E·XFL

Altera - EPM570ZM256C6N Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - CPLDs (Complex</u> <u>Programmable Logic Devices)</u>

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixedfunction ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details

Product Status	Active
Programmable Type	In System Programmable
Delay Time tpd(1) Max	9 ns
Voltage Supply - Internal	1.71V ~ 1.89V
Number of Logic Elements/Blocks	570
Number of Macrocells	440
Number of Gates	-
Number of I/O	160
Operating Temperature	0°C ~ 85°C (TJ)
Mounting Type	Surface Mount
Package / Case	256-TFBGA
Supplier Device Package	256-MBGA (11x11)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=epm570zm256c6n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

LUT Chain and Register Chain

In addition to the three general routing outputs, the LEs within an LAB have LUT chain and register chain outputs. LUT chain connections allow LUTs within the same LAB to cascade together for wide input functions. Register chain outputs allow registers within the same LAB to cascade together. The register chain output allows an LAB to use LUTs for a single combinational function and the registers to be used for an unrelated shift register implementation. These resources speed up connections between LABs while saving local interconnect resources. Refer to "MultiTrack Interconnect" on page 2–12 for more information about LUT chain and register chain connections.

addnsub Signal

The LE's dynamic adder/subtractor feature saves logic resources by using one set of LEs to implement both an adder and a subtractor. This feature is controlled by the LAB-wide control signal addnsub. The addnsub signal sets the LAB to perform either A + B or A - B. The LUT computes addition; subtraction is computed by adding the two's complement of the intended subtractor. The LAB-wide signal converts to two's complement by inverting the B bits within the LAB and setting carry-in to 1, which adds one to the least significant bit (LSB). The LSB of an adder/subtractor must be placed in the first LE of the LAB, where the LAB-wide addnsub signal automatically sets the carry-in to 1. The Quartus II Compiler automatically places and uses the adder/subtractor feature when using adder/subtractor parameterized functions.

LE Operating Modes

The MAX II LE can operate in one of the following modes:

- "Normal Mode"
- "Dynamic Arithmetic Mode"

Each mode uses LE resources differently. In each mode, eight available inputs to the LE, the four data inputs from the LAB local interconnect, carry-in0 and carry-in1 from the previous LE, the LAB carry-in from the previous carry-chain LAB, and the register chain connection are directed to different destinations to implement the desired logic function. LAB-wide signals provide clock, asynchronous clear, asynchronous preset/load, synchronous clear, synchronous load, and clock enable control for the register. These LAB-wide signals are available in all LE modes. The addnsub control signal is allowed in arithmetic mode.

The Quartus II software, in conjunction with parameterized functions such as library of parameterized modules (LPM) functions, automatically chooses the appropriate mode for common functions such as counters, adders, subtractors, and arithmetic functions.

Normal Mode

The normal mode is suitable for general logic applications and combinational functions. In normal mode, four data inputs from the LAB local interconnect are inputs to a four-input LUT (see Figure 2–7). The Quartus II Compiler automatically selects the carry-in or the data3 signal as one of the inputs to the LUT. Each LE can use LUT chain connections to drive its combinational output directly to the next LE in the LAB. Asynchronous load data for the register comes from the data3 input of the LE. LEs in normal mode support packed registers.

Note to Figure 2-7:

(1) This signal is only allowed in normal mode if the LE is at the end of an adder/subtractor chain.

Dynamic Arithmetic Mode

The dynamic arithmetic mode is ideal for implementing adders, counters, accumulators, wide parity functions, and comparators. An LE in dynamic arithmetic mode uses four 2-input LUTs configurable as a dynamic adder/subtractor. The first two 2-input LUTs compute two summations based on a possible carry-in of 1 or 0; the other two LUTs generate carry outputs for the two chains of the carry-select circuitry. As shown in Figure 2–8, the LAB carry-in signal selects either the carry-in0 or carry-in1 chain. The selected chain's logic level in turn determines which parallel sum is generated as a combinational or registered output. For example, when implementing an adder, the sum output is the selection of two possible calculated sums:

```
data1 + data2 + carry in0
or
data1 + data2 + carry-in1
```

The speed advantage of the carry-select chain is in the parallel precomputation of carry chains. Since the LAB carry-in selects the precomputed carry chain, not every LE is in the critical path. Only the propagation delays between LAB carry-in generation (LE 5 and LE 10) are now part of the critical path. This feature allows the MAX II architecture to implement high-speed counters, adders, multipliers, parity functions, and comparators of arbitrary width.

