as a dynamic adder/subtractor. The first 
two 2-input LUTs compute two summations based on a possible carry-in of 1 or 0; the 
other two LUTs generate carry outputs for the two chains of the carry-select circuitry. 
As shown in Figure 2–8, the LAB carry-in signal selects either the carry-in0 or 
carry-in1 chain. The selected chain’s logic level in turn determines which parallel sum 
is generated as a combinational or registered output. For example, when 
implementing an adder, the sum output is the selection of two possible calculated 
sums:

data1 + data2 + carry in0

or

data1 + data2 + carry-in1

Figure 2–7. LE in Normal Mode

Note to Figure 2–7:

(1) This signal is only allowed in normal mode if the LE is at the end of an adder/subtractor chain.
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Chapter 2: MAX II Architecture 2–11
Logic Elements
The speed advantage of the carry-select chain is in the parallel precomputation of 
carry chains. Since the LAB carry-in selects the precomputed carry chain, not every LE 
is in the critical path. Only the propagation delays between LAB carry-in generation 
(LE 5 and LE 10) are now part of the critical path. This feature allows the MAX II 
architecture to implement high-speed counters, adders, multipliers, parity functions, 
and comparators of arbitrary width. 

Figure 2–9 shows the carry-select circuitry in an LAB for a 10-bit full adder. One 
portion of the LUT generates the sum of two bits using the input signals and the 
appropriate carry-in bit; the sum is routed to the output of the LE. The register can be 
bypassed for simple adders or used for accumulator functions. Another portion of the 
LUT generates carry-out bits. An LAB-wide carry-in bit selects which chain is used for 
the addition of given inputs. The carry-in signal for each chain, carry-in0 or 
carry-in1, selects the carry-out to carry forward to the carry-in signal of the next-
higher-order bit. The final carry-out signal is routed to an LE, where it is fed to local, 
row, or column interconnects. 

Figure 2–9. Carry-Select Chain
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2–12 Chapter 2: MAX II Architecture
MultiTrack Interconnect
The Quartus II software automatically creates carry chain logic during design 
processing, or you can create it manually during design entry. Parameterized 
functions such as LPM functions automatically take advantage of carry chains for the 
appropriate functions. The Quartus II software creates carry chains longer than 10 LEs 
by linking adjacent LABs within the same row together automatically. A carry chain 
can extend horizontally up to one full LAB row, but does not extend between LAB 
rows.

Clear and Preset Logic Control
LAB-wide signals control the logic for the register ’s clear and preset signals. The LE 
directly supports an asynchronous clear and preset function. The register preset is 
achieved through the asynchronous load of a logic high. MAX II devices support 
simultaneous preset/asynchronous load and clear signals. An asynchronous clear 
signal takes precedence if both signals are asserted simultaneously. Each LAB 
supports up to two clears and one preset signal.

In addition to the clear and preset ports, MAX II devices provide a chip-wide reset pin 
(DEV_CLRn) that resets all registers in the device. An option set before compilation in 
the Quartus II software controls this pin. This chip-wide reset overrides all other 
control signals and uses its own dedicated routing resources (that is, it does not use 
any of the four global resources). Driving this signal low before or during power-up 
prevents user mode from releasing clears within the design. This allows you to control 
when clear is released on a device that has just been powered-up. If not set for its chip-
wide reset function, the DEV_CLRn pin is a regular I/O pin.

By default, all registers in MAX II devices are set to power-up low. However, this 
power-up state can be set to high on individual registers during design entry using 
the Quartus II software.

MultiTrack Interconnect
In the MAX II architecture, connections between LEs, the UFM, and device I/O pins 
are provided by the MultiTrack interconnect structure. The MultiTrack interconnect 
consists of continuous, performance-optimized routing lines used for inter- and intra-
design block connectivity. The Quartus II Compiler automatically places critical 
design paths on faster interconnects to improve design performance.

