

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	40MHz
Connectivity	EBI/EMI, I²C, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	36
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.25K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/nuvoton-technology-corporation-america/w79e633a40pl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Banking Co Bit:		7	6	5	4	3	2	1	0
	2		-				EN128K	DCP12	DCP11	DCP10
		Mne	monic: F	ROMCON	1		×	N. M.	Address	
BIT	NAME					FL	INCTION	an	2	
7-4	-	Res	erved					Un.	6	
3 EN128K On-chip ROM banking enable. Set this bit to enable APFlash0 and APFla by banking mechanism. The P1.x is selected to be the auxiliary highest add line A16.										
2-0 DCP1[2:0] A16 selection. By banking mechanism, address 16 (A16) indicates where the CPU fetcher code from AP0(A16=0) or AP1(AP16=1). By default, P1.7 is defined as A10 See table below										
DCP1[2	-		Ī					-		Y
		21.0	P1.1		.2	P1.3 011	P1.4	P1.5	P1.6	P1.
<u> </u>		000		0	10	011	100	101	110	111
ISF AU	Idress Lov Bit:	-	: 7	6	5	4	3	2	1	0
	Dit.	Г	, A7	A6	A5	4 A4	A3	A2	A1	A0
		L	monic: S		7.10	7.1	7.0		ess: ACh	7.0
Low byt	e destinatio				n Progra	amming o	operations		555. AON	
•	ldress Hig				Ū	Ū				
	Bit:		7	6	5	4	3	2	1	0
			A15	A14	A13	A12	A11	A10	A9	A8
				SERAH				Addre	ess: ADh	
		Mne	monic: S						AH SERAL) ronroo
the add	te destination ress of the F	n add	ress for	In Syste) iepies
the add	ress of the F ta Buffer	on add ROM b	ress for yte that	In Syste will be er	ased, p	programm	ned or rea	d.		
the add	ress of the F	on add ROM b	ress for yte that 7	In Syste will be er		orogramm 4	and or rea	2	1	
the add	ress of the F ta Buffer	on add ROM b	ress for yte that 7 D7	In Syste will be er 6 D6	ased, p	programm	ned or rea	d.	1 D1	0 D0
the add ISP Da	ress of the F ta Buffer	on add ROM b Mnei vrite a	ress for yte that 7 D7 monic: \$	n Syste will be er 6 D6 SFRFD	ased, p 5 D5	4 D4	3 D3	2 D2	1 D1 Address	0 D0
the add ISP Da	ress of the F ta Buffer Bit: node, read/\	Mner vrite a	ress for yte that 7 D7 monic: \$	n Syste will be er 6 D6 SFRFD	ased, p 5 D5	4 D4	3 D3	2 D2	1 D1 Address	0 D0

nuvoTon

BANK	Select APFlash bank	s for ISP.	Set it 1	to	access	APFlash1,	clear i	it for	access	to
	APFlash0.									

WFWIN On-chip FLASH EPROM bank select for in-system programming. 0= AP FLASH EPROM bank is selected as destination for re-programming. 1= LD FLASH EPROM bank is selected as destination for re-programming. NOE Flash EPROM output enable.

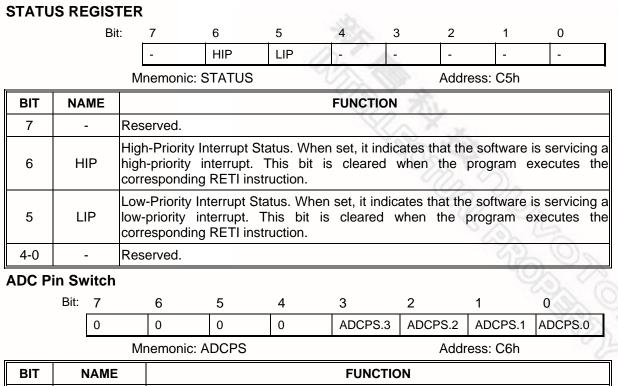
NCE Flash EPROM chip enable.

CTRL[3:0] The Flash Control Signals.