Figure 2–9 shows the carry-select circuitry in an LAB for a 10-bit full adder. One portion of the LUT generates the sum of two bits using the input signals and the appropriate carry-in bit; the sum is routed to the output of the LE. The register can be bypassed for simple adders or used for accumulator functions. Another portion of the LUT generates carry-out bits. An LAB-wide carry-in bit selects which chain is used for the addition of given inputs. The carry-in signal for each chain, carry-in0 or carry-in1, selects the carry-out to carry forward to the carry-in signal of the next-higher-order bit. The final carry-out signal is routed to an LE, where it is fed to local, row, or column interconnects.

The Quartus II software automatically creates carry chain logic during design processing, or you can create it manually during design entry. Parameterized functions such as LPM functions automatically take advantage of carry chains for the appropriate functions. The Quartus II software creates carry chains longer than 10 LEs by linking adjacent LABs within the same row together automatically. A carry chain can extend horizontally up to one full LAB row, but does not extend between LAB rows.

Clear and Preset Logic Control

LAB-wide signals control the logic for the register's clear and preset signals. The LE directly supports an asynchronous clear and preset function. The register preset is achieved through the asynchronous load of a logic high. MAX II devices support simultaneous preset/asynchronous load and clear signals. An asynchronous clear signal takes precedence if both signals are asserted simultaneously. Each LAB supports up to two clears and one preset signal.

In addition to the clear and preset ports, MAX II devices provide a chip-wide reset pin (DEV_CLRn) that resets all registers in the device. An option set before compilation in the Quartus II software controls this pin. This chip-wide reset overrides all other control signals and uses its own dedicated routing resources (that is, it does not use any of the four global resources). Driving this signal low before or during power-up prevents user mode from releasing clears within the design. This allows you to control when clear is released on a device that has just been powered-up. If not set for its chip-wide reset function, the DEV_CLRn pin is a regular I/O pin.

By default, all registers in MAX II devices are set to power-up low. However, this power-up state can be set to high on individual registers during design entry using the Quartus II software.

MultiTrack Interconnect

In the MAX II architecture, connections between LEs, the UFM, and device I/O pins are provided by the MultiTrack interconnect structure. The MultiTrack interconnect consists of continuous, performance-optimized routing lines used for inter- and intradesign block connectivity. The Quartus II Compiler automatically places critical design paths on faster interconnects to improve design performance.

The MultiTrack interconnect consists of row and column interconnects that span fixed distances. A routing structure with fixed length resources for all devices allows predictable and short delays between logic levels instead of large delays associated with global or long routing lines. Dedicated row interconnects route signals to and from LABs within the same row. These row resources include:

- DirectLink interconnects between LABs
- R4 interconnects traversing four LABs to the right or left

The DirectLink interconnect allows an LAB to drive into the local interconnect of its left and right neighbors. The DirectLink interconnect provides fast communication between adjacent LABs and/or blocks without using row interconnect resources.

The UFM block communicates with the logic array similar to LAB-to-LAB interfaces. The UFM block connects to row and column interconnects and has local interconnect regions driven by row and column interconnects. This block also has DirectLink interconnects for fast connections to and from a neighboring LAB. For more information about the UFM interface to the logic array, see "User Flash Memory Block" on page 2–18.

Table 2–2 shows the MAX II device routing scheme.