The MultiTrack interconnect consists of row and column interconnects that span fixed 
distances. A routing structure with fixed length resources for all devices allows 
predictable and short delays between logic levels instead of large delays associated 
with global or long routing lines. Dedicated row interconnects route signals to and 
from LABs within the same row. These row resources include:

■ DirectLink interconnects between LABs 

■ R4 interconnects traversing four LABs to the right or left

The DirectLink interconnect allows an LAB to drive into the local interconnect of its 
left and right neighbors. The DirectLink interconnect provides fast communication 
between adjacent LABs and/or blocks without using row interconnect resources.
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2–16 Chapter 2: MAX II Architecture
Global Signals

 

The UFM block communicates with the logic array similar to LAB-to-LAB interfaces. 
The UFM block connects to row and column interconnects and has local interconnect 
regions driven by row and column interconnects. This block also has DirectLink 
interconnects for fast connections to and from a neighboring LAB. For more 
information about the UFM interface to the logic array, see “User Flash Memory 
Block” on page 2–18.

Table 2–2 shows the MAX II device routing scheme.

Global Signals
Each MAX II device has four dual-purpose dedicated clock pins (GCLK[3..0], two 
pins on the left side and two pins on the right side) that drive the global clock network 
for clocking, as shown in Figure 2–13. These four pins can also be used as general-
purpose I/O if they are not used to drive the global clock network. 

The four global clock lines in the global clock network drive throughout the entire 
device. The global clock network can provide clocks for all resources within the 
device including LEs, LAB local interconnect, IOEs, and the UFM block. The global 
clock lines can also be used for global control signals, such as clock enables, 
synchronous or asynchronous clears, presets, output enables, or protocol control 
signals such as TRDY and IRDY for PCI. Internal logic can drive the global clock 
network for internally-generated global clocks and control signals. Figure 2–13 shows 
the various sources that drive the global clock network.

Table 2–2. MAX II Device Routing Scheme

Source

Destination

LUT 
Chain

Register 
Chain

Local 
(1)

DirectLink 
(1) R4 (1) C4 (1) LE

UFM 
Block

Column 
IOE

Row 
IOE

Fast I/O
(1)

LUT Chain — — — — — — v — — — —

Register Chain — — — — — — v — — — —

Local 
Interconnect

— — — — — — v v v v —

DirectLink 
Interconnect

— — v — — — — — — — —

R4 Interconnect — — v — v v — — — — —

C4 Interconnect — — v — v v — — — — —

LE v v v v v v — — v v v
UFM Block — — v v v v — — — — —

Column IOE — — — — — v — — — — —

Row IOE — — — v v v — — — — —

Note to Table 2–2:

(1) These categories are interconnects.
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Chapter 2: MAX II Architecture 2–19
User Flash Memory Block
■ Auto-increment addressing

■ Serial interface to logic array with programmable interface

UFM Storage
Each device stores up to 8,192 bits of data in the UFM block. Table 2–3 shows the data 
size, sector, and address sizes for the UFM block.

There are 512 locations with 9-bit addressing ranging from 000h to 1FFh. Sector 0 
address space is 000h to 0FFh and Sector 1 address space is from 100h to 1FFh. The 
data width is up to 16 bits of data. The Quartus II software automatically creates logic 
to accommodate smaller read or program data widths. Erasure of the UFM involves 
individual sector erasing (that is, one erase of sector 0 and one erase of sector 1 is 
required to erase the entire UFM block). Since sector erase is required before a 
program or write, having two sectors enables a sector size of data to be left untouched 
while the other sector is erased and programmed with new data. 

Figure 2–15. UFM Block and Interface Signals
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Table 2–3. UFM Array Size

Device Total Bits Sectors Address Bits Data Width

EPM240

EPM570

EPM1270

EPM2210

8,192 2 
(4,096 bits/sector)

9 16
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Chapter 2: MAX II Architecture 2–21
User Flash Memory Block
Figure 2–16. EPM240 UFM Block LAB Row Interface (Note 1)

Note to Figure 2–16:

(1) The UFM block inputs and outputs can drive to/from all types of interconnects, not only DirectLink interconnects from adjacent row LABs.
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2–22 Chapter 2: MAX II Architecture
MultiVolt Core
MultiVolt Core
The MAX II architecture supports the MultiVolt core feature, which allows MAX II 
devices to support multiple VCC levels on the VCCINT supply. An internal linear voltage 
regulator provides the necessary 1.8-V internal voltage supply to the device. The 
voltage regulator supports 3.3-V or 2.5-V supplies on its inputs to supply the 1.8-V 
internal voltage to the device, as shown in Figure 2–18. The voltage regulator is not 
guaranteed for voltages that are between the maximum recommended 2.5-V 
operating voltage and the minimum recommended 3.3-V operating voltage. 