ISP MODE	BANK	WFWIN	NOE	NCE	CTRL[3:0]	SFRAH, SFRAL	SFRFD
Erase 4KB LDFlash	0	1	1	0	0010	x	Х
Erase 64K APFlash0	0	0	1	0	0010	x	Х
Erase 64K APFlash1	1	0	1	0	0010	x	Х
Program 4KB LDFlash	0	1	1	0	0001	Address in	Data in
Program 64KB APFlash0	0	0	1	0	0001	Address in	Data in
Program 64KB APFlash1	1	0	1	0	0001	Address in	Data in
Read 4KB LDFlash	0	1	0	0	0000	Address in	Data out
Read 64KB APFlash0	0	0	0	0	0000	Address in	Data out
Read 64KB APFlash1	1	0	0	0	0000	Address in	Data out

PORT 3

Bit:	7	6	5	4	3	2	1	0
	P3.7	P3.6	P3.5	P3.4	P3.3	P3.2	P3.1	P3.0


Mnemonic: P3

Address: B0h

P3.7-0: General-purpose I/O port. Each pin also has an alternative input or output function, which is described below.

BIT	NAME	FUNCTION
7	P3.7	RD : strobe for reading from external RAM
6	P3.6	WR : strobe for writing to external RAM
5	P3.5	T1: Timer 1 external count input
4	P3.4	T0: Timer 0 external count input
		- 26 -

nuvoTon

ЫІ		FUNCTION
7-4	-	Must be zeros
3-0	ADCPS.3-0	Switch I/O pins, P1.7~P1.4, to analog input. Analog inputs of ADC0-ADC3 share the I/O pins from P1.4 to P1.7. Setting the bits in ADCPS[3:0] switches the corresponding pins of Port1[7:4] to analog input function.

ADCPS.3-0: Switch P1.7~P1.4 to analog input function

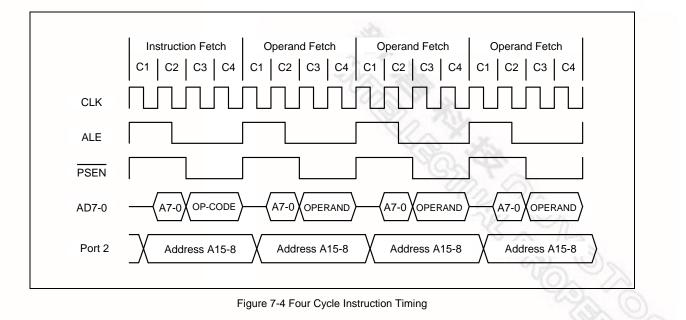
BIT	CORRESPONDING PIN
ADCPS.0	P1.4
ADCPS.1	P1.5
ADCPS.2	P1.6
ADCPS.3	P1.7

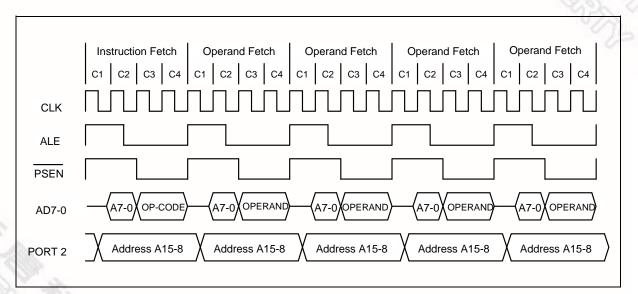
Timed Access

ΤA

Bit:	7	6	5	4	3	2	1	0
	TA.7	TA.6	TA.5	TA.4	TA.3	TA.2	TA.1	TA.0
Mr	emonic:	ТА				Address	: C7h	

This register controls the access to protected bits. To access protected bits, the program must write AAH, followed immediately by 55H, to TA. This opens a window for three machine cycles, during which the program can write to protected bits.