Table 2–2. MAX II Device Routing Scheme

		Destination									
Source	LUT Chain	Register Chain	Local (1)	DirectLink <i>(1)</i>	R4 <i>(1)</i>	C4 (1)	LE	UFM Block	Column IOE	Row IOE	Fast I/0 <i>(1)</i>
LUT Chain	-		-	—			~			—	
Register Chain	_	—	_	—			\checkmark	—		_	_
Local Interconnect	-		-	_	_	—	\checkmark	~	~	~	_
DirectLink Interconnect	_		\checkmark	_				_		_	_
R4 Interconnect	_	—	\checkmark	—	~	~		—	_	—	—
C4 Interconnect	-	—	\checkmark	—	~	~		—	_	—	—
LE	\checkmark	\checkmark	\checkmark	\checkmark	~	~		—	~	\checkmark	\checkmark
UFM Block	_	—	\checkmark	\checkmark	~	~		—	—	—	—
Column IOE	_	—	_	—	—	\checkmark	_	—	—	—	—
Row IOE	-	—	-	\checkmark	\checkmark	\checkmark	—	—	_	—	—

Note to Table 2-2:

(1) These categories are interconnects.

Global Signals

Each MAX II device has four dual-purpose dedicated clock pins (GCLK[3..0], two pins on the left side and two pins on the right side) that drive the global clock network for clocking, as shown in Figure 2–13. These four pins can also be used as general-purpose I/O if they are not used to drive the global clock network.

The four global clock lines in the global clock network drive throughout the entire device. The global clock network can provide clocks for all resources within the device including LEs, LAB local interconnect, IOEs, and the UFM block. The global clock lines can also be used for global control signals, such as clock enables, synchronous or asynchronous clears, presets, output enables, or protocol control signals such as TRDY and IRDY for PCI. Internal logic can drive the global clock network for internally-generated global clocks and control signals. Figure 2–13 shows the various sources that drive the global clock network.

- Auto-increment addressing
- Serial interface to logic array with programmable interface

UFM Storage

Each device stores up to 8,192 bits of data in the UFM block. Table 2–3 shows the data size, sector, and address sizes for the UFM block.

 Table 2–3.
 UFM Array Size

Device	Total Bits	Sectors	Address Bits	Data Width
EPM240	8,192	2	9	16
EPM570		(4,096 bits/sector)		
EPM1270				
EPM2210				

There are 512 locations with 9-bit addressing ranging from 000h to 1FFh. Sector 0 address space is 000h to 0FFh and Sector 1 address space is from 100h to 1FFh. The data width is up to 16 bits of data. The Quartus II software automatically creates logic to accommodate smaller read or program data widths. Erasure of the UFM involves individual sector erasing (that is, one erase of sector 0 and one erase of sector 1 is required to erase the entire UFM block). Since sector erase is required before a program or write, having two sectors enables a sector size of data to be left untouched while the other sector is erased and programmed with new data.

Figure 2–16. EPM240 UFM Block LAB Row Interface (Note 1)

Note to Figure 2–16:

(1) The UFM block inputs and outputs can drive to/from all types of interconnects, not only DirectLink interconnects from adjacent row LABs.

MultiVolt Core

The MAX II architecture supports the MultiVolt core feature, which allows MAX II devices to support multiple V_{CC} levels on the V_{CCINT} supply. An internal linear voltage regulator provides the necessary 1.8-V internal voltage supply to the device. The voltage regulator supports 3.3-V or 2.5-V supplies on its inputs to supply the 1.8-V internal voltage to the device, as shown in Figure 2–18. The voltage regulator is not guaranteed for voltages that are between the maximum recommended 2.5-V operating voltage and the minimum recommended 3.3-V operating voltage.

The MAX IIG and MAX IIZ devices use external 1.8-V supply. The 1.8-V V_{cc} external supply powers the device core directly.

Figure 2–19. MAX II IOE Structure

(1) Available in EPM1270 and EPM2210 devices only.