The MAX IIG and MAX IIZ devices use external 1.8-V supply. The 1.8-V VCC external 
supply powers the device core directly.

Figure 2–17. EPM570, EPM1270, and EPM2210 UFM Block LAB Row Interface
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2–24 Chapter 2: MAX II Architecture
I/O Structure
I/O Blocks
The IOEs are located in I/O blocks around the periphery of the MAX II device. There 
are up to seven IOEs per row I/O block (5 maximum in the EPM240 device) and up to 
four IOEs per column I/O block. Each column or row I/O block interfaces with its 
adjacent LAB and MultiTrack interconnect to distribute signals throughout the device. 
The row I/O blocks drive row, column, or DirectLink interconnects. The column I/O 
blocks drive column interconnects. 

Figure 2–19. MAX II IOE Structure

Note to Figure 2–19:
(1) Available in EPM1270 and EPM2210 devices only.
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2–26 Chapter 2: MAX II Architecture
I/O Structure
Figure 2–21 shows how a column I/O block connects to the logic array.

I/O Standards and Banks
MAX II device IOEs support the following I/O standards:

■ 3.3-V LVTTL/LVCMOS

■ 2.5-V LVTTL/LVCMOS

■ 1.8-V LVTTL/LVCMOS

■ 1.5-V LVCMOS

■ 3.3-V PCI

Figure 2–21. Column I/O Block Connection to the Interconnect (Note 1)

Note to Figure 2–21:
(1) Each of the four IOEs in the column I/O block can have one data_out or fast_out output, one OE output, and one data_in input.
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2–30 Chapter 2: MAX II Architecture
I/O Structure
Slew-Rate Control
The output buffer for each MAX II device I/O pin has a programmable output slew-
rate control that can be configured for low noise or high-speed performance. A faster 
slew rate provides high-speed transitions for high-performance systems. However, 
these fast transitions may introduce noise transients into the system. A slow slew rate 
reduces system noise, but adds a nominal output delay to rising and falling edges. 
The lower the voltage standard (for example, 1.8-V LVTTL) the larger the output 
delay when slow slew is enabled. Each I/O pin has an individual slew-rate control, 
allowing the designer to specify the slew rate on a pin-by-pin basis. The slew-rate 
control affects both the rising and falling edges.

Open-Drain Output
MAX II devices provide an optional open-drain (equivalent to open-collector) output 
for each I/O pin. This open-drain output enables the device to provide system-level 
control signals (for example, interrupt and write enable signals) that can be asserted 
by any of several devices. This output can also provide an additional wired-OR plane. 

Programmable Ground Pins
Each unused I/O pin on MAX II devices can be used as an additional ground pin. 
This programmable ground feature does not require the use of the associated LEs in 
the device. In the Quartus II software, unused pins can be set as programmable GND 
on a global default basis or they can be individually assigned. Unused pins also have 
the option of being set as tri-stated input pins.

Table 2–6. Programmable Drive Strength (Note 1)

I/O Standard IOH/IOL Current Strength Setting (mA)

3.3-V LVTTL 16

8

3.3-V LVCMOS 8

4

2.5-V LVTTL/LVCMOS 14

7

1.8-V LVTTL/LVCMOS 6

3

1.5-V LVCMOS 4

2

Note to Table 2–6:

(1) The IOH current strength numbers shown are for a condition of a VOUT = VOH minimum, where the VOH minimum 
is specified by the I/O standard. The IOL current strength numbers shown are for a condition of a VOUT = VOL 
maximum, where the VOL maximum is specified by the I/O standard. For 2.5-V LVTTL/LVCMOS, the IOH 
condition is VOUT = 1.7 V and the IOL condition is VOUT = 0.7 V.
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Chapter 3: JTAG and In-System Programmability 3–3
IEEE Std. 1149.1 (JTAG) Boundary-Scan Support
f For JTAG AC characteristics, refer to the DC and Switching Characteristics chapter in 
the MAX II Device Handbook. 

f For more information about JTAG BST, refer to the IEEE 1149.1 (JTAG) Boundary-Scan 
Testing for MAX II Devices chapter in the MAX II Device Handbook.