TIMER 2 CONTROL


Bit: 7 6 5 4 3 2 1 0

Instruction Set for W79E(L)633, continued

	OP-CODE	HEX CODE	BYTES	W79E(L)633 MACHINE CYCLE	W79E(L)633 CLOCK CYCLES	8032 CLOCK CYCLES	W79E(L)633 V 8032 SPEED RATIO
	DEC R5	1D	1	1	4	12	3
	DEC R6	1E	1	1	4	12	3
	DEC R7	1F	1	1	4	12	3
	DEC @R0	16	1	1	4	12	3
	DEC @R1	17	1	1	4 5	12	3
	DEC direct	15	2	2	8	12	1.5
	MUL AB	A4	1	5	20	48	2.4
F	DIV AB	84	1	5	20	48	2.4
	DA A	D4	1	1	4	12	3
	ANL A, R0	58	1	1	4	12	3
	ANL A, R1	59	1	1	4	12	3
	ANL A, R2	5A	1	1	4	12	3
	ANL A, R3	5B	1	1	4	12	3
	ANL A, R4	5C	1	1	4	12	3
	ANL A, R5	5D	1	1	4	12	3
	ANL A, R6	5E	1	1	4	12	3
	ANL A, R7	5F	1	1	4	12	3
	ANL A, @R0	56	1	1	4	12	3
	ANL A, @R1	57	1	1	4	12	3
	ANL A, direct	55	2	2	8	12	1.5
	ANL A, #data	54	2	2	8	12	1.5
2	ANL direct, A	52	2	2	8	12	1.5
\sim	ANL direct, #data	53	3	3	12	24	2
1	ORL A, R0	48	1	1	4	12	3
2	ORL A, R1	49	1	1	4	12	3
X7	ORL A, R2	4A	1	1	4	12	3
X	ORL A, R3	4B	1	1	4	12	3
	ORL A, R4	4C	1	1	4	12	3
	ORL A, R5	4D	1	1	4	12	3
	ORL A, R6	4E	1	1	4	12	3
	ORL A, R7	4F	1	1	4	12	3
	ORL A, @R0	46	1	1	4	12	3
	ORL A, @R1	47	1	1	4	12	3

nuvoTon

7.1.1 External Data Memory Access Timing

The timing for the MOVX instruction is another feature of the W79E(L)633. In the standard 8051/52, the MOVX instruction has a fixed execution time of 2 machine cycles. However, in the W79E(L)633, the duration of the access can be controlled by the user.

The instruction starts off as a normal op-code fetch that takes four clocks. In the next machine cycle, the W79E(L)633 puts out the external memory address, and the actual access occurs. The user can control the duration of this access by setting the stretch value in CKCON, bits 2 - 0. As shown in the table below, these three bits can range from zero to seven, resulting in MOVX instructions that take two to nine machine cycles. The default value is one, resulting in a MOVX instruction of three machine cycles.

nuvoTon

start:

	mov	ckcon,#01h	; select 2 ^ 17 timer
;	mov	ckcon,#61h	; select 2 ^ 20 timer
;	mov	ckcon,#81h	; select 2 ^ 23 timer
;	mov	ckcon,#c1h	; select 2 ^ 26 timer
	mov	TA,#aah	
	mov	TA,#55h	
	mov	WDCON,#00000011B	
	setb	EWDI	
	setb	ea	
	jmp	\$; wait time out
Clock	Contr	ol	

Clock Control

WD1, WD0: CKCON.7, CKCON.6 - Watchdog Timer Mode select bits. These two bits select the timeout interval for the Watchdog Timer. The reset interval is 512 clocks longer than the selected interval. The default time-out is 2¹⁷ clocks, the shortest time-out period.

14. Serial Port

The W79E(L)633 serial port is a full-duplex port, and the W79E(L)633 provides additional features, such as Frame Error Detection and Automatic Address Recognition. The serial port is capable of synchronous and asynchronous communication. In synchronous mode, the W79E(L)633 generates the clock and operates in half-duplex mode. In asynchronous mode, the serial port can simultaneously transmit and receive data. The transmit register and the receive buffer are both addressed as SBUF, but any write to SBUF writes to the transmit register while any read from SBUF reads from the receive buffer. The serial port can operate in four modes, as described below.

14.1 Mode 0

This mode provides half-duplex, synchronous communication with external devices. In this mode, serial data is transmitted and received on the RXD line, and the W79E(L)633 provides the shift clock on TxD, whether the device is transmitting or receiving. Eight bits are transmitted or received per frame, LSB first. The baud rate is 1/12 or 1/4 of the oscillator frequency, as determined by the SM2 bit (SCON.5; 0 = 1/12; 1 = 1/4). This programmable baud rate is the only difference between the standard 8051/52 and the W79E(L)633 in mode 0.

Any write to SBUF starts transmission. The shift clock is activated, and data is shifted out on RxD until all eight bits are transmitted. If SM2 is 1, the data appears on RxD one clock period before the falling edge of the shift clock on TxD. Then, the clock remains low for two clock periods before going high again. If SM2 is 0, the data appears on RxD three clock periods before the falling edge of the shift clock on TxD, and the clock on TxD remains low for six clock periods before going high again. This ensures that, at the receiving end, the data on the RxD line can be clocked on the rising edge of the shift clock or latched when the clock is low. The TI flag is set high in C1 following the end of transmission. The functional block diagram is shown below.