I/O Blocks

The IOEs are located in I/O blocks around the periphery of the MAX II device. There are up to seven IOEs per row I/O block (5 maximum in the EPM240 device) and up to four IOEs per column I/O block. Each column or row I/O block interfaces with its adjacent LAB and MultiTrack interconnect to distribute signals throughout the device. The row I/O blocks drive row, column, or DirectLink interconnects. The column I/O blocks drive column interconnects.

Figure 2–21 shows how a column I/O block connects to the logic array.

Note to Figure 2-21:

```
(1) Each of the four IOEs in the column I/O block can have one data_out or fast_out output, one OE output, and one data_in input.
```

I/O Standards and Banks

MAX II device IOEs support the following I/O standards:

- 3.3-V LVTTL/LVCMOS
- 2.5-V LVTTL/LVCMOS
- 1.8-V LVTTL/LVCMOS
- 1.5-V LVCMOS
- 3.3-V PCI

2–30	

I/O Standard	IOH/IOL Current Strength Setting (mA)
3.3-V LVTTL	16
	8
3.3-V LVCMOS	8
	4
2.5-V LVTTL/LVCMOS	14
	7
1.8-V LVTTL/LVCMOS	6
	3
1.5-V LVCMOS	4
	2

Table 2-6.	Programmable Dri	ve Strength	(Note 1)
------------	------------------	-------------	---------	---

Note to Table 2-6:

(1) The I_{0H} current strength numbers shown are for a condition of a V_{0UT} = V_{0H} minimum, where the V_{0H} minimum is specified by the I/O standard. The I_{0L} current strength numbers shown are for a condition of a V_{0UT} = V_{0L} maximum, where the V_{0L} maximum is specified by the I/O standard. For 2.5-V LVTTL/LVCMOS, the I_{0H} condition is V_{0UT} = 1.7 V and the I_{0L} condition is V_{0UT} = 0.7 V.

Slew-Rate Control

The output buffer for each MAX II device I/O pin has a programmable output slewrate control that can be configured for low noise or high-speed performance. A faster slew rate provides high-speed transitions for high-performance systems. However, these fast transitions may introduce noise transients into the system. A slow slew rate reduces system noise, but adds a nominal output delay to rising and falling edges. The lower the voltage standard (for example, 1.8-V LVTTL) the larger the output delay when slow slew is enabled. Each I/O pin has an individual slew-rate control, allowing the designer to specify the slew rate on a pin-by-pin basis. The slew-rate control affects both the rising and falling edges.

Open-Drain Output

MAX II devices provide an optional open-drain (equivalent to open-collector) output for each I/O pin. This open-drain output enables the device to provide system-level control signals (for example, interrupt and write enable signals) that can be asserted by any of several devices. This output can also provide an additional wired-OR plane.

Programmable Ground Pins

Each unused I/O pin on MAX II devices can be used as an additional ground pin. This programmable ground feature does not require the use of the associated LEs in the device. In the Quartus II software, unused pins can be set as programmable GND on a global default basis or they can be individually assigned. Unused pins also have the option of being set as tri-stated input pins.

Device	Version (4 Bits)	Part Number	Manufacturer Identity (11 Bits)	LSB (1 Bit) <i>(2)</i>	HEX IDCODE
EPM240Z	0000	0010 0000 1010 0101	000 0110 1110	1	0x020A50DD
EPM570Z	0000	0010 0000 1010 0110	000 0110 1110	1	0x020A60DD

Table 3-3. 32-Bit MAX II Device IDCODE (Part 2 of 2)

Notes to Table 3-2:

(1) The most significant bit (MSB) is on the left.

(2) The IDCODE's least significant bit (LSB) is always 1.

JTAG Block

The MAX II JTAG block feature allows you to access the JTAG TAP and state signals when either the USER0 or USER1 instruction is issued to the JTAG TAP. The USER0 and USER1 instructions bring the JTAG boundary-scan chain (TDI) through the user logic instead of the MAX II device's boundary-scan cells. Each USER instruction allows for one unique user-defined JTAG chain into the logic array.