JTAG Block
The MAX II JTAG block feature allows you to access the JTAG TAP and state signals 
when either the USER0 or USER1 instruction is issued to the JTAG TAP. The USER0 
and USER1 instructions bring the JTAG boundary-scan chain (TDI) through the user 
logic instead of the MAX II device’s boundary-scan cells. Each USER instruction 
allows for one unique user-defined JTAG chain into the logic array.  

Parallel Flash Loader
The JTAG block ability to interface JTAG to non-JTAG devices is ideal for general-
purpose flash memory devices (such as Intel- or Fujitsu-based devices) that require 
programming during in-circuit test. The flash memory devices can be used for FPGA 
configuration or be part of system memory. In many cases, the MAX II device is 
already connected to these devices as the configuration control logic between the 
FPGA and the flash device. Unlike ISP-capable CPLD devices, bulk flash devices do 
not have JTAG TAP pins or connections. For small flash devices, it is common to use 
the serial JTAG scan chain of a connected device to program the non-JTAG flash 
device. This is slow and inefficient in most cases and impractical for large parallel 
flash devices. Using the MAX II device’s JTAG block as a parallel flash loader, with 
the Quartus II software, to program and verify flash contents provides a fast and cost-
effective means of in-circuit programming during test. Figure 3–1 shows MAX II 
being used as a parallel flash loader.

EPM240Z 0000 0010 0000 1010 0101 000 0110 1110 1 0x020A50DD

EPM570Z 0000 0010 0000 1010 0110 000 0110 1110 1 0x020A60DD

Notes to Table 3–2:

(1) The most significant bit (MSB) is on the left.
(2) The IDCODE’s least significant bit (LSB) is always 1.

Table 3–3. 32-Bit MAX II Device IDCODE (Part 2 of 2)

Device

Binary IDCODE (32 Bits) (1)

HEX IDCODE
Version 
(4 Bits) Part Number

Manufacturer 
Identity (11 Bits)

LSB 
(1 Bit) (2)
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3–4 Chapter 3: JTAG and In-System Programmability
In System Programmability
In System Programmability 
MAX II devices can be programmed in-system via the industry standard 4-pin IEEE 
Std. 1149.1 (JTAG) interface. In-system programmability (ISP) offers quick, efficient 
iterations during design development and debugging cycles. The logic, circuitry, and 
interconnects in the MAX II architecture are configured with flash-based SRAM 
configuration elements. These SRAM elements require configuration data to be 
loaded each time the device is powered. The process of loading the SRAM data is 
called configuration. The on-chip configuration flash memory (CFM) block stores the 
SRAM element’s configuration data. The CFM block stores the design’s configuration 
pattern in a reprogrammable flash array. During ISP, the MAX II JTAG and ISP 
circuitry programs the design pattern into the CFM block’s non-volatile flash array.  

The MAX II JTAG and ISP controller internally generate the high programming 
voltages required to program the CFM cells, allowing in-system programming with 
any of the recommended operating external voltage supplies (that is, 3.3 V/2.5 V or 
1.8 V for the MAX IIG and MAX IIZ devices). ISP can be performed anytime after 
VCCINT and all VCCIO banks have been fully powered and the device has completed the 
configuration power-up time. By default, during in-system programming, the I/O 
pins are tri-stated and weakly pulled-up to VCCIO to eliminate board conflicts. The in-
system programming clamp and real-time ISP feature allow user control of I/O state 
or behavior during ISP.

For more information, refer to “In-System Programming Clamp” on page 3–6 and 
“Real-Time ISP” on page 3–7. 

These devices also offer an ISP_DONE bit that provides safe operation when in-
system programming is interrupted. This ISP_DONE bit, which is the last bit 
programmed, prevents all I/O pins from driving until the bit is programmed.  

Figure 3–1. MAX II Parallel Flash Loader

Notes to Figure 3–1:
(1) This block is implemented in LEs.
(2) This function is supported in the Quartus II software.
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UPDATE_U
RUNIDLE_U

USER1_U

TDO

Altera FPGA

CONF_DONE
nSTATUS
nCE

DCLK

DATA0
nCONFIG

(1), (2)
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Referenced Documents
Referenced Documents
This chapter refereces the following documents:

■ DC and Switching Characteristics chapter in the MAX II Device Handbook

■ Using MAX II Devices in Multi-Voltage Systems chapter in the MAX II Device 
Handbook

Document Revision History
Table 4–1 shows the revision history for this chapter.