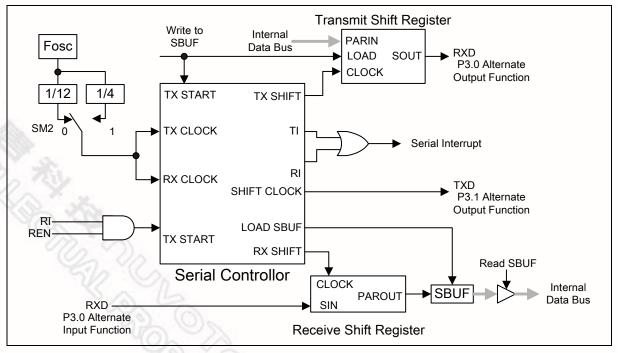


Figure 14-1 Serial Port Mode 0

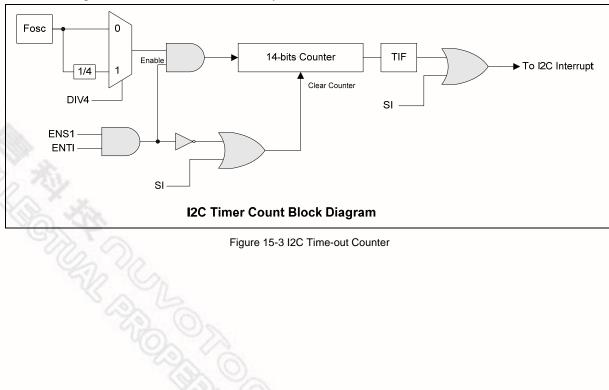
15.1.4 Status Register, I2STATUSx

I2STATUSx is an 8-bit read-only register. The five most significant bits contain the status code. The three least significant bits are always 0. There are 23 possible status codes. When I2STATUSx contains F8H, no serial interrupt is requested. All other I2STATUSx values correspond to defined I2C ports states. When each of these states is entered, a status interrupt is requested (SI = 1). A valid status code is present in I2STATUSx one machine cycle after SI is set by hardware and is still present one machine cycle after SI has been reset by software.

In addition, state 00H stands for a Bus Error. A Bus Error occurs when a START or STOP condition is present at an illegal position in the format frame. Examples of illegal positions are during the serial transfer of an address byte, a data byte or an acknowledge bit.

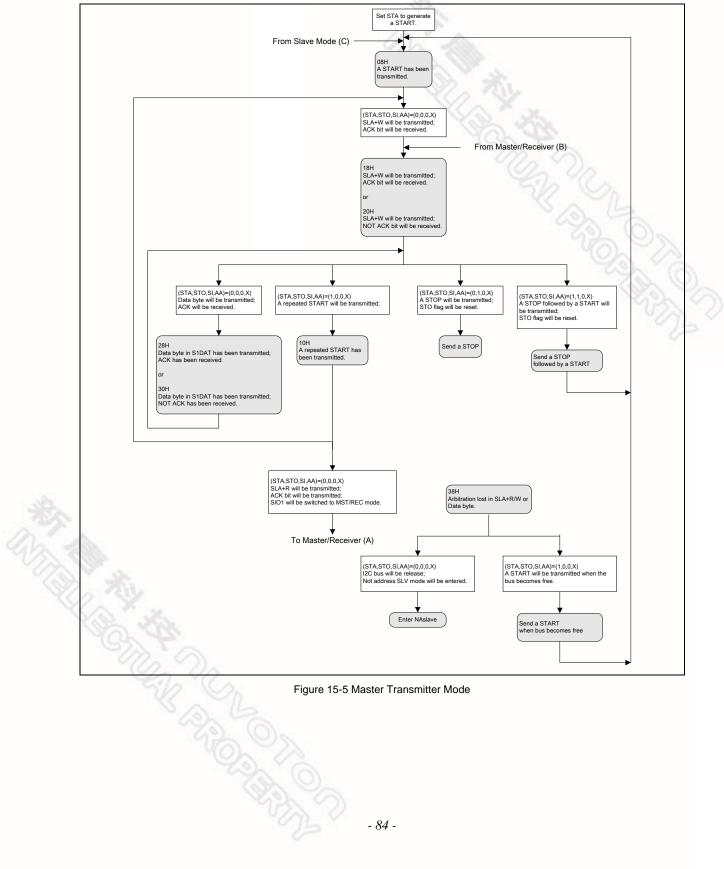
15.1.5 I2C Clock Baud Rate Control, I2CLKx

The data baud rate of I2C is determined by I2CLKx register when I2C port is in a master mode. In the slave modes, SIO1 will automatically synchronize with any clock frequency up to 400 KHz from master I2C device.