Parallel Flash Loader

The JTAG block ability to interface JTAG to non-JTAG devices is ideal for generalpurpose flash memory devices (such as Intel- or Fujitsu-based devices) that require programming during in-circuit test. The flash memory devices can be used for FPGA configuration or be part of system memory. In many cases, the MAX II device is already connected to these devices as the configuration control logic between the FPGA and the flash device. Unlike ISP-capable CPLD devices, bulk flash devices do not have JTAG TAP pins or connections. For small flash devices, it is common to use the serial JTAG scan chain of a connected device to program the non-JTAG flash device. This is slow and inefficient in most cases and impractical for large parallel flash devices. Using the MAX II device's JTAG block as a parallel flash loader, with the Quartus II software, to program and verify flash contents provides a fast and costeffective means of in-circuit programming during test. Figure 3–1 shows MAX II being used as a parallel flash loader.

[•] For JTAG AC characteristics, refer to the *DC* and *Switching Characteristics* chapter in the *MAX II Device Handbook*.

For more information about JTAG BST, refer to the *IEEE 1149.1 (JTAG) Boundary-Scan Testing for MAX II Devices* chapter in the *MAX II Device Handbook*.

Figure 3–1. MAX II Parallel Flash Loader

Notes to Figure 3-1:

(1) This block is implemented in LEs.

(2) This function is supported in the Quartus II software.

In System Programmability

MAX II devices can be programmed in-system via the industry standard 4-pin IEEE Std. 1149.1 (JTAG) interface. In-system programmability (ISP) offers quick, efficient iterations during design development and debugging cycles. The logic, circuitry, and interconnects in the MAX II architecture are configured with flash-based SRAM configuration elements. These SRAM elements require configuration data to be loaded each time the device is powered. The process of loading the SRAM data is called configuration. The on-chip configuration flash memory (CFM) block stores the SRAM element's configuration data. The CFM block stores the design's configuration pattern in a reprogrammable flash array. During ISP, the MAX II JTAG and ISP circuitry programs the design pattern into the CFM block's non-volatile flash array.

The MAX II JTAG and ISP controller internally generate the high programming voltages required to program the CFM cells, allowing in-system programming with any of the recommended operating external voltage supplies (that is, 3.3 V/2.5 V or 1.8 V for the MAX IIG and MAX IIZ devices). ISP can be performed anytime after V_{CCINT} and all V_{CCIO} banks have been fully powered and the device has completed the configuration power-up time. By default, during in-system programming, the I/O pins are tri-stated and weakly pulled-up to V_{CCIO} to eliminate board conflicts. The insystem programming clamp and real-time ISP feature allow user control of I/O state or behavior during ISP.

For more information, refer to "In-System Programming Clamp" on page 3–6 and "Real-Time ISP" on page 3–7.

These devices also offer an ISP_DONE bit that provides safe operation when insystem programming is interrupted. This ISP_DONE bit, which is the last bit programmed, prevents all I/O pins from driving until the bit is programmed.

Referenced Documents

This chapter refereces the following documents:

- *DC and Switching Characteristics* chapter in the *MAX II Device Handbook*
- Using MAX II Devices in Multi-Voltage Systems chapter in the MAX II Device Handbook

Document Revision History

Table 4–1 shows the revision history for this chapter.

Table 4–1.	Document Revision History
	Boournent novioren motory

Date and Revision	Changes Made	Summary of Changes
October 2008, version2.1	 Updated "MAX II Hot-Socketing Specifications" and "Power-On Reset Circuitry" sections. 	_
	 Updated New Document Format. 	
December 2007, version 2.0	 Updated "Hot Socketing Feature Implementation in MAX II Devices" section. 	Updated document with MAX IIZ information.
	 Updated "Power-On Reset Circuitry" section. 	
	■ Updated Figure 4–5.	
	 Added "Referenced Documents" section. 	
December 2006, version 1.5	 Added document revision history. 	_
February 2006,	 Updated "MAX II Hot-Socketing Specifications" section. 	_
version 1.4	 Updated "AC and DC Specifications" section. 	
	 Updated "Power-On Reset Circuitry" section. 	
June 2005, version 1.3	 Updated AC and DC specifications on page 4-2. 	_
December 2004,	 Added content to Power-Up Characteristics section. 	—
version 1.2	■ Updated Figure 4-5.	
June 2004, version 1.1	Corrected Figure 4-2.	_