Table 4–1. Document Revision History

Date and Revision Changes Made Summary of Changes

October 2008,

version2.1

■ Updated “MAX II Hot-Socketing Specifications” and “Power-On 
Reset Circuitry” sections.

■ Updated New Document Format.

—

December 2007,
version 2.0

■ Updated “Hot Socketing Feature Implementation in MAX II 
Devices” section.

■ Updated “Power-On Reset Circuitry” section.

■ Updated Figure 4–5.

■ Added “Referenced Documents” section.

Updated document with 
MAX IIZ information.

December 2006,
version 1.5

■ Added document revision history. —

February 2006,
version 1.4

■ Updated “MAX II Hot-Socketing Specifications” section.

■ Updated “AC and DC Specifications” section.

■ Updated “Power-On Reset Circuitry” section.

—

June 2005,
version 1.3

■ Updated AC and DC specifications on page 4-2. —

December 2004, 
version 1.2

■ Added content to Power-Up Characteristics section.

■ Updated Figure 4-5.

—

June 2004,
version 1.1

■ Corrected Figure 4-2. —
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Operating Conditions
Bus Hold Specifications
Table 5–11 shows the MAX II device family bus hold specifications. 

Table 5–10. 3.3-V PCI Specifications (Note 1)

Symbol Parameter Conditions Minimum Typical Maximum Unit

VCCIO I/O supply 
voltage

— 3.0 3.3 3.6 V

VIH High-level input 
voltage

— 0.5 × VCCIO — VCCIO + 0.5 V

VIL Low-level input 
voltage

— –0.5 — 0.3 × VCCIO V

VOH High-level 
output voltage

IOH = –500 µA 0.9 × VCCIO — — V

VOL Low-level 
output voltage

IOL = 1.5 mA — — 0.1 × VCCIO V

Note to Table 5–10:

(1) 3.3-V PCI I/O standard is only supported in Bank 3 of the EPM1270 and EPM2210 devices.

Table 5–11. Bus Hold Specifications

Parameter Conditions

VCCIO Level

Unit

1.5 V 1.8 V 2.5 V 3.3 V

Min Max Min Max Min Max Min Max

Low sustaining 
current

VIN > VIL (maximum) 20 — 30 — 50 — 70 — µA

High sustaining 
current

VIN < VIH (minimum) –20 — –30 — –50 — –70 — µA

Low overdrive 
current

0 V < VIN < VCCIO — 160 — 200 — 300 — 500 µA

High overdrive 
current

0 V < VIN < VCCIO — –160 — –200 — –300 — –500 µA
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Power Consumption
Power-Up Timing
Table 5–12 shows the power-up timing characteristics for MAX II devices.

Power Consumption
Designers can use the Altera® PowerPlay Early Power Estimator and PowerPlay 
Power Analyzer to estimate the device power. 

f For more information about these power analysis tools, refer to the Understanding and 
Evaluating Power in MAX II Devices chapter in the MAX II Device Handbook and the 
PowerPlay Power Analysis chapter in volume 3 of the Quartus II Handbook.

Timing Model and Specifications
MAX II devices timing can be analyzed with the Altera Quartus® II software, a variety 
of popular industry-standard EDA simulators and timing analyzers, or with the 
timing model shown in Figure 5–2. 

MAX II devices have predictable internal delays that enable the designer to determine 
the worst-case timing of any design. The software provides timing simulation, 
point-to-point delay prediction, and detailed timing analysis for device-wide 
performance evaluation.

Table 5–12. MAX II Power-Up Timing

Symbol Parameter Device Min Typ Max Unit

tCONFIG (1) The amount of time from when 
minimum VCCINT is reached until 
the device enters user mode (2)

EPM240 — — 200 µs

EPM570 — — 300 µs

EPM1270 — — 300 µs

EPM2210 — — 450 µs

Notes to Table 5–12:

(1) Table 5–12 values apply to commercial and industrial range devices. For extended temperature range devices, the tCONFIG  maximum values are 
as follows:
Device Maximum
EPM240 300 µs
EPM570 400 µs
EPM1270 400 µs
EPM2210 500 µs