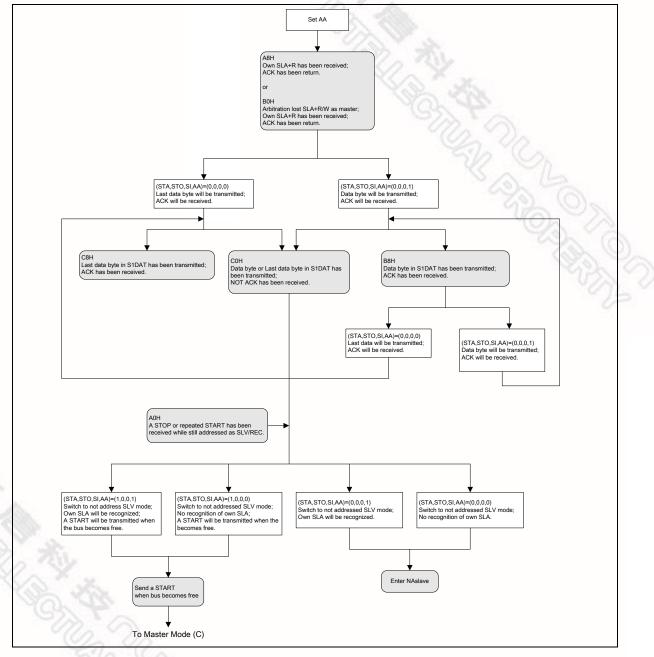

The data baud rate of I2C setting conforms to the following equation.

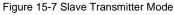
Data Baud Rate of I2C = F_{CPU} / (I2CLKx + 1), where $F_{CPU} = F_{OSC}/4$.

For example, if F_{OSC} =16MHz (F_{CPU} =4MHz), the I2CLK=40(28H), the baud rate =4MHz/(40+1) = 97.56K bits/sec.

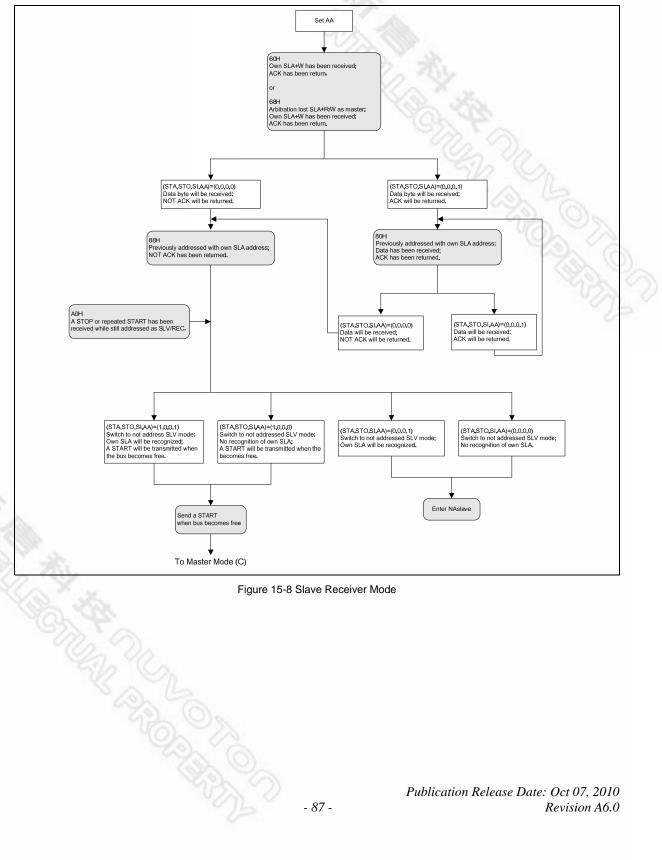

15.1.6 I2C Time-out Counter, I2Timerx

In W79E(L)633, the I2C logic block provides a 14-bit timer-out counter that helps user to deal with bus pending problem. When SI is cleared user can set ENTI=1 to start the time-out counter. If I2C bus hangs up too long to get any valid signal from devices on the bus, the time-out counter overflows cause TIF=1 to request an I2C interrupt. The I2C interrupt is requested in the condition of either SI=1 or TIF=1. Flags SI and TIF must be cleared by software.