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit
V _{ccio}	I/O supply voltage	—	3.0	3.3	3.6	V
V _{IH}	High-level input voltage		$0.5 \times V_{ccio}$	_	V _{CC10} + 0.5	V
V _{IL}	Low-level input voltage		-0.5	_	$0.3 \times V_{\text{ccio}}$	V
V _{он}	High-level output voltage	IOH = -500 μA	$0.9 \times V_{ccio}$	_	_	V
V _{ol}	Low-level output voltage	IOL = 1.5 mA			$0.1 \times V_{ccio}$	V

Table 5–10. 3.3-V PCI Specifications (Note 1)

Note to Table 5-10:

(1) 3.3-V PCI I/O standard is only supported in Bank 3 of the EPM1270 and EPM2210 devices.

Bus Hold Specifications

Table 5–11 shows the MAX II device family bus hold specifications.

					V _{ccio} I	Level				
		1.	5 V	1.	8 V	2.	5 V	3.3	3 V	
Parameter	Conditions	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Low sustaining current	$V_{IN} > V_{IL}$ (maximum)	20		30	_	50	_	70		μA
High sustaining current	V _{IN} < V _⊮ (minimum)	-20	—	-30	_	-50	—	-70		μA
Low overdrive current	$0 V < V_{IN} < V_{CCIO}$	_	160		200		300		500	μA
High overdrive current	$0 V < V_{IN} < V_{CCIO}$	_	-160	_	-200	_	-300		-500	μA

Table 5–11.	Bus Hold Specifications
-------------	--------------------------------

Power-Up Timing

Table 5–12 shows the power-up timing characteristics for MAX II devices.

Table 5-12. MAX II Power-Up Timing

Symbol	Parameter	Device	Min	Тур	Max	Unit
t _{config} (1)	The amount of time from when	EPM240		_	200	μs
	minimum V_{CCINT} is reached until the device enters user mode (2)	EPM570	_	_	300	μs
		EPM1270		_	300	μs
		EPM2210			450	μs

Notes to Table 5-12:

(1) Table 5–12 values apply to commercial and industrial range devices. For extended temperature range devices, the t_{CONFIG} maximum values are as follows:
 Device Maximum

Device	Maximu
EPM240	300 µs
EPM570	400 µs
EPM1270	400 µs
EPM2210	500 µs

(2) For more information about POR trigger voltage, refer to the *Hot Socketing and Power-On Reset in MAX II Devices* chapter in the *MAX II Device Handbook*.

Power Consumption

Designers can use the Altera[®] PowerPlay Early Power Estimator and PowerPlay Power Analyzer to estimate the device power.

• For more information about these power analysis tools, refer to the *Understanding and Evaluating Power in MAX II Devices* chapter in the *MAX II Device Handbook* and the *PowerPlay Power Analysis* chapter in volume 3 of the *Quartus II Handbook*.

Timing Model and Specifications

MAX II devices timing can be analyzed with the Altera Quartus[®] II software, a variety of popular industry-standard EDA simulators and timing analyzers, or with the timing model shown in Figure 5–2.

MAX II devices have predictable internal delays that enable the designer to determine the worst-case timing of any design. The software provides timing simulation, point-to-point delay prediction, and detailed timing analysis for device-wide performance evaluation.

External Timing Parameters

External timing parameters are specified by device density and speed grade. All external I/O timing parameters shown are for the 3.3-V LVTTL I/O standard with the maximum drive strength and fast slew rate. For external I/O timing using standards other than LVTTL or for different drive strengths, use the I/O standard input and output delay adders in Table 5–27 through Table 5–31.