(2) For more information about POR trigger voltage, refer to the Hot Socketing and Power-On Reset in MAX II Devices chapter in the MAX II Device 
Handbook.
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Timing Model and Specifications

it

s

s

External Timing Parameters
External timing parameters are specified by device density and speed grade. All 
external I/O timing parameters shown are for the 3.3-V LVTTL I/O standard with the 
maximum drive strength and fast slew rate. For external I/O timing using standards 
other than LVTTL or for different drive strengths, use the I/O standard input and 
output delay adders in Table 5–27 through Table 5–31.

f For more information about each external timing parameters symbol, refer to the 
Understanding Timing in MAX II Devices chapter in the MAX II Device Handbook.

Table 5–23 shows the external I/O timing parameters for EPM240 devices.

Table 5–23. EPM240 Global Clock External I/O Timing Parameters (Part 1 of 2)

Symbol Parameter Condition

MAX II / MAX IIG MAX IIZ

Un

–3 Speed 
Grade

–4 Speed 
Grade

–5 Speed 
Grade

–6 Speed 
Grade

–7 Speed 
Grade

–8 Speed 
Grade

Min Max Min Max Min Max Min Max Min Max Min Max

tPD1 Worst case 
pin-to-pin 
delay 
through 1 
look-up table 
(LUT)

10 pF — 4.7 — 6.1 — 7.5 — 7.9 — 12.0 — 14.0 ns

tPD2 Best case 
pin-to-pin 
delay 
through 
1 LUT

10 pF — 3.7 — 4.8 — 5.9 — 5.8 — 7.8 — 8.5 ns

tSU Global clock 
setup time

— 1.7 — 2.2 — 2.7 — 2.4 — 4.1 — 4.6 — ns

tH Global clock 
hold time

— 0 — 0 — 0 — 0 — 0 — 0 — ns

tCO Global clock 
to output 
delay

10 pF 2.0 4.3 2.0 5.6 2.0 6.9 2.0 6.6 2.0 8.1 2.0 8.6 ns

tCH Global clock 
high time

— 166 — 216 — 266 — 253 — 335 — 339 — p

tCL Global clock 
low time

— 166 — 216 — 266 — 253 — 335 — 339 — p

tCNT Minimum 
global clock 
period for 
16-bit 
counter

— 3.3 — 4.0 — 5.0 — 5.4 — 8.1 — 8.4 — ns
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Timing Model and Specifications
JTAG Timing Specifications
Figure 5–6 shows the timing waveforms for the JTAG signals.

Table 5–34 shows the JTAG Timing parameters and values for MAX II devices.

Table 5–33. MAX II Maximum Output Clock Rate for I/O

I/O Standard

MAX II / MAX IIG MAX IIZ

–3 Speed 
Grade

–4 Speed 
Grade

–5 Speed 
Grade

–6 Speed 
Grade

–7 Speed 
Grade

–8 Speed 
Grade

3.3-V LVTTL 304 304 304 304 304 304 MHz

3.3-V LVCMOS 304 304 304 304 304 304 MHz

2.5-V LVTTL 220 220 220 220 220 220 MHz

2.5-V LVCMOS 220 220 220 220 220 220 MHz

1.8-V LVTTL 200 200 200 200 200 200 MHz

1.8-V LVCMOS 200 200 200 200 200 200 MHz

1.5-V LVCMOS 150 150 150 150 150 150 MHz

3.3-V PCI 304 304 304 304 304 304 MHz

Figure 5–6. MAX II JTAG Timing Waveforms

TDI

TMS

TDO

TCK

Signal
to be

Captured

Signal
to be

Driven

tJCP

tJCH tJCL

tJPSU tJPH

tJPCO tJPXZtJPZX

tJSSU tJSH

tJSZX tJSCO tJSXZ

Table 5–34. MAX II JTAG Timing Parameters (Part 1 of 2)

Symbol Parameter Min Max Unit

tJCP (1) TCK clock period for VCCIO1 = 3.3 V 55.5 — ns

TCK clock period for VCCIO1 = 2.5 V 62.5 — ns

TCK clock period for VCCIO1 = 1.8 V 100 — ns

TCK clock period for VCCIO1 = 1.5 V 143 — ns

tJCH TCK clock high time 20 — ns

tJCL TCK clock low time 20 — ns
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Referenced Documents
Referenced Documents
This chapter references the following documents:

■ I/O Structure section in the MAX II Architecture chapter in the MAX II Device 
Handbook

■ Hot Socketing and Power-On Reset in MAX II Devices chapter in the MAX II Device 
Handbook

■ Operating Requirements for Altera Devices Data Sheet

■ PowerPlay Power Analysis chapter in volume 3 of the Quartus II Handbook

■ Understanding and Evaluating Power in MAX II Devices chapter in the MAX II Device 
Handbook

■ Understanding Timing in MAX II Devices chapter in the MAX II Device Handbook 

■ Using MAX II Devices in Multi-Voltage Systems chapter in the MAX II Device 
Handbook

tJPSU JTAG port setup time (2) 8 — ns

tJPH JTAG port hold time 10 — ns

tJPCO JTAG port clock to output (2) — 15 ns

tJPZX JTAG port high impedance to valid output (2) — 15 ns

tJPXZ JTAG port valid output to high impedance (2) — 15 ns

tJSSU Capture register setup time 8 — ns

tJSH Capture register hold time 10 — ns

tJSCO Update register clock to output — 25 ns

tJSZX Update register high impedance to valid output — 25 ns

tJSXZ Update register valid output to high impedance — 25 ns

Notes to Table 5–34:

(1) Minimum clock period specified for 10 pF load on the TDO pin. Larger loads on TDO will degrade the maximum TCK 
frequency.

(2) This specification is shown for 3.3-V LVTTL/LVCMOS and 2.5-V LVTTL/LVCMOS operation of the JTAG pins. For 1.8-V 
LVTTL/LVCMOS and 1.5-V LVCMOS, the tJPSU minimum is 6 ns and tJPCO, tJPZX, and tJPXZ are maximum values at 35 ns.

Table 5–34. MAX II JTAG Timing Parameters (Part 2 of 2)

Symbol Parameter Min Max Unit
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Document Revision History
Document Revision History
Table 5–35 shows the revision history for this chapter.

Table 5–35. Document Revision History (Part 1 of 2)

Date and Revision Changes Made Summary of Changes

August 2009, 
version 2.5

■ Added Table 5–28, Table 5–29, and Table 5–30.

■ Updated Table 5–2, Table 5–4, Table 5–14, Table 5–15, Table 5–16, 
Table 5–17, Table 5–18, Table 5–19, Table 5–20, Table 5–21, 
Table 5–22, Table 5–23, Table 5–24, Table 5–27, Table 5–31, 
Table 5–32, and Table 5–33.

Added information for 
speed grade –8

November 2008, 
version 2.4

■ Updated Table 5–2.

■ Updated “Internal Timing Parameters” section.

—

October 2008,
version 2.3

■ Updated New Document Format.

■ Updated Figure 5–1.

—

July 2008,
version 2.2

■ Updated Table 5–14 , Table 5–23 , and Table 5–24. —

March 2008,
version 2.1

■ Added (Note 5) to Table 5–4. —

December 2007,
version 2.0

■ Updated (Note 3) and (4) to Table 5–1.

■ Updated Table 5–2 and added (Note 5).

■ Updated ICCSTANDBY and ICCPOWERUP information and added 
IPULLUP information in Table 5–4.

■ Added (Note 1) to Table 5–10.

■ Updated Figure 5–2.

■ Added (Note 1) to Table 5–13.

■ Updated Table 5–13 through Table 5–24, and Table 5–27 through 
Table 5–30.

■ Added tCOMB information to Table 5–15.

■ Updated Figure 5–6.

■ Added “Referenced Documents” section.

Updated document with 
MAX IIZ information.

December 2006, 
version 1.8

■ Added note to Table 5–1. 

■ Added document revision history.

—

July 2006,
version 1.7

■ Minor content and table updates. —

February 2006, 
version 1.6

■ Updated “External Timing I/O Delay Adders” section.

■ Updated Table 5–29.

■ Updated Table 5–30.

—

November 2005, 
version 1.5

■ Updated Tables 5-2, 5-4, and 5-12. —

August 2005, 
version 1.4

■ Updated Figure 5-1.

■ Updated Tables 5-13, 5-16, and 5-26.

■ Removed Note 1 from Table 5-12.

—
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