Publication Release Date: Oct 07, 2010 Revision A6.0

15.3.1 Master/Transmitter Mode



15.3.3 Slave/Transmitter Mode

15.3.4 Slave/Receiver Mode

Publication Release Date: Oct 07, 2010 Revision A6.0

nuvoTon

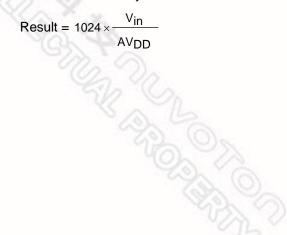


Figure 16-2 ADC Block Diagram

16.2 ADC Resolution and Analog Supply

The ADC circuit has its own supply pins AV_{DD} and AV_{SS} , which are connected to each end of the DAC's resistance-ladder. The ladder has 1023 equally-spaced taps, separated by a resistance of "R". The first tap is located 0.5 x R above AVss, and the last tap is located 0.5 x R below Vref+, giving a total ladder resistance of 1024 x R. This structure ensures that the DAC is monotonic and results in a symmetrical quantization error.

For input voltages between AV_{SS} and [(AV_{SS}) + $\frac{1}{2}$ LSB], the 10-bit result of an A/D conversion will be 000000000B = 000H. For input voltages between [(AV_{DD}) - 3/2 LSB] and AV_{DD}, the result of a conversion will be 111111111B = 3FFH. The input voltage (Vin) should be between AV_{DD} and AV_{SS}. The result can always be calculated from the following formula:

16.3 ADC Control Registers

ADC Control Register

	•								
	Bit:	7	6	5	4	3	2	1	0
		ADCEN	-	ADCEX	ADCI	ADCS	AADR2	AADR1	AADR0
Mnemonic: ADCCON Address: C0h									
ADCEN	Enable A/D Converter Function. Set ADCEN to logic high to enable ADC block.								
ADCEX	Enable external start control of ADC conversion by a rising edge from P1.2. ADCEX=0: Disable external start. ADCEX=1: Enable external start control.								
ADCI	A/D Conve completed a								

- ADCS A/D Converting Start. Setting this bit by software starts the conversion of the selected ADC input. ADCS remains high while ADC is converting signal and will be automatically cleared by hardware when ADC conversion is completed.
- AADR[2:0] Select and enable analog input channel from ADC0 to ADC3.

The ADCI and ADCS control the ADC conversion as below:

ADCI	ADCS	ADC STATUS
0	0	ADC not busy; A conversion can be started.
0	1	ADC busy; Start of a new conversion is blocked.
1	0	Conversion completed; Start of a new conversion requires ADCI = 0.
1	1	This is an internal temporary state that user can ignore it.

ADC Converter Result Low Register

Bit:	7	6	5	4	3	2	1	0
	ADCLK1	ADCLK0	-	-	-	-	ADC.1	ADC.0
	Macmonia ADCI					م ما ما بده م		

Mnemonic: ADCL

Address: C1h

ADCLK[1:0] ADC Clock Frequency Select. The 10-bit ADC needs a clock to drive the converting that the clock frequency may not over 4MHz. ADCLK[1:0] controls the frequency of the clock to ADC block as below table.

ADCLK1	ADCLK0	ADC CLOCK FREQUENCY
0	0	Crystal clock / 4 (Default)
0	1	Crystal clock / 8
1	0	Crystal clock / 16
1	2100	Reserved

ADC[1:0] 2 LSB of 10-bit A/D conversion result. The 2 bits are read only.

nuvoTon

P43AH, P43AL:

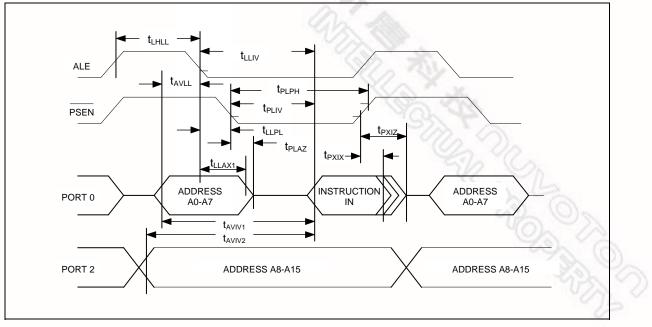
The Base address register for comparator of P4.3. P43AH contains the high-order byte of address, P43AL contains the low-order byte of address.