Table 5–23 shows the external I/O timing parameters for EPM240 devices.

 Table 5–23.
 EPM240 Global Clock External I/O Timing Parameters
 (Part 1 of 2)

			MAX II / MAX IIG MAX IIZ												
			-3 S Gi	Speed rade	–4 S Gr	Speed ade	–5 S Gr	Speed ade	-6 S Gr	Speed ade	-7 \$ Gr	Speed ade	–8 S Gr	Speed ade	•
Symbol	Parameter	Condition	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
t _{PD1}	Worst case pin-to-pin delay through 1 look-up table (LUT)	10 pF		4.7	_	6.1	_	7.5	_	7.9		12.0	_	14.0	ns
t _{PD2}	Best case pin-to-pin delay through 1 LUT	10 pF	_	3.7	_	4.8	_	5.9	_	5.8	_	7.8	_	8.5	ns
t _{su}	Global clock setup time	_	1.7	_	2.2	—	2.7		2.4	_	4.1	_	4.6		ns
t _H	Global clock hold time	_	0		0	_	0		0		0		0		ns
t _{co}	Global clock to output delay	10 pF	2.0	4.3	2.0	5.6	2.0	6.9	2.0	6.6	2.0	8.1	2.0	8.6	ns
t _{ch}	Global clock high time	_	166		216	—	266		253		335		339		ps
t _{CL}	Global clock low time	_	166		216	_	266		253		335		339		ps
t _{cnt}	Minimum global clock period for 16-bit counter	_	3.3		4.0		5.0		5.4		8.1		8.4		ns

For more information about each external timing parameters symbol, refer to the *Understanding Timing in MAX II Devices* chapter in the *MAX II Device Handbook*.

		I	MAX II / MAX II	G			
I/O Standard		–3 Speed Grade	–4 Speed Grade	–5 Speed Grade	–6 Speed Grade	–7 Speed Grade	–8 Speed Grade
3.3-V LVTTL	304	304	304	304	304	304	MHz
3.3-V LVCMOS	304	304	304	304	304	304	MHz
2.5-V LVTTL	220	220	220	220	220	220	MHz
2.5-V LVCMOS	220	220	220	220	220	220	MHz
1.8-V LVTTL	200	200	200	200	200	200	MHz
1.8-V LVCMOS	200	200	200	200	200	200	MHz
1.5-V LVCMOS	150	150	150	150	150	150	MHz
3.3-V PCI	304	304	304	304	304	304	MHz

TADIE 3–33. MAX II MAXIMUM OULPUL CIOCK RALE IOF I/	Table 5-33.	MAX II	Maximum	Output	Clock	Rate	for l	/0
---	-------------	--------	---------	--------	-------	------	-------	----

JTAG Timing Specifications

Figure 5–6 shows the timing waveforms for the JTAG signals.

Figure 5–6. MAX II JTAG Timing Waveforms

Table 5–34 shows the JTAG Timing parameters and values for MAX II devices.

Table 5–34. MAX II JTAG Timing Parameters	(Part 1 of 2)
---	---------------

Symbol	Parameter	Min	Max	Unit
t _{JCP} (1)	TCK clock period for $V_{\text{ccio1}} = 3.3 \text{ V}$	55.5		ns
	TCK clock period for $V_{ccio1} = 2.5 V$	62.5		ns
	TCK clock period for $V_{CCIO1} = 1.8 V$	100	_	ns
	TCK clock period for $V_{\text{ccio1}} = 1.5 \text{ V}$	143		ns
t _{JCH}	TCK clock high time	20		ns
t _{JCL}	TCK clock low time	20	_	ns

Symbol	Parameter	Min	Max	Unit
t _{JPSU}	JTAG port setup time (2)	8	_	ns
t _{jph}	JTAG port hold time	10	_	ns
t _{JPC0}	JTAG port clock to output (2)		15	ns
t _{JPZX}	JTAG port high impedance to valid output (2)	_	15	ns
t _{JPXZ}	JTAG port valid output to high impedance (2)	_	15	ns
t _{ussu}	Capture register setup time	8	_	ns
t _{JSH}	Capture register hold time	10	_	ns
t _{usco}	Update register clock to output		25	ns
t _{JSZX}	Update register high impedance to valid output	_	25	ns
t _{JSXZ}	Update register valid output to high impedance		25	ns

Table 5–34. MAX II JTAG Timing Parameters (Part 2 of 2)

Notes to Table 5-34:

(1) Minimum clock period specified for 10 pF load on the TDO pin. Larger loads on TDO will degrade the maximum TCK frequency.

(2) This specification is shown for 3.3-V LVTTL/LVCMOS and 2.5-V LVTTL/LVCMOS operation of the JTAG pins. For 1.8-V LVTTL/LVCMOS and 1.5-V LVCMOS, the t_{JPSU} minimum is 6 ns and t_{JPC0}, t_{JPZX}, and t_{JPXZ} are maximum values at 35 ns.

Referenced Documents

This chapter references the following documents:

- *I/O Structure* section in the *MAX II Architecture* chapter in the *MAX II Device Handbook*
- Hot Socketing and Power-On Reset in MAX II Devices chapter in the MAX II Device Handbook
- Operating Requirements for Altera Devices Data Sheet
- PowerPlay Power Analysis chapter in volume 3 of the Quartus II Handbook
- Understanding and Evaluating Power in MAX II Devices chapter in the MAX II Device Handbook
- Understanding Timing in MAX II Devices chapter in the MAX II Device Handbook
- Using MAX II Devices in Multi-Voltage Systems chapter in the MAX II Device Handbook

Document Revision History

Table 5–35 shows the revision history for this chapter.

Table 5-35. Document Revision History (Part 1 of 2)

Date and Revision	Changes Made	Summary of Changes
August 2009, version 2.5	 Added Table 5–28, Table 5–29, and Table 5–30. Updated Table 5–2, Table 5–4, Table 5–14, Table 5–15, Table 5–16, Table 5–17, Table 5–18, Table 5–19, Table 5–20, Table 5–21, Table 5–22, Table 5–23, Table 5–24, Table 5–27, Table 5–31, Table 5–32, and Table 5–33. 	Added information for speed grade –8
November 2008, version 2.4	 Updated Table 5–2. Updated "Internal Timing Parameters" section. 	_
October 2008, version 2.3	 Updated New Document Format. Updated Figure 5–1. 	
July 2008, version 2.2	■ Updated Table 5–14 , Table 5–23 , and Table 5–24.	_
March 2008, version 2.1	Added (Note 5) to Table 5–4.	_
December 2007, version 2.0	 Updated (Note 3) and (4) to Table 5–1. Updated Table 5–2 and added (Note 5). Updated ICCSTANDBY and ICCPOWERUP information and added IPULLUP information in Table 5–4. Added (Note 1) to Table 5–10. Updated Figure 5–2. Added (Note 1) to Table 5–13. Updated Table 5–13 through Table 5–24, and Table 5–27 through Table 5–30. Added tCOMB information to Table 5–15. Updated Figure 5–6. Added "Referenced Documents" section. 	Updated document with MAX IIZ information.
December 2006, version 1.8	 Added note to Table 5–1. Added document revision history. 	_
July 2006, version 1.7	 Minor content and table updates. 	—
February 2006, version 1.6	 Updated "External Timing I/O Delay Adders" section. Updated Table 5–29. Updated Table 5–30. 	_
November 2005, version 1.5	■ Updated Tables 5-2, 5-4, and 5-12.	_
August 2005, version 1.4	 Updated Figure 5-1. Updated Tables 5-13, 5-16, and 5-26. Removed Note 1 from Table 5-12. 	