PORT 4

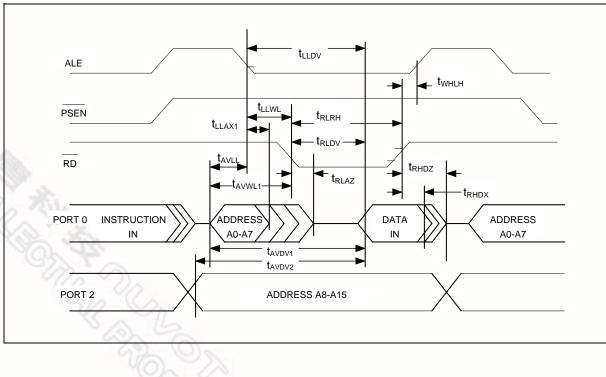
Bit:	7	6	5	4	3	2	1	0	
	-	-	-	- 78	P4.3	P4.2	P4.1	P4.0	
Mnemonic: P4 Addres								s: A5h	
Part 4 is a hi directional I/O part with internal pull upa									

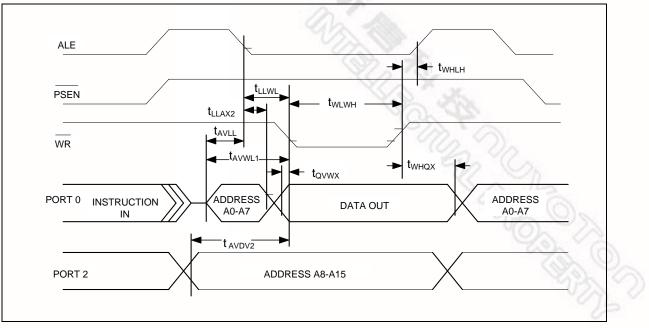
P4.3-0 Port 4 is a bi-directional I/O port with internal pull-ups.

Port 4 Chip-select Polarity

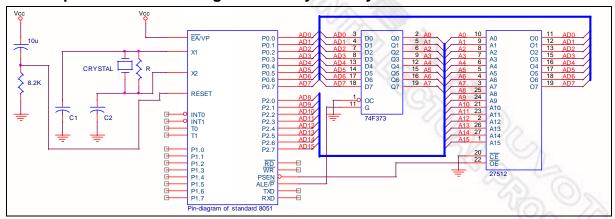

	Bit:	7	6	5	4	3	2	100	0
		P43INV	P42INV	P42INV	P40INV	-	PWDNH	RMWFP	-
	Mnemonic: P4CSIN						Addres	s: A2h	2
P4xINV	P4xINV The active polarity of P4.x when it is set as a chip-select strobe output. Hig High. Low = Active Low.						gh = Active		

PWDNH Set PWDNH to logic 1 then ALE and PSEN will keep high state, clear this bit to logic 0 then ALE and PSEN will output low during power down mode.


RMWFP Control Read Path of Instruction "Read-Modify-Write". When this bit is set, the read path of executing "read-modify-write" instruction is from port pin otherwise from SFR.

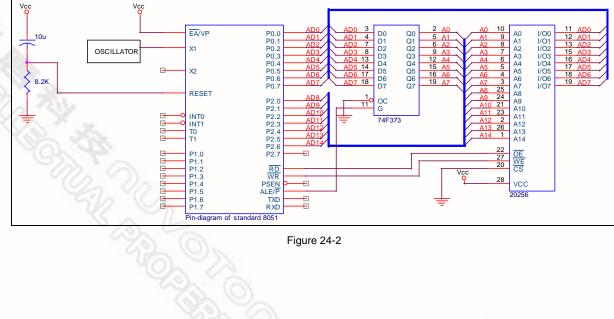

23.6 Program Memory Read Cycle

23.7 Data Memory Read Cycle



23.8 Data Memory Write Cycle

24. Typical Application Circuits24.1 Expanded External Program Memory and Crystal


Figure 24-1

CRYSTAL	C1	C2	R
16 MHz	20P	20P	- 201
24 MHz	12P	12P	- 9
33 MHz	10P	10P	3.3K
40 MHz	1P	1P	3.3K

The above table shows the reference values for crystal applications.

Note: C1, C2, R components refer to Figure A.

24.2 Expanded External Data Memory and Oscillator

	\PFlash: MOV A,P1	SCA	N P1.0
	ANL A,#01H	, 504	11.0
	CJNE A,#01H,PROG	RAM_APFlash	; IF P1.0 = 0, ENTER IN-SYSTEM PROGRAMMING ; MODE
	JMP NORMAL_MOD	E	A AL
PROGR	AM_64:		
	MOV TA, #AAH	; CHP	CON register is written protect by TA register.
	MOV TA, #55H		
		+; CHPCON = (03H, ENTER IN-SYSTEM PROGRAMMING MODE
	MOV SFRCN, #0H		
	MOV TCON, #00H	; TR = 0 TIME	R0 STOP
	MOV IP, #00H		
	MOV IE, #82H		ERRUPT ENABLE FOR WAKE-UP FROM IDLE MOD
	MOV R6, #F0H		
	MOV R7, #FFH	; TH0	= FFH
	MOV TL0, R6		
	MOV TH0, R7		
	MOV TMOD, #01H		, SET TIMER0 A 16-BIT TIMER
	MOV TCON, #10H		
	MOV PCON, #01H	; ENTER IDLE ;PROGRAMM	MODE FOR LAUNCHING THE IN-SYSTEM
•******* ,	***** ******************	*******	****************
;* Norm	al mode APFlash prog		
.*******		**********************	*******************
NORMA	L_MODE:		
		; User's applic	ation program
		, User's applic	alion program
		·	
EXAMP	LE 2:		
,********	***************************************	·····	***************************************
			er program will erase the APFlash first, then reads the
; new ;* .*******	code from external SR	AM and program	them into APFlash bank. XTAL = 24 MHz
, .chip 80	52		
.RAMCI			
.symbol			
.0911001	Con Con		
СНРСС	N EQU	9FH	
	EQU	C7H	
TA			
ТА		No Va	
ТА	0	3.0	

nuvoTon

MOV TL0,R6	
MOV TH0,R7	
ERASE_P_4K:	
MOV SFRCN,#22H	; SFRCN = 22H, ERASE APFlash0
	; SFRCN = A2H, ERASE APFlash1
MOV TCON,#10H	; TCON = 10H, TR0 = 1,GO
MOV PCON,#01H	; ENTER IDLE MODE (FOR ERASE OPERATION)
.**********	******
, ;* BLANK CHECK	
*****	****
, MOV SFRCN,#0H	; SFRCN = 00H, READ APFlash0
	; SFRCN = 80H, READ APFlash1
MOV SFRAH,#0H	; START ADDRESS = 0H
MOV SFRAL,#0H	YON A
MOV R6,#FDH	; SET TIMER FOR READ OPERATION, ABOUT 1.5 µS.
MOV R7,#FFH	
MOV TL0,R6	
MOV TH0,R7	
blank_check_loop:	
SETB TR0	; enable TIMER 0
MOV PCON,#01H	; enter idle mode
MOV A,SFRFD	; read one byte
CJNE A,#FFH,blank_	-
INC SFRAL	; next address
MOV A,SFRAL	
JNZ blank_check_lo INC SFRAH	op
MOV A,SFRAH	hash loop wood address FFFFI
	heck_loop ;end address = FFFFH
JMP PROGRAM_AP	FlashROM
blank_check_error:	
JMP \$	
.*************************************	***************************************
;* RE-PROGRAMMING APFla	ash BANK
, PROGRAM_APFlashROM:	
MOV R2,#00H	; Target low byte address
MOV R1,#00H	; TARGET HIGH BYTE ADDRESS
MOV DPTR,#0H	

nuvoTon

MOV SFRAH,R1 MOV SFRCN,#21H MOV R6,#9CH MOV R7,#FFH MOV TL0,R6 MOV TH0,R7	; SFRAH, Target high address ; SFRCN = 21H, PROGRAM APFlash0 ; SFRCN = A1H, PROGRAM APFlash1 ; SET TIMER FOR PROGRAMMING, ABOUT 50 μS.
	; SFRAL = LOW BYTE ADDRESS ROM_PC_TO_ACC ; THIS PROGRAM IS BASED ON USER'S ; CIRCUIT.
	; SAVE DATA INTO SRAM TO VERIFY CODE.
CJNE R2,#0H,PROG INC R1 MOV SFRAH,R1 CJNE R1,#0H,PROG	
, ; * VERIFY APFlash BANK	*****
, MOV R4,#03H MOV R6,#FDH MOV R7,#FFH MOV TL0,R6 MOV TH0,R7	
MOV THO,R7 MOV DPTR,#0H MOV R2,#0H MOV R1,#0H MOV SFRAH,R1 MOV SFRCN,#00H	; The start address of sample code ; Target low byte address ; Target high byte address ; SFRAH, Target high address ; SFRCN = 00H, Read APFlash0 ; SFRCN = 80H , Read APFlash1
READ_VERIFY_APFlash: MOV SFRAL,R2 MOV TCON,#10H MOV PCON,#01H INC R2	; SFRAL = LOW ADDRESS ; TCON = 10H, TR0 = 1,GO
	Publication Release Date: Oct 07, 2010

Revision A6